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Abstract

This article is dedicated to the construction of a robust and accurate numerical scheme based on the lattice Boltzmann
method (LBM) for simulations of gaseous detonations. This objective is achieved through careful construction of a
fully conservative hybrid lattice Boltzmann scheme tailored for multi-species reactive flows. The core concept is to
retain LBM low dissipation properties for acoustic and vortical modes by using the collide and stream algorithm for the
particle distribution function, while transporting entropic and species modes via a specifically designed finite-volume
scheme. The proposed method is first evaluated on common academic cases, demonstrating its ability to accurately
simulate multi-species compressible and reactive flows with discontinuities: the convection of inert species, a Sod
shock tube with two ideal gases and a steady one-dimensional inviscid detonation wave. Subsequently, the potential of
this novel approach is demonstrated in one- and two-dimensional inviscid unsteady gaseous detonations, highlighting
its ability to accurately recover detonation structures and associated instabilities for high activation energies. To the
authors’ knowledge, this study is the first successful simulation of detonation cellular structures capitalizing on the
LBM collide and stream algorithm.

Introduction

The aeronautics and aerospace industries are currently experiencing significant transformations driven by the
demand for groundbreaking technologies that offer improved efficiency and a reduced environmental impact. De-
veloping new engines based on high-speed combustion, such as detonation, holds great promise due to the potential
for increased pressure gain compared to traditional combustion methods. This concept is inspired by the recognition
that the thermodynamic cycle known as the Fickett-Jacobs cycle surpasses the efficiency of the classical Brayton cy-
cle [1, 2]. Various applications, including rotating detonation engines (RDE), have garnered significant attention in
recent years. [3]. Attaining a comprehensive grasp of the physical phenomena taking place within such engines is im-
perative for optimizing the design process. However, gaseous detonation waves encompass reactive and compressible
chaotic gas-dynamical events. Their observation reveals intricate patterns involving multidimensional and unsteady
structures [4, 5], thereby rendering precise experimental studies extremely challenging.

In this regard, computational fluid dynamics (CFD) presents an alternative approach with the aim of accurately
capturing the flow physics. However, significant challenges still have to be addressed, further narrowing the selection
of suitable numerical methods. Detonation waves encompass characteristic scales that span several orders of mag-
nitude: chemical length scales are approximately one micrometer, the reactive fronts display inherent instability and
form cellular structures spanning from millimeters to centimeters in length, while the applications involving detona-
tion typically extend to the meter scale. Furthermore, the detonation front propagates at velocities on the order of
several kilometers per second. Incorporating a detailed chemical reaction description compounds the complexity of
the application, making it even more demanding. The intricate interplay of shocks, chemical reactions, and turbulence
therefore requires the use of very robust and low dissipative numerical methods [6]. To tackle these challenges, vari-
ous strategies have been embraced in the literature, ranging from the use of high-order finite volume schemes based
on HLLC (Harten-Lax-van Leer-Contact) solvers [7–10] to Galerkin discontinuous methods [11, 12]. Despite signifi-
cant enhancements in modeling strategies through adaptive mesh refinement [13–15], simulating an entire detonation
engine remains computationally challenging with these high-order approaches.

From this perspective, the lattice Boltzmann method (LBM) represents a competitive alternative approach that has
gained increasing attention from the CFD community over the last three decades. Its primary strengths stem from a
simple numerical scheme, achieved by splitting the Boltzmann equation with discrete velocities into two parts: a local
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collision term mimicking inter particles interactions and a node-to-node streaming step consisting in a mere memory
shift [16]. Although second-order accurate in space and time, it has been shown that the standard LBM can be a low
dissipative, efficient and accurate numerical method for solving fluid mechanics problems [17]. These features have
made it appealing for academic and industrial applications alike, encompassing fields such as turbulent flows [18, 19],
combustion [20–22], multiphase flows [23, 24] and magneto-hydrodynamics [25]. Nevertheless, conventional lattice
Boltzmann methods, rooted strictly in a kinetic model derived from the Boltzmann equation, still face difficulties
when simulating the compressible and reactive flows inherent to detonation waves. One difficulty arises from the need
to model the energy equation for compressible flows, which necessitates an increase in the number of microscopic
velocities to be considered [26]. This, in turn, expands the spatial stencil of the method, leading to heightened
complexity in the numerical scheme, a significant rise in memory requirements, and makes numerical stability more
challenging [27]. Admittedly, recent work have successfully made it possible to simulate detonation waves with
kinetic approaches grounded in the Boltzmann equation. To the best of the authors’ knowledge, Yan et al. were
pioneers in proposing a lattice Boltzmann model for detonations, employing a finite difference lattice Boltzmann
(FDLB) scheme [28]. More recently, Ji et al. introduced a discrete Boltzmann model (DBM) for compressible
reactive flows, allowing them to simulate steady and unsteady detonations [29]. Sawant et al. achieved successful
simulations of detonation waves with the particles on demand (PonD) method [30]. Despite their promise, these recent
approaches do not fully leverage the advantages of the LBM, which lie in the simplicity and low dissipative feature of
the collide and stream algorithm.

An alternative avenue for expanding the capabilities of LBM to encompass thermal, compressible, and reactive
flows is through the implementation of a hybrid LBM. This concept stems from the observation that increasing the
number of lattice velocities can lead to computational expenses, especially when incorporating a supplementary scalar
equation like temperature evolution. The purpose of the hybrid LBM is, therefore, to explicitly solve a suitable
form of the energy equation using a finite-difference (FD) or finite-volume (FV) scheme, sharing the same mesh and
time step as the LBM. The appeal of this approach unfolds in three key aspects. First, it enables the consideration
of compressible flows without increasing the spatial stencil and the memory cost due to the add of distributions
functions in multi-speed [26, 31–36] or double distribution functions (DDF) [37–40] approaches. Second, it allows
for explicit specification of the gas heat capacity ratio and, in a broader sense, its equation of state. This is achievable
as the internal energy is no longer restricted solely to translational energy. With fully kinetic approaches, the simple
extension to polyatomic gases is acknowledged to be quite challenging [41]. Third, in the context of reactive flows,
this strategy can be used to explicitly solve the mass fraction equation for each species, thereby sidestepping the
additional memory cost of using multiple distribution functions, as done in the aforementioned methods. The hybrid
LBM also opens the door to well-controlled chemical kinetics. Owing to these advantages, it has recently proven its
worth for simulations of compressible [42–50] and reactive [21, 22] flows.

An inquiry naturally emerges regarding the hybrid LBM: since part of the system (commonly energy and mass
fraction equations) is numerically solved by a FD/FV scheme, is it possible to preserve the low dissipation property
of the LBM even when it is not coupled with a high-order scheme? One can indeed expect the coupling to deteriorate
the numerical properties of the LBM alone. Addressing this query involves the potential separation of the physical
waves, commonly referred to as Kováznay modes [51], which can be achieved when the hybrid LBM is based on the
characteristics of the hyperbolic Euler system. Indeed, as discussed in [50], when the LBM is supplemented by a
characteristic wave equation solved through a FD/FV scheme, the two systems become linearly decoupled, so that the
independent numerical properties of each scheme can be preserved. In practice, this leads to the choice of the entropy
equation (which is precisely a characteristic one) as initially proposed by Nie et al. [42], to consider temperature
fluctuations. Recent endeavors have successfully demonstrated that, when this strategy is adopted, the remarkable
accuracy of the LBM can be preserved for any isentropic flow (e.g. acoustic propagation or vortical fields), while the
numerical scheme adopted for the entropy equation only affects the behavior of entropy waves [47, 48].

The entropy-based hybrid LBM has therefore successfully extended the scope of the method to compressible
and reactive flows, as discussed in [22]. Unfortunately, this model is not suitable for compressible reactive flows in
presence of discontinuities such as shock waves, which is required for the simulation of detonations. The issue arises
from the lack of conservativity of this approach, which fails to yield correct jump relations across a discontinuity [49].
A conventional way to ensure the global conservativity of a numerical scheme is to deal with a FV discrete formulation
of the total energy equation [52]. However, integrating this formalism with the hybrid LBM proves challenging, since
it is prone to triggering severe numerical instabilities, as discussed in earlier references [42, 53, 54]. Additionally, the
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aforementioned benefits of dealing with a characteristic equation such as the entropy one may be lost when working
with a total energy formulation. Recently, a solution to this predicament was proposed by Wissocq et al. [50] for
non-reactive flows. The idea is to construct FV total energy schemes maintaining all the linear properties of a non-
conservative entropy-based hybrid system. Through this, new numerical schemes could be successfully built for
the hybrid LBM, satisfying the following properties: 1) conservativity is ensured by construction, 2) linear stability
can be controlled by the choice of FV scheme, 3) the low dissipation of the LBM for isentropic phenomena can be
preserved. The aim of the present work is to extend this methodology to simulations of multi-species reactive flows.
Our objective is to build conservative, robust and low-dissipative numerical schemes based on the hybrid LBM for
compressible reactive flows in order to accurately simulate detonation waves.

The article is organized as follows. Section 1 details the theoretical derivation of the conservative scheme for
multi-species reactive flows in a general way. Mathematical details for this work are provided in Appendix A, Ap-
pendix B and Appendix C. In Section 2, the models retained in the present work for the simulation of detonation
waves are introduced. They are based on the so-called unified lattice Boltzmann collision model, initially proposed by
Farag et al. [48], and further detailed in Appendix D. Three conservative discretizations of the energy equation are
proposed. They are further compared and validated on standard academic cases of growing complexity in Section 3:
the convection of inert species, a shock tube with two gases and a stable one-dimensional detonation wave. In Sec-
tion 4, the potential of this new approach is demonstrated on strongly unsteady inviscid detonations in one and two
dimensions.

1. Construction of conservative hybrid LB schemes for multi-species reactive flows

The aim of this section is to detail the construction of stable conservative schemes for the hybrid LBM in presence
of multi-species reactive flows. It is an extension of a previous work dedicated to the non-reactive case [50].

In the present work, the inviscid case, modelled by the Euler equations, is considered. Unless otherwise stated, a
dummy field Φ evaluated at (x, t), where x is the position and t is the time, is simply denoted as Φ. In order to make
the demonstration as general as possible, no assumption is made on the spatial dimension which is represented by
Greek indices obeying Einstein summation convention. For instance, the product uα δα Fα reads, in two dimensions:
uxδxFx +uyδyFy. Also note that all vector quantities are written in bold.

1.1. Non-conservative model and definitions

We first consider a hybrid model where mass and momentum equations are numerically solved in their con-
servative form by a LB scheme, and coupled with non-conservative formulations of the entropy and mass fraction
equations. This description is particularly suitable for previous hybrid LB models of the literature [42, 45–47, 55]. In
the one-dimensional case, the system reads:

δtρ +
(

Fρ,LB
+∆x/2 −Fρ,LB

−∆x/2

)
/∆x = 0,

δt(ρu)+
(

Fρu,LB
+∆x/2 −Fρu,LB

−∆x/2

)
/∆x = 0,

δts+u
(

Fs,FD
+∆x/2 −Fs,FD

−∆x/2

)
/∆x = ω̇s,

δtYk +u
(

FYk,FD
+∆x/2 −FYk,FD

−∆x/2

)
/∆x = ω̇k, ∀k ∈ J2,NsK, (1)

where (ρ,u,s,Yk) are respectively the mass density, the fluid velocity, the specific entropy and the volume fraction
of the species k, Ns is the number of species, ω̇s and ω̇k respectively stand for the net productions of entropy and
mass fraction of the species k due to chemical reactions. In practice, the mass fraction of the most inert species (here
the first one) will not be transported and may be evaluated from Y1 = 1−∑

Ns
2 Yk if necessary. The operator δt is a

numerical discretization of time derivatives, defined for a dummy field Φ as

δtΦ =
Φ(x, t +∆t)−Φ(x, t)

∆t
, (2)
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where ∆t is the time step and ∆x is the mesh size. Finally, FΦ are numerical fluxes of a quantity Φ. They can be either
computed by a LB scheme (“LB” superscript) or by a finite-difference scheme (“FD” superscript). The index +∆x/2
indicates a flux estimated at the right boundary of a given cell, while the index −∆x/2 indicates the left boundary. A
conservative computation of the fluxes yields

FΦ

−∆x/2(x, t) = FΦ

+∆x/2(x−∆x, t), (3)

so that the conservative scheme can be equivalently written involving the fluxes computed at the right boundary
(F+∆x/2) only. The complete system can then be generalized to any space dimension under the following matrix form:

δtV+Aα δα FV,d
α = SV , (4)

where an implicit summation is assumed on the index α representing the spatial dimensions, V = [ρ,ρu,s,Yk]
T is

a vector of non-conserved quantities, FV,d
α = [Fρ,LB

+∆α/2,F
ρu,LB
+∆α/2,F

s,FD
+∆α/2,F

Yk,FD
+∆α/2]

T is the vector of discrete fluxes in the
direction α , SV = [0,0, ω̇s, ω̇k]

T is the vector of source terms, δα is a discrete spatial gradient operator defined as

δα Φ =
Φ(x, t)−Φ(x− eα ∆x, t)

∆x
, (5)

eα is the unity vector in the direction α and Aα is a diagonal matrix whose coefficients are 1 for the mass and
momentum equations, and uα for the non-conservative entropy and volume fraction equations. For instance, in two
dimensions with Ns = 2, this reads

Aα =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 uα 0
0 0 0 0 uα

 . (6)

for α ∈ {x,y}. The presence of this non-identity matrix Aα is a clear indication of the non-conservativity of the
system.

With the FV formulation of Eq. (4), the choice of an explicit numerical scheme for each equation boils down
to the choice of a discrete flux.It is worth noting that in the context of the entropy and mass fraction equations, the
term “flux” is not appropriately used as they are not expressed in a conservative form. Nevertheless, these fluxes
are expected to be consistent with their continuous counterpart so that the consistency of the whole scheme can be
ensured. This reads

FV,d
α = FV,c

α +O(∆x,∆t), (7)

where FV,c
α are the continuous Euler fluxes defined as

FV,c
α =


ρuα

ρuα uβ + pδαβ

s
Yk

 , (8)

where p is the thermodynamic pressure and δαβ is the Kronecker symbol. In order to close the system, an equation of
state has to be prescribed between p and other known quantities, i.e. p = p(ρ,s,Yk). For instance, for an ideal single
species it reads

s = cv ln
(

p
ργ

)
, (9)

where cv and γ are respectively the heat capacity at constant volume and the heat capacity ratio of the fluid.

4



In practice, dealing with a system like Eq. (4) is not common for reactive flows owing to two difficulties stemming
from the chosen entropy equation: calculating entropy might not be straightforward for real gas mixtures and the pres-
ence of the source term ω̇s increases the complexity of the ensuing numerical scheme. Consequently, reactive flows
typically favor using enthalpy or total energy equations [56]. However, the present work aims to initiate from a gener-
alized form of the hybrid system based on the entropy equation, as it offers a distinct advantage over other equations:
the evolution equations for entropy and mass fraction assume a characteristic form, manifesting as straightforward ad-
vection equations for quantities s and Yk at velocity u. As stated in previous work [50, 53, 54], this characteristic nature
yields two key benefits: 1) the characteristic equations remain linearly decoupled with each other, affording enhanced
stability and accuracy control for the entire system, and 2) a substantial literature exists on numerical discretizations
of advection equations [57]. This is why coupling the LBM with a non-conservative entropy equation has been the
favored approach for compressible non-reactive flows [42, 45–47, 55]. However, this non-conservative formulation is
plagued by a significant issue: it leads to incorrect solutions close to flow discontinuities [49]. This flaw stems from
the fact that solely fluxes of conserved quantities – namely mass, momentum, total energy and mass of each species –
remain continuous across a discontinuity. To address this issue, it is imperative to deal with conserved formulations,
which are unfortunately likely to lead to coupling instabilities as shown in a previous work [53]. Two solutions have
recently emerged to ensure the stability of conservative hybrid LB schemes: Zhao et al. developed a new construction
of the fluxes of conserved quantities drawing inspiration from the way mass and momentum fluxes are computed by
the LBM [49], and Wissocq et al. derived a conserved total energy flux preserving the linear properties of the non-
conservative system [50]. In the following, an extension of the latter approach is proposed for multi-species reactive
flows starting from Eq. (4).

Mass and momentum equations being solved, in the present work, by a LB scheme, the expression of their fluxes
Fρ,LB
+∆α/2 and Fρuα ,LB

+∆α/2 are provided in Sec. 2.2 and Appendix C depending on the collision model adopted for the LBM.
Regarding the entropy and mass fraction fluxes, we will assume they can be written under the following form:

Fs,FD
+∆α/2 = Fα(s), FYk,FD

+∆α/2 = Gα(Yk), (10)

where Fα and Gα are functions of the vector fields (in space) s and Yk. The most straightforward example of such an
operator in one dimension is to consider Fx(s) = s(x, t), which would lead to

δxFs,FD
+∆x/2 =

s(x, t)− s(x−∆x, t)
∆x

, (11)

so that the numerical scheme for the entropy is a first-order left-sided Euler scheme 1. More advanced (stable and
second-order) choices for these functions are provided in Sec. 2.3.

1.2. Construction of a conservative system

Following [50], the objective of the present section is to find a linearly equivalent system of Eq. (4) based on the
conserved variables U = [ρ,ρu,ρE,ρYk]

T , where E is the total energy by unit of mass defined as

E ≡ H − p
ρ
, with H ≡ h+κ, h ≡

Ns

∑
k=1

Ykhk, hk ≡
∫ T

T0

cp,k(θ)dθ +∆h0
k , (12)

where H is the total enthalpy, h is the specific enthalpy of the mixture, κ = ||u||2/2 is the kinetic energy by unit of
volume, hk is the enthalpy of each species, cp,k is the heat capacity at constant pressure of each species, T is the gas
temperature and ∆h0

k is the enthalpy of formation of the species k at temperature T0. Note that with this definition, total
energy naturally includes the chemical potential of the gas mixture, so that it is a conserved quantity for multi-species
reactive flows.

The knowledge of the Jacobian matrix M = ∂U/∂V is a key point in the passage from non-conserved quantities
V to conserved ones U. The expression of this matrix depends on the equation of state under consideration. Notably,

1Note that this very simple example is unconditionally unstable for ux < 0.
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a particular expression of this matrix can be obtain from the first law of thermodynamics as shown in Appendix A.
Multiplying the discretized form of the non-conservative system (4) by M yields, formally,

δtU+MAα δα FV,d
α = MSV ≡ SU . (13)

A key point of the proposed methodology is that Eq. (13) is linearly equivalent to Eq. (4). Even though this system
describes the discrete evolution of conserved variables U, it is not a conservative formulation because of the presence
of the non-identity matrix MAα in front of the discrete flux. According to Appendix B, it is possible to transform
this system without affecting its linear properties so as to obtain

δtU+δα FU,d
α = SU , (14)

where FU,d
α =

[
Fρ,LB
+∆α/2,F

ρu,LB
+∆α/2,F

ρE,FV
+∆α/2,F

ρYk,FV
+∆α/2

]T
is a vector of conserved fluxes. FρE,FV

+∆α/2,F
ρYk,FV
+∆α/2 are the conserved

numerical fluxes of total energy and mass fraction of each species. Their general expression is provided in Appendix
B involving two arbitrary operators K1,α and K2,α . In what follows, for the sake of simplicity, one sets K1,α =
K2,α = Gα = Fα , meaning that same spatial discretizations for the total energy and the mass fraction are assumed.
Together with the expression of M provided in Appendix A, this leads to:

FρE,FV
+∆α/2 = Fα(ρHuα)︸ ︷︷ ︸

(i)

+(h−κ)
(

Fρ,LB
+∆α/2 −Fα(ρuα)

)
︸ ︷︷ ︸

(ii)

+uβ

(
F

ρuβ ,LB
+∆α/2 −Fα(ρuα uβ + pδαβ )

)
︸ ︷︷ ︸

(iii)

, (15)

FρYk,FV
+∆α/2 = Fα(ρYkuα)︸ ︷︷ ︸

(iv)

+Yk

(
Fρ,LB
+∆α/2 −Fα(ρuα)

)
︸ ︷︷ ︸

(v)

, (16)

where an implicit summation is done over β . Total energy and mass fraction evolutions are now written under a
conservative form, so that conservativity of the whole system can be ensured by construction. We now discuss on the
role played by each term in the above equations.

(i) This term is nothing but the expected total energy flux ρHuα discretized by the numerical scheme denoted as
Fα , initially designed to compute the entropy gradients. As shown in a previous study [53], it is very likely
that this term alone would lead to linearly unstable numerical schemes. The other terms in the total energy flux
((ii) and (iii)) can therefore be considered as numerical corrections to ensure linear stability.

(ii) Thanks to Eq. (7), one has Fρ,LB
+∆α/2 −Fα(ρuα) = O(∆x,∆t). As a consequence, this term does not affect the

consistency of the total energy flux. Its role is to correct numerical errors induced by the use of different schemes
for the mass and the total energy equation.

(iii) In the inviscid case, Eq. (7) leads to F
ρuβ ,LB
+∆α/2 −Fα(ρuα uβ + pδαβ ) = O(∆x,∆t). The role of this term is then

to correct numerical errors induced by the use of different schemes for the momentum and the energy equation.
In the viscid case, this term is consistent with uβ σαβ , where σαβ is the shear stress tensor. As shown in [50],
this leads to an implicit computation of the viscous heating term of the energy equation.

(iv) This term is the expected mass fraction flux ρYkuα discretized by the numerical scheme denoted with Fα . As
for (i), it is likely that this term alone would lead to a linearly unstable numerical scheme.

(v) Eq. (7) leads to Fρ,LB
+∆α/2 −Fα(ρuα) = O(∆x,∆t). This term is then a numerical correction due to the use of

different schemes for the mass fraction and the total mass equations.

Finally, the location where pre-factors (h− κ), uβ and Yk are evaluated can be open to a discussion. Noticing
that they are all multiplied by a O(∆x,∆t) term, this choice does not affect the consistency of the scheme, nor its
linear properties. To systematically ensure the symmetry of the scheme, these quantites will be extrapolated at the cell
interface by averaging their value between x and (x+ eα ∆x).

The crucial feature of the proposed construction is that all the steps leading to Eq. (14) are designed so as to
preserve the linear properties of the initial scheme (4), which allows decoupling the characteristics of the system. As
shown in [50], this leads to two important properties shared by the conservative schemes:
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• the accuracy in the transport of entropy and mass fraction can be explicitly and independently controlled by the
choice of operator Fα ,

• the linear properties of the LBM are preserved for acoustic and vortical phenomena.

Especially thanks to the second point, the low dissipation of the LBM for pressure waves can be preserved [17, 58].

1.3. Adding chemical source terms

We now focus on the source term SU appearing in the conservative formulation (14). It is noteworthy that, given the
definition provided by Eq. (12), sensible enthalpy variations induced by the chemical reactions are naturally absorbed
in the total energy. In other words, this total energy is a conserved quantity and no source term related to chemical
reactions are expected to appear in its evolution equation. As a consequence, the source term reads

SU = [0,0,0,ρω̇k]
T , (17)

and only the mass fraction equations are affected by a a net production due to chemical reactions. Without loss of
generality, it can be written as a function of the conserved variables as ω̇k (U). In the present work, this source term is
numerically implemented thanks to the following splitting approach [57]:{

(ρYk)
∗(x, t +∆t) = (ρYk)(x, t)−∆tδα FρYk,FV

+∆α/2 ,

(ρYk)(x, t +∆t) = (ρYk)
∗(x, t)+∆tρ(x, t +∆t)ω̇k (U∗(x, t +∆t)) ,

(18)

where U∗ = [ρ,ρu,ρE,(ρYk)
∗]T . Even though the computation of the source term involves quantities evaluated at

time t +∆t, the overall scheme can be made fully explicit by performing the transport of mass density ρ and total
energy ρE before the update of species. A detailed example of the inclusion of source term ω̇k is illustrated in Sec. 2
for a single-step chemistry involving two species, which is the topic of the rest of the article.

2. A model for inviscid gaseous detonations

This section aims at detailing the particular choices adopted in the rest of the article for: 1) the composition of the
gas mixture, 2) the lattice Boltzmann scheme used for mass and momentum equations, 3) the choice of discretization
operator Fα appearing in Eqs. (15)-(16).

2.1. Assumptions: ideal gas mixture of two species

In the following, we consider a mixture of two calorifically perfect gases denoted with indices 1 and 2, subject to
a chemical reaction 1 → 2. Index 1 is then referred to the fresh gas, and index 2 to the burnt gas. Unless otherwise
stated, both species have equal and constant heat capacities, but different formation enthalpies, such as{

p = ρRT
h = Y1h1 +Y2h2 = cpT −Y2Q,

(19)

where Q is the heat of combustion corresponding to the reaction. The chemical source term corresponding to the net
production of the burnt gas is modelled with the Arrhenius law [59],

ω̇2 = kY1 exp
(
− Ea

RT

)
, (20)

where k is the pre-exponential factor and Ea the activation energy. In the following, the mass fraction and production
rate of the burnt gases will be simply be denoted Y and ω̇ .
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2.2. Mass and momentum: lattice Boltzmann scheme

Mass and momentum equations are resolved using a lattice Boltzmann scheme, which can be written under the
following general (collide and stream) formulation:

fi(x, t +∆t) = f coll
i (x− ci∆t, t), ∀i ∈ J0,V −1K, (21)

where ( fi) is a set of V distribution functions, ( f coll
i ) are so-called post-collision distribution functions and ci are the

discrete velocities of a lattice. In the following, the focus is put on two-dimensional simulations using the D2Q9
lattice [60] for which V = 9 and {

ci,x = (0,1,1,0,−1,−1,−1,0,1)∆x/∆t,
ci,y = (0,0,1,1,1,0,−1,−1,−1)∆x/∆t.

(22)

Mass density ρ and momentum ρuα are then defined as moments of the distribution functions,

ρ(x, t) = ∑
i

fi(x, t), ρuα(x, t) = ∑
i

ci,α fi(x, t). (23)

As previously shown by Wissocq et al. [50], the discrete evolutions of mass and momentum can be written under the
conservative form of Eq. (4), where the expressions of mass fluxes (Fρ

+∆x/2, Fρ

+∆y/2) and momentum fluxes (Fρux
+∆x/2,

Fρux
+∆y/2, Fρuy

+∆x/2, Fρuy
+∆y/2) are recalled in Appendix C.

Regarding the post-collision distribution functions ( f coll
i ), their computation depends on the collision model under

consideration. In the present work and following [50], the unified density-based model of Farag et al. [48] is adopted
with a recursive regularized collision operator [34, 61–63]. It is detailed in Appendix D in the case of the D2Q9
lattice. It is noteworthy that performing a Chapman-Enskog expansion [64] or a Taylor expansion [65, 66], the
relaxation time of the collision model τ can be related to the physical dynamic viscosity µ and an eventual artificial
kinematic viscosity νsc as

µ +ρνsc = τρc2
s , (24)

where cs =
1√
3

∆x
∆t is the so-called lattice sound speed and ∆t is the time step. In the present study, the shock sensor

proposed in [48, 50] is slightly modified as

νsc =
sc

θ

∣∣∣∣ p(x−∆x, t)−2p(x, t)+ p(x+∆x, t)
p(x−∆x, t)+2p(x, t)+ p(x+∆x, t)

∣∣∣∣ , (25)

in the one-dimensional case, where θ = RT/c2
s and sc is a free parameter whose value is specified in each case of

Secs. 3-4. In multi-dimensions, the strategy proposed in [47] is adopted: νsc is first computed as the average value of
the above expression in each direction, then its local value is retained as the maximal value of all its direct neighbors.
Additionnaly in the present work, a clipping is applied on the relaxation time as

τ = min
(

µ +ρνsc

ρc2
s

,
∆t
2

)
. (26)

The idea behind this clipping is is rooted in the insight that, for τ = ∆t/2, most of the existing collision models
(spanning from the Bhatnagar-Gross-Krook collision [37, 67] to the recursive regularization detailed in Appendix D)
simplify to f coll

i = f eq
i +FE

i ∆t/2, FE
i being a general body-force term. As demonstrated in previous work [58, 66], this

specific value results in a first-order accurate scheme which offers the advantage of filtering out any non-hydrodynamic
mode from the flow physics, thereby enhancing stability properties. Therefore, Eq. (26) can be interpreted as a switch
between a second-order scheme (when νsc = 0) to a first-order one (when τ = ∆t/2), that can be used to better address
pressure discontinuities. The free parameter sc then acts as a stiffness parameter for this switch. This particular feature
will be assessed in the academic cases of Sec. 3.
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(a) MHM 1D (b) MHM 2D, Heun (TVD)

Figure 1: Sketch of the spatial stencils of the finite volume schemes considered in this work. : node where the fluxes are computed, : points
considered in the computation of the fluxes, : points not considered.

2.3. Finite volume flux operators

This section details the choice of discretization operators Fα involved in Eqs. (15)-(16). Three schemes, referred
here to as MHM 1D, MHM 2D and TVD Heun, will be assessed on academic cases. They are detailed below and
their spatial stencil in two dimensions is displayed in Fig. 1.

2.3.1. MHM 1D
The first scheme, referred to as MHM (MUSCL-Hancock-Method) 1D in the present work, follows the work of

van Leer [68] and Toro [57]. It was initially adopted for the compressible hybrid LBM by Farag et al. [47]. With the
notations of the present article and following [50], it reads for a dummy field Φ,

Fα(Φ) =

{
Φ+∆α/2(x, t) if uα(x, t)+uα(x+ eα ∆x, t)≥ 0,
Φ−∆α/2(x+ eα ∆x, t) else,

(27)

where

Φ+∆α/2 = Φ+
∆α

2
−uα

∆t
∆x

∆α

2
, Φ−∆α/2 = Φ− ∆α

2
−uα

∆t
∆x

∆α

2
, (28)

and where ∆α is an approximation of the slope of Φ in the direction α , which can be given by

∆α =
1
2
{(1+ηα) [Φ(x, t)−Φ(x− eα ∆x, t)]+(1−ηα) [Φ(x+ eα ∆x, t)−Φ(x, t)]} . (29)

The parameter ηα is set to ηα = 1
3

[
2uα

∆t
∆x − sign(uα)

]
as suggested in [57] to obtain a third-order accurate convection

scheme in space and time. Yet, as noted in [50], the present algorithm is not effectively third-order accurate because of
two reasons: (1) the time evolution of u should be considered to build a high-order scheme [57], (2) in two dimensions,
fluxes in the x- and y- directions are computed separately, leading to a cross-shaped stencil (cf. Fig. 1) that can reduce
the order of accuracy to the first-order for multi-dimensional flows. The second point is the reason why this scheme
is referred to as MHM 1D. An improvement for multi-dimensions is proposed below.

2.3.2. MHM 2D
Noticing that the aforementionned MHM scheme can be unadapted to non-aligned flows, Yoo et al. [69] recently

proposed a slight improvement inspired by the work of Toro [57]. Compared to the model of Sec. 2.3.1, the only
modification reads

Φ+∆α/2 = Φ+
∆α

2
−uβ

∆t
∆x

∆β

2
, Φ−∆α/2 = Φ− ∆α

2
−uβ

∆t
∆x

∆β

2
, (30)

9



where an implicit summation is done over the index β . For instance, in the two-dimensional case, this reads

Φ+∆x/2 = Φ+
∆x

2
− ∆t

2∆x
(ux∆x +uy∆y) , Φ−∆x/2 = Φ− ∆x

2
− ∆t

2∆x
(ux∆x +uy∆y) , (31)

Φ+∆y/2 = Φ+
∆y

2
− ∆t

2∆x
(ux∆x +uy∆y) , Φ−∆y/2 = Φ−

∆y

2
− ∆t

2∆x
(ux∆x +uy∆y) , (32)

where ∆x and ∆y are given by Eq. (29). Thanks to this modification, any flux computed in the x- or y-direction involves
both the slopes ∆x and ∆y, so that diagonal points are considered in this scheme as shown in Fig. 1. For this reason, it
will be referred to as MHM 2D in the following.

2.3.3. TVD Heun
The two aforementioned schemes offer the advantage of a low numerical dissipation for the considered spatial

stencil (maximum five points in each direction). Especially, they are linearly third-order accurate for flows aligned
with the Cartesian mesh. Unfortunately, these schemes are not total variation diminishing (TVD), meaning that they
are likely to generate spurious oscillations close to flow discontinuities, which may alter the detonation physics driven
by shock waves. For this reason, it is also proposed to use a TVD scheme following the work of Dubois [70], who
adapted the MUSCL scheme of Heun with slope limiters, so that both TVD properties and second-order accuracy
can be ensured. To the authors’ knowledge, the Heun scheme is the only five-point-stencil scheme that enables the
recovery of such properties. It is similar to the MHM 2D scheme of Sec. 2.3.2 with the following modification of the
slope ∆α :

∆α = φ̃α(rα)(Φ(x+ eα ∆x, t)−Φ(x, t)) , (33)

where φ̃α , the slope limiter function, has to satisfy some conditions to ensure the TVD property and preserve the
second-order accuracy [70]. In the present work, it is proposed to use the absolute minmod limiter [71], defined as

φ̃α(rα) =

{
φ(rα) if uα(x, t)+uα(x+ eα , t)≥ 0,

φ

(
1

rα

)
else,

(34)

φ(r) =

{
|r| if |r| ≤ 1,
1 if |r|> 1,

rα =
Φ(x, t)−Φ(x− eα ∆x, t)
Φ(x+ eα ∆x, t)−Φ(x, t)

. (35)

Although not presented in the present article, some results obtained with other limiter functions tested in this work (in
particular the Lagrange limiter of [70]) will also be mentioned in the numerical validations of Sec. 3 below.

2.4. Summary of the hybrid scheme

The proposed fully conservative hybrid scheme for compressible reactive flows can be summarized as follows.
Starting from the knowledge of the conserved fields

(
( fi)i∈J0,V−1K,ρ,ρu,ρE,ρY

)
at time t, as well as (ρ,T ) a time

(t −∆t):

1. Compute T from the knowledge of ρ , ρu, ρE and ρY at time t by inverting Eq. (12).
2. Compute ( f coll

i ) at time t thanks to the recursive regularized collision model detailed in Appendix D. The
knowledge of (ρ,T ) at time (t −∆t) is required in the computation of the correction term FE

i .
3. Apply the streaming step to obtain ( fi) at time (t +∆t) (Eq. (21)).
4. Compute the LB mass and momentum fluxes from the knowledge of ( f coll

i ) using Appendix C.
5. Compute ρ and ρu at time (t +∆t) either as moments of fi (Eq. (23)) or using the LB fluxes (both methods are

equivalent).
6. Total energy and mass fraction fluxes can then be computed using Eqs. (15)-(16), where Fα is a discretization

operator proposed in Sec. 2.3. Remember that the pre-factors are evaluated at the mid-cell interface to ensure
the symmetry of the scheme.
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7. Total energy and mass fraction are transported as

(ρE)(x, t +∆t) = (ρE)(x, t)− ∆t
∆x

(
FρE,FV
+∆α/2(x, t)−FρE,FV

+∆α/2(x− eα ∆x, t)
)
, (36)

(ρY )∗(x, t +∆t) = (ρY )(x, t)− ∆t
∆x

(
FρY,FV
+∆α/2(x, t)−FρY,FV

+∆α/2(x− eα ∆x, t)
)
. (37)

8. The source term of Eq. (20) is then introduced following the splitting approach of Sec. 1.3:

(ρY )(x, t +∆t) = (ρY )∗(x, t +∆t)+∆tkρ(x, t +∆t)(1−Y ∗(x, t +∆t))exp
(
− Ea

RT ∗(x, t +∆t)

)
, (38)

where Y ∗(x, t+∆t) = (ρY )∗(x, t+∆t)/ρ(x, t+∆t) and T ∗(x, t) is obtained in a similar way by inverting Eq. (12)
with the knowledge of U∗(x, t +∆t).

All fields
(
( fi)i∈J0,V−1K,ρ,ρuα ,ρE,ρY

)
being then known at time (t +∆t) as well as (ρ,T ) a time t, the procedure

can be repeated until the last iteration.
This scheme has been implemented in a massively parallel two-dimensional Fortran code and evaluated in the test

cases of Sections 3 and 4 below.

3. Validation on academic cases

In this section, the proposed conservative scheme for compressible reactive flows is assessed on several one- and
two-dimensional academic cases: the convection of inert species, a shock tube of two ideal gases and a stable one-
dimensional detonation. These test cases aim at numerically validating the stability and the conservativity of this
approach, as well as guiding the choice between the schemes introduced in Sec. 2.3 for the simulation of gaseous
detonations. In this regard, some models will be progressively discarded from the study.

All the test cases are simulated on a uniform mesh with an acoustic scaling [16], meaning that the ratio ∆x/∆t
is kept constant in the mesh convergence studies. For a given mesh size ∆x, the only numerical parameters are the
shock sensor coefficient sc and the constant ratio ∆x/∆t, whose values will be specified in each case. The Courant-
Friedrichs-Lewy (CFL) number [72], defined as

CFL ≡
(
||u||+

√
γRT

)
∆t
∆x

, (39)

is not a constant prescribed parameter but an observed variable whose maximal value will be provided for each test
case.

3.1. Convection of inert species
The first test case investigated in this work is the convection of inert (non reactive) species at a constant velocity.

Its main purpose is to compare the numerical behavior of the schemes proposed in Sec. 2.3 for the transport of the
mass fraction ρY , which behaves as a passive scalar. For this case, the gas mixture is characterized by γ = 1.4 and
R = 1 and no chemical source term is considered (ω̇ = 0). A (L×L) fully periodic domain with L = 1 is discretized
by a (200× 200) Cartesian mesh. The simulation is initialized by density, pressure, velocity components and mass
fraction as

ρ = 1, p = 1, u = (Max,May)
√

γ,

Y = exp
(
− (x− xc)

2 +(y− yc)
2

R2
c

)
, (40)

where xc = yc = 0.5 are the coordinates of the center of the domain, Rc = 0.1 is the radius of the Gaussian and Max
and May are the Mach numbers in the horizontal and vertical directions. Two cases with an absolute Mach number
equal to unity are investigated:

1. horizontal convection: Max = 1, May = 0,
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2. diagonal convection: Max = 1/
√

2, May = 1/
√

2.

Characteristic times corresponding to the flow-through-time period of the species can be respectively defined as tc =
1/

√
γ and tc =

√
2/γ . In both cases, we set ∆x/∆t = 7.9 so that max(CFL)≈ 0.3. The shock sensor is not activated

for this smooth case (sc = 0) and the fluid is considered inviscid (µ = 0). The exact solution is then supposed to be a
convection of the initial Gaussian in mass fraction Y at the Mach number Ma.
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Figure 2: Contours of the mass fraction Y for the convection of an inert species after 20 characteristic times. 25 contours are displayed for Y1 ∈ [0,1].
From left to right: MHM1D, MHM2D, Heun (TVD). Top: horizontal convection, bottom: diagonal convection.

Fig. 2 displays isocontours of the mass fraction Y obtained with the three models introduced in Sec. 2.3 for the
horizontal and diagonal convections at t = 20tc. For the horizontal convection, MHM1D and MHM2D lead to accurate
results with a remarkable ability to transport species over long distances without transforming the Gaussian shape. In
contrast, the Heun (TVD) scheme exhibits a dispersion error responsible for a distortion of the mass fraction, as well
as more numerical dissipation. The observation that both MHM1D and MHM2D schemes lead to similar results is in
agreement with the good properties of the MHM1D along the Cartesian directions. The diagonal points introduced by
the MHM2D scheme have no contribution in this case. On the contrary, when the convection is performed along the
diagonal, MHM1D rapidly results in numerical instabilities, which is in agreement with previous studies of an entropy
spot convection [50]. For this case, the add of diagonal points in the MHM2D scheme restores the stability and even
more: the shape and amplitude of the Gaussian are especially well preserved. Regarding the Heun (TVD) scheme,
a much larger dissipation is observed, even if the shape of the Gaussian is well conserved. Quantitative results
regarding the amplitude loss for each case are provided in Table 1. Note that horizontal and diagonal simulations
cannot be directly compared with each other because the characteristic time of the latter is larger in this case.

MHM1D MHM2D Heun (TVD)

Horizontal convection 0.980 0.980 0.688
Diagonal convection ✗ 0.957 0.465

Table 1: Amplitude of the mass fraction Y after 20tc along the horizontal and diagonal directions.
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Figure 3: Convergence study of the specy advection along the horizontal and diagonal directions with the finite volumes schemes proposed in
Sec. 2.3. Dotted line: −1 slope, dashed line: −2 slope, Dash-dotted line: −3 slope.

To better explain these results, a convergence study is performed on similar cases for different meshes ranging
from (100× 100) to (3200× 3200) nodes. Note that this test case is a pure advection at constant velocity without
source term, for which the linear assumption is satisfied. The mass fraction is the only variable that is supposed to
evolve with time. We therefore expect to recover the orders of convergence of the MHM 1D, MHM 2D and Heun
(TVD) schemes as if they were not coupled with the LBM. At t = tc, the L 2

Y error on the mass fraction is computed
as

L 2
Y =

√
∑x,y[Y (x,y, t = tc)−Y (x,y, t = 0)]2√

∑x,y Y (x,y, t = 0)2
. (41)

These errors are displayed in Fig. 3 with a log-log scale. Looking at the slope of each case leads to the following
conclusions regarding the orders of accuracy:

• For the horizontal direction: MHM1D and MHM2D are both third-order accurate, Heun (TVD) is second-order
accurate.

• For the diagonal direction: MHM1D is first-order accurate (and blows up with the finest mesh), MHM2D and
Heun (TVD) are both second-order accurate.

In particular, the first-order accuracy of the MHM1D scheme for non-aligned flows leads to a viscosity-related numer-
ical error which is responsible for the instability observed. For this reason, this model will be discarded from the rest
of the study. Regarding the Heun (TVD) scheme, further studies indicate that the predominant numerical dissipation
is due to the choice of the limiter function, namely the absolute minmod model. For the sake of completeness, other
slope limiters have been tested during this work. In particular, the Lagrange limiter of Dubois [70] leads to a much
lower numerical dissipation, providing properties similar than the Heun scheme without limiter for this case. Unfor-
tunately, another problem then occurs: the Heun scheme with Lagrange limiter proved to be too dispersive to be used
in the following detonation simulations. In fact, the numerical dissipation introduced by the absolute minmod limiter
has the advantage of reducing the dispersive behavior of the Heun scheme. This is why this model is retained for the
following, together with the MHM2D scheme.

3.2. Sod shock tube with two ideal gases
The next test case aims to exhibit the behavior of the considered numerical schemes across flow discontinuities,

as well as to validate the conservativity of the methods. To this end, the one-dimensional shock tube of Sod [73] is
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Figure 4: Density and temperature profiles at time t = 0.2
√

RTL/L for the shock tube test case with two γ . Solid line: reference, blue dashed line:
HLBM simulations, from left to right: [MHM, sc = 0], [Heun (TVD), sc = 0], [MHM, sc = 1], [Heun (TVD), sc = 1].

considered, where a fluid flow is initialized with two constant (left and right) states. Since in absence of chemistry,
this case does not allow us to validate the transport of species (which behave as passive scalars), it is proposed
here to extend it to the study of two ideal gases with different heat capacity ratios γ , as suggested by Abgrall and
Karni [74]. A (L = 1)-long domain, discretized with N = 400 points, is initialized with left and right states separated
by a discontinuity localized at x = 0.5 as

(ρ,u, p,γ,Y )L = (1,0,1,1.4,0), (42)
(ρ,u, p,γ,Y )R = (0.125,0,0.1,1.6,1). (43)

The varying heat capacity ratio is considered with a mass fraction model through the following relation

γ(Y ) =
(1−Y )γL/(γL −1)+Y γR/(γR −1)
(1−Y )/(γL −1)+Y/(γR −1)

. (44)

Thanks to this variable heat capacity ratio, the mass fraction Y is not a passive scalar in absence of chemistry, which
allows us to validate the behavior of the whole system in presence of flow discontinuities. The gas constant is R = 1
and the time step is such that ∆x/∆t = 5, leading to max(CFL) ≈ 0.45. Left and right boundaries are imposed as
Neumann conditions, i.e. a zero-gradient for every variable.

Figure 4 displays the density and temperature profiles at t = 0.2
√

RTL/L obtained with the four following schemes:
(1) MHM with sc = 0, (2) Heun (TVD) with sc = 0, (3) MHM with sc = 1, (4) Heun (TVD) with sc = 1. The first
observation is that the jump relations observed between the rarefaction wave, the contact discontinuity and the shock
wave are in very good agreement with the reference provided by an exact Riemann solver [57]. This allows us to
validate the conservativity of the coupled scheme. The main difference between the four models lies in the appearance
of numerical oscillations of the temperature profile close to flow discontinuities. More precisely, for sc = 0, the MHM
model gives rise to oscillations in the shock and in the contact discontinuity. The latter are removed by the use of
the Heun (TVD) scheme. However, although theoretically TVD, numerical oscillations are still present in the shock
with this scheme. This observation is correlated with a particular feature of the proposed hybrid schemes, for which
entropy waves are decoupled from acoustic ones. As previously shown in [50], the contact discontinuity is related to
an entropy and mass fraction wave, which is here numerically solved by a TVD scheme. This is why no oscillations
are observed in the contact discontinuity. However, the shock wave is related to pressure fluctuations, which are purely
solved by the LBM. For this reason, the only way to damp its oscillations is to apply modifications to the LB scheme
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itself. In Fig. 4, the LB scheme is modified by adding an artificial viscosity through the shock sensor with sc = 1.
This results in the successful suppression of oscillations in the shock, regardless of the finite volume scheme. The
decoupled behavior of the contact and shock discontinuities are summarized in Table 2.

MHM Heun (TVD)

sc = 0
contact: ✗
shock: ✗

contact: ✓
shock: ✗

sc = 1
contact: ✗
shock: ✓

contact: ✓
shock: ✓

Table 2: Summary of the ability of MHM and Heun (TVD) schemes to simulate flow discontinuities without numerical oscillations.

Given these conclusions, and since non-oscillating flow discontinuities are of primary importance for the numer-
ical simulation of detonations, it is decided to retain the Heun (TVD) scheme only for the rest of this work. This
choice may seem suprising in view of the dissipative behavior of this scheme exhibited in Sec. 3.1. In fact, for most of
the applications involving inert mixtures, the MHM2D scheme is likely to outperform the Heun (TVD) one, precisely
thanks to its low dissipation in every direction. However, the numerical oscillations observed across contact discon-
tinuities turned out to be problematic for the simulations of detonations, where the flow physics is strongly driven
by the discontinuities. Temperature oscillations can result in spurious chemical reactions that pollute the solution.
Therefore, even though the Heun (TVD) scheme can be more dissipative than the MHM2D one, it proved to be a very
good scheme for the studies that follow.

3.3. Stable one-dimensional detonation

The third test case aims at validating the ability of the proposed method to simulate a single detonation wave.
For this purpose, the one-dimensional steady model initially developed by Zel’dovich, von Neumann and Döring
(ZND) [75–77] will be considered as a reference. The principle of this approach is to numerically integrate the
steady one-dimensional conservation equations in order to have access to the structure of the detonation wave, starting
from the knowledge of the physical properties of the mixture and the fresh gas steady state. The detonation is then
especially characterized by a half reaction length l1/2 corresponding to the distance between the shock and a fresh
gas mass fraction Y = 0.5, by a von Neumann state corresponding to a pressure peak behind the shock and by the
Chapman-Jouguet detonation velocity DCJ . When the mixture is composed of two ideal gases with an identical heat
capacity ratio γ and with a heat release Q, the detonation velocity reads

DCJ =

√
γRT0 +

(γ2 −1)Q
2

+

√
(γ2 −1)Q

2
, (45)

T0 being the temperature of the fresh gas [78]. In the present case, such a mixture will be considered with the following
properties:

γ = 1.2, R = 692.83 J.kg−1.K−1, Q = 50RT0, Ea = 24RT0, k = 2.006×107 s−1,

p0 = 101325 Pa, T0 = 295 K. (46)

With these parameters, note that the half reaction length of the ZND profile is l1/2 = 6.92×10−4 m. This particular
test case is commonly investigated in the literature for the validation of numerical methods [78–83]. The reason is
that thanks to linear stability analyses, it can be theoretically demonstrated that the ZND profile is stable under these
conditions [84–86]. Therefore, the expected solution over time is a mere propagation of the ZND structure at the
detonation velocity DCJ .

In this section, the density, velocity, temperature, and mass fraction profiles obtained by the ZND theory are
considered for the initialization of a detonation wave propagated to the right. Compared to other possible ways
of initiating a detonation, the use of the ZND solution offers several advantages: one can make sure that a non-
overdriven detonation takes place and the number of points in l1/2, referred to as N1/2, can be explicitly prescribed.
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Figure 5: Pressure and temperature profiles of the stable one-dimensional detonation obtained at t = 4000tc for N1/2 = 32 points with and without
shock sensor.

The simulation setup is then the following. A one-dimensional domain of L = 0.025 m is considered, where Neumann
conditions are imposed on the left and right boundaries. In order to make the detonation wave freely propagate over
long distances (larger than the domain length L), a stategy referred to as recycling is adopted: when the detonation
wave is detected close to the right boundary, the solution is shifted to the left and fresh gas is filled between the shock
and the boundary [87]. Furthermore, in order to avoid spurious reflexions due to imperfect absorption properties of
the Neumann conditions, a viscosity sponge zone is introduced close to the left boundary. It consists in a continuous
increase of the LB relaxation time τ so as to reach τ = ∆t/2 close to the boundary, which, as discussed in Sec. 2.2,
is a particular value leading to a first-order LBM filtering any non-hydrodynamic modes. An inviscid fluid being
considered, the relaxation time is then computed as a superposition of the sponge zone with the artificial viscosity of
the shock sensor as

τ = min
(

νsc

c2
s
+

1
4
(1− tanh((x− sx)/sw)),

∆t
2

)
, (47)

where sx = 0.01 m is the x-position of the sponge zone and sw = 0.001 m its characteristic width. These parameters
are adopted so that the sponge zone always remains far away (more than 10l1/2) from the reaction zone. Furthermore,
the ratio between the mesh size and the time step is set to ∆x/∆t = 2×104, leading to max(CFL)≈ 0.2.

Figure 5 displays the dimensionless pressure and temperature profiles obtained at time t = 4000tc, where tc =
l1/2/

√
RT0, for a mesh resolution N1/2 = 32 in two cases: sc = 0 (no shock sensor) and sc = 0.1. Note that the

detonation wave is represented here as propagated to the left direction, which is a conventional representation of ZND
profiles. The pressure is non-dimensionalized by the von Neumann value pN ≈ 4.26×106 Pa. One can notice a very
good agreement between the profiles obtained by the HLBM approach with and without shock sensor, and the ZND
theory. The reaction zone is accurately captured, indicating the ability of the model to reproduce the complex coupling
occurring between the shock wave and the chemical reaction. Only two differences are noticeable between the sc = 0
and the sc = 0.1 cases:

• For sc = 0, a pressure peak is observed in the shock, leading to an incorrect von Neumann pressure.

• For sc = 0.1, the shock discontinuity is slightly smoother than without shock sensor.

The numerical oscillations observed in absence of shock sensor are likely to be problematic for the forthcoming
numerical simulations of detonations, especially since the pressure behind the shock is one of the most important
observed quantities. For this reason, the use of the shock sensor with the parameter sc = 0.1 will be retained in the
following. This is all the more motivated by the fact that, as shown in Fig. 5, the sensor only increases the relaxation
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time (hence the viscosity) in the shock region, while τ = 0 is recovered everywhere else and especially in the reaction
zone. Thus, this strategy effectively reduces the numerical oscillations without increasing the viscosity away from the
shock.

Resolution D/
√

RT0 |D−DCJ |/DCJ
N1/2 = 16 6.8094177 8.4×10−6

N1/2 = 32 6.8094177 8.4×10−6

N1/2 = 64 6.8094552 2.8×10−6

Table 3: Detonation wave velocities D measured with the HLBM simulations with sc = 0.1 for several meshes compared to the Chapman-Jouguet
theory DCJ/

√
RT0 ≈ 6.8094746 (Eq. (45)).

In the case sc = 0.1, the measured detonation velocities are displayed for several meshes and compared to the
Chapman-Jouguet theory (Eq. (45)) in Table 3. Note that the exactly same velocity D is obtained for N1/2 = 16 and
N1/2 = 32, which is due to the fact that, over the considered time, the detonation wave can only flow through an
integer number of mesh sizes ∆x. In any case, one can notice a very good agreement between the HLBM simulations
and the expected solution with a relative error in the order of 10−6. This result is highly accurate compared to the
numerical simulations based on the Euler equations of Kasimov et al. [81], who obtained a relative error in the order
of 10−3 with a finer resolution (N1/2 = 200). According to Henrick et al. [83], their lack of convergence was due
to a first-order accuracy of the numerical scheme. More accurate results could be obtained with a true fifth-order
shock-fitting scheme, leading to a relative error in the order of 10−7 for N1/2 = 20. With regards to these results, the
hybrid LBM is competitive with high-order standard numerical schemes for the simulation of one-dimensional stable
detonation waves.

4. Physical instabilities of inviscid gaseous detonations

Given the results of the previous section on academic test cases, only a single model is retained here: the Heun
(TVD) scheme of Sec. 2.3 with a shock sensor parameter sc = 0.1, unless otherwise stated. In this section, the physical
instabilities of one- and two-dimensional gaseous detonations are investigated.

4.1. One-dimensional detonations
According to linear stability analyses, the one-dimensional detonation investigated in Sec. 3.3 becomes unsta-

ble when the activation energy is increased above a critical value Ea ≳ 25.3RT0, all others parameters being un-
changed [78, 84–86]. This means that the ZND profile is not the unsteady solution any more. This topic has been the
purpose of many non-linear analyses based on unsteady numerical simulations [7, 79–83, 88, 89]. In this section, it is
proposed to reproduce the study of Ng [82] who developped a finite-volume high-order SLIC scheme to investigate the
non-linear behavior of four unsteady detonations characterized by different activation energies. In order to preserve
the same half reaction length as in Sec. 3.3, i.e. l1/2 = 6.92×10−4 m, the exponential pre-factor is adapted for each
case. Compared to Eq. (46), the simulation parameters are modified as:

Case 1 : Ea = 27.00 RT0, k = 3.230×107 s−1

Case 2 : Ea = 27.40 RT0, k = 3.445×107 s−1,

Case 3 : Ea = 27.80 RT0, k = 3.672×107 s−1,

Case 4 : Ea = 27.82 RT0, k = 3.683×107 s−1.

These cases are especially selected since they are expected to give birth to different instability modes according to the
bifurcation diagram [78, 83]. Except the changes in the activation energy and the exponential pre-factor, the setup
of the numerical simulations is the same as that described in Sec. 3.3. Notably, the shock sensor parameter is set to
sc = 0.1 and we set ∆x/∆t = 2×104, which allows us to have a maximal CFL number lower than 0.3 for all the cases.

Figure 6 displays the leading shock pressure histories as well as the corresponding phase plots obtained for each
case. The results are in very good agreement with Ng [82] and previous non-linear analyses indicating bifurcations
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Figure 6: Leading shock pressure history (left) and corresponding phase plot (right) of instable one-dimensional detonations for varying activation
energies.
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Figure 7: Mesh convergence of the phase plots showing mode oscillations for different activation energies.

of the flow behavior with the activation energy. In particular, Cases 1, 2, 3, 4 respectively lead to 1, 2, 4, 8 modes
of instabilities. It is also noteworthy to point out the long simulation time required to reach a non-linear limit cycle
with a converged structure. This observation is in agreement with the conclusions of Sharpe and Falle [80] who run
simulations for thousands of half-reaction times to reach a convergence. Moreover, by performing a mesh convergence
study for each case, we notice that when the mesh is coarse (N1/2 = 16), the higher the activation energy and the more
sensitive the computation is to small perturbations of the flow. Therefore, it is sometimes difficult to obtain a temporal
convergence of the simulation and instability bifurcations from one mode to another can be observed on a single
computation. However, this behavior vanishes when the mesh is sufficiently refined, so that a converged structure
can be finally observed in any case. It is also noticed that, even when a limit cycle can be obtained, the number
of modes appearing may not be the expected one. Here again, refining the mesh finally allows reaching the correct
unsteady structure. This mesh convergence is illustrated on Fig. 7 where phase plots are displayed for several meshes
in each case. One may especially note that the eight unstable modes expected by Case 4 can be obtained with no
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less than N1/2 = 512 points. Also note that when Ea increases, a finer mesh may be required to converge in the
pressure amplitude even when the expected mode is reached. All these observations explain why each case of Fig. 6
is presented with a different mesh resolution N1/2.

These observations are in agreement with previous numerical simulations who concluded that a fine mesh, with
more than 100 points in l1/2, may be required to observe an expected instability when the activation energy in-
creases [80]. It can be explained by two phenomena. First, due to the strong oscillations observed in the detonation
front, the effective number of points in l1/2 varies with time so that, in practice, the reaction zone may be less resolved
than expected with a steady ZND profile. Secondly, one should mention that the unsteadiness is a result of acous-
tic waves propagating in the reaction zone, between the shock discontinuity and the Chapman-Jouguet state. Their
wavelength is likely to be smaller as the number of modes increases, thus requiring a finer mesh to be captured.

Ea (Period)l/tc Henrick et al. [83]
27.00 RT0 11.876650650 11.877201192
27.40 RT0 23.780806692 -
27.80 RT0 47.678392393 -
27.82 RT0 95.399963581 -

Table 4: Asymptotic limits for the time periods of the pressure oscillations measured for each one-dimensional detonation according to the activation
energy Ea. The first case can be compared with the fifth-order method of Henrick et al. [83].

The mesh convergence analysis can be used to accurately estimate the time period of the oscillations in each
case. The procedure adopted here is as follows. For each activation energy, the period of the pressure amplitude
is measured with different meshes, ranging from N1/2 = 16 to N1/2 = 512 points. Then, noticing that a first-order
convergence is systematically obtained, a linear regression is performed with an inverse function. This makes it
possible to obtain estimations of the time period in the limit of an infinitely fine mesh, referred to as (Period)l . The
results are summarized in Table 4. In the first case, the measured period is very close to that of Henrick et al. [83]
obtained with a fifth-order accurate scheme.

The convergence analysis displayed in Fig. 8 confirms the first-order convergence of the measured periods toward
the asymptotic limits given in Table 4. This first-order accuracy may seem surprising while the LBM, which is second-
order accurate, is coupled with a MUSCL scheme. In fact, two properties of the adopted numerical scheme can explain
this effective first-order accuracy: 1) the implementation of the chemical source terms using a splitting approach, 2)
the add of artificial viscosity through the use of a shock sensor. These conclusions can be retained for future work
aiming to increase the effective accuracy order of the scheme.

Although it is clearly first-order accurate, the proposed HLBM model remains competitive with regards to the
numerical schemes commonly encountered in the literature, even when compared with high-order methods. The
detonation instabilities can be accurately captured with mesh resolutions of the same magnitude as in previous work,
and the detonation velocity could be measured with great accuracy in Sec. 3.3. The good accuracy obtained with
this HLBM scheme has two explanations. First, the artificial viscosity introduced by the shock sensor, which is one
source of first-order accuracy, is only triggered in a very thin zone in the shock region as shown in Fig. 5. Knowing
that the oscillations of the shock wave result from physical modes propagating in the reaction zone, it is worth noting
that this region is not, or very slightly, affected by the shock sensor. The second reason lies in an important feature
of the proposed HLBM solver together with the physical nature of the detonation instabilities. Precisely, one should
mention that the physically unstable modes propagating in the reaction zone are acoustic waves. One the other hand,
the proposed hybrid scheme has been especially designed to ensure a linear decoupling of the flow characteristics. As
such, it exactly behaves as if acoustic phenomena were addressed by the LBM only, as shown by Wissocq et al. [50].
The very good numerical properties of the LBM for acoustic waves propagation, which is comparable to high-order
Navier-Stokes schemes [17], are therefore preserved. This is why the physical modes responsible for the oscillations
of the detonation wave can be accurately captured with a moderate number of points per half reaction zone, further
explaining the very good accuracy of this approach for this case. This discussion highlights an important feature of
the proposed hybrid method, preserving the main interest of the LBM even when coupled with finite volume schemes.

Time-averaged detonation velocities obtained for each activation energy with the finer mesh (N1/2 = 512 points)
are displayed in Figure 9 in comparison with DCJ . Here again, a very good agreement is observed with the numerical
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Figure 9: Relative devation of the detonation velocity with DCJ as a
function of the activation energy for the selected cases. Comparisons
with Henrick et al. [83].

results of Henrick et al. [83], further validating the ability of the HLBM to accurately simulate unsteady detonations.
It is also worth noting that the relative deviations with the steady Chapman-Jouguet theory is of very small order of
magnitude (∼ 10−4). Having an accurate estimation of the detonation velocity with more than five digits is therefore
crucial to obtain this result. Notably, the first-order numerical scheme of Kasimov et al. [81] could not provide
sufficiently reliable measurements. Similarly, the detonation velocities measured by Ng [90], showing a chaotic
evolution with Ea and relative deviations with DCJ larger than 10−3, were likely to be not accurate enough. To the
authors’ knowledge, only the fifth-order method proposed by Henrick et al. [83] could provide satisfactory results
so far. In this regard, the confrontation carried out in Fig. 9 is not only a numerical validation of the present HLBM
model, but also a confirmation of the physical trend observed in [83].

A final discussion can be raised regarding the role played by the numerical parameters sc and ∆x/∆t in this study.
We recall that sc controls the add of artificial viscosity in the shock region. Since a clipping is done in Eq. (26), above
a given value, sc mainly acts as a stiffness parameter for the switch between a second-order scheme and a first-order
one. Regarding the ratio ∆x/∆t, it is closely related to the CFL number, playing an important role on the numerical
stability of the method. To better exhibit their impact, case 2 is reproduced with N1/2 = 64 and three different choices
for these parameters:

• sc = 0, ∆x/∆t = 2×104,

• sc = 0, ∆x/∆t = 104,

• sc = 0.1, ∆x/∆t = 104,

and compared with the results provided in Fig. 6. Note that setting ∆x/∆t = 104 leads to an increase of the CFL
number up to max(CFL) ≈ 0.48, which nonetheless did not harm the numerical stability of the simulations. Fig. 10
displays the time evolution of the pressure peaks (left) and the pressure profiles measured when the maximal amplitude
is reached (right) in each case. This figure illustrates the fact that removing the artificial viscosity in the shock (sc = 0)
and increasing the CFL number have a similar effect on the pressure profile: important oscillations can be generated
close to the discontinuity, which, however, has very little impact on the reaction zone. As expected, two modes
of instabilities are observed in any case, but the numerical oscillations can lead to a large overestimation of their
amplitude, especially in the worst-case scenario tested here (sc = 0, ∆x/∆t = 104). This observation motivates the
choices adopted in this section: sc = 0.1, ∆x/∆t = 2×104 leading to max(CFL) ≤ 0.3 and no overestimation of the
pressure peak.
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4.2. Two-dimensional detonations
In this section, two-dimensional simulations are performed in order to assess the ability of the proposed numerical

method to accurately capture the physical properties of multidimensional detonations. We consider the thermody-
namics parameters from Reynaud et al. [9, 91], where a stochiometric H2 - O2 mixture at atmospheric pressure
p0 = 101.25 kPa and temperature T0 = 295 K was investigated. A single-step chemical model is used with a reduced
heat release Q/RT0 = 28.3. The ratio of specific heats is γ = 1.333 to accurately recover the post-choc properties and
the CJ speed provided in Table 5. The mixture sensitivity is varied by considering different reduced activation energies
Ea/RT0 = 20,30,38.23,48, so that a wide range of detonation instabilities can be covered. As in Sec. 4.1, the pre-
exponential factor is modified accordingly in order to keep the same half-reaction length for all the reduced activation
energies, in this case l1/2 = 9.079 µm. This length scale is calibrated in order to fit the experimental two-dimensional
cell size.

DCJ PN (bar) PCJ (bar) TN (K) TCJ (K)

2845 17.5 34 1707 3007

Table 5: Chapman-Jouguet and von Neumann parameters obtained for the thermo-chemical parameters retained in the two-dimensional study.

The pre-exponential factors and the stability criteria χ for the different activation energies are gathered in Table 6.
The factor χ is computed from the definition of Ng et al. [92] adapted to a single-step chemistry. In this study, the
authors proceeded to a classification of various mixtures according to their sensitivity by experimental observations of
the cellular structure. A limit allowing them to distinguish stable from unstable mixtures was found for χ = 10. Beyond
this critical value, detonations are considered unstable. Based on the value obtained from this analysis, mixtures with
the activation energies Ea/RT0 = 38.23 and 48 are expected to be unstable. To further attest this observation, the
reduced activation energies as function of the CJ Mach number are compared in Fig. 11, where a dashed line indicates
the stability limit [93]. Experimental H2 - O2 mixtures are displayed with triangles for comparison with different
degrees of dilution with Argon. Stable detonation are expected for Ea/RT0 = 20 since it is below the stability limit
while Ea/RT0 = 30 is just above it. On the other hand, Ea/RT0 = 38.23 and Ea/RT0 = 48 are in the unstable zone.
Experimental H2 - O2 mixtures show that dilution makes it possible to switch from an unstable zone to the stable one.
Ea/RT0 = 48 is close to the representative points of the CH4 - 2O2 and C3H8 - 5O2 mixtures, which can be considered
as “very” unstable ones with very irregular cell structures. Simulating such mixtures would allow us to cover the large
area of physical properties and multidimensional dynamics that can be met in detonation applications.

Two-dimensional simulations have been performed to check if the physics of the detonation can be correctly re-
produced for each activation energy. Analyzing the flow pattern allows us to estimate the size of the cells and their
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Ea/RT0 k (s−1) χ

20 8.121 ×107 2.95
30 3.356 ×108 8.32

38.23 1.1 ×109 14.49
20 4.605 ×109 26.74

Table 6: Pre-exponential factor and stability criteria for different reduced activation energies.
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Figure 11: Representation of the reduced activation energies in the stability region. The stability limit is represented by dashed lines. The percentage
shows the degree of dilution with Argon of the H2 - O2 mixture. From Ecket et al. [93].

regularity. A Cartesian computational domain of dimensions Lx ×Ly = 15 mm ×5 mm = 165l1/2 ×55l1/2 is consid-
ered. The domain is chosen so that enough cellular structures can be exhibited to investigate their regularity. Upstream
and downstream boundary conditions are similar as in Sec. 3.3: Neumann conditions are considered together with a
viscosity sponge zone on the left boundary. Top and bottom boundaries are slip walls imposed by ensuring a symme-
try thanks to the use of ghost nodes. The numerical resolution is ∆x = l1/2/16 which is expected to be sufficient to
capture the main physical patterns of the gas dynamics [94].

The detonation is initiated by setting a ZND profile at the left-hand-side of the domain, enabling a propagation into
a fresh reactive mixture in the right-hand-side. Similarly to the one-dimensional cases, when the detonation reaches
the right boundary, a recycling of the solution is performed by adding extra fresh reactive mixture downstream of the
shock. More detailed description of the recycling methodology can be found in Sow et al. [87].

Figure 12 displays the resulting cellular structure for all the activation energies once a steady state propagation is
reached. An excellent cellular regularity is observed for the case of Ea/RT0 = 20. With the increase of the activation
energy, the cellular structure tends to loose its regularity and becomes highly irregular for Ea/RT0 = 48. Following
some classifications of the literature [95, 96], structures of excellent regularity are encountered in highly diluted
detonations with monatomic gases such as argon and helium. The associated reactive mixtures are generally light
fuels (H2, C2H2...) reacting with oxygen. Structures of good regularity are recovered with Ea/RT0 = 30. They are
generally found in low dilution and high pressure mixtures. The size of the cells is relatively constant and can be
measured with a reasonable accuracy. By increasing the activation energy to Ea/RT0 = 38.23, the resulting structures
show a rather large distribution in cell sizes. Highly irregular structures as with Ea/RT0 = 48 are usually the signature
of a heavy fuel reacting with O2 or CH4 reacting with air. This irregularity can be related to the properties of the
transverse waves. Indeed, for stable mixtures, transverse waves are very weak, while in unstable ones, transverse
waves are strong and can, under certain conditions, give birth to transverse detonations [97–99].

The general characteristics of the detonation are then revealed through an analysis of instantaneous fields. For
simplicity, a qualitative comparison is drawn between two activation energies: Ea/RT0 = 20 and Ea/RT0 = 48. In this
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Figure 12: Detonation cellular structure for different reduced activation energies

case, the domain size used is Lx ×Ly = 15 mm×2 mm = 165l1/2 ×22l1/2. The initialization strategy and boundaries
are similar as in the previous study. A sequence of the formation of a detonation cell is illustrated for the two activation
energies in figures 13 and 14. It is worth noting that only a small area in the horizontal direction is displayed to focus
on the front dynamics. For the stable case, the formation of cellular structures starts with the collision of two triple
points in the center of Fig. 13 (top-right). The detonation front is then composed of two symmetrical Mach stems
with two transverse waves. The later propagate in opposite directions toward top and bottom boundaries. The two slip
lines attached to the triple points roll up to the walls to form vortex structures. In the subsequent snapshot of Fig 13
(bottom-left), a Mach stem forms in the center and connects two incident shocks through the triple points. These
triple points propagate backward towards the walls. The slip lines are detached and convected into burnt gases. Their
interaction with transverse waves enhance the formation of vortex structures by Richtmyer-Meshkov instabilities. A
jet is formed behind the Mach stem as can be observed in the channel center and linked to the triple point through a
new slip line. These triple points collide with the boundaries at fig 13 (bottom-right) and initiate a path toward the
center of the channel, leading to the front structure observed in fig 13 (top-left). At this stage, the central Mach stem
becomes an incident shock wave and two Mach stems are formed due to the previous triple point interaction with
the boundaries. The formation of a cellular structure is achieved when the detonation once again reaches the stage
depicted in Fig 13 (top-right) initiating a new formation cycle.

Increasing the activation energy results into a more complex detonation front. Figure 14 displays the resulting
temperature flow field. Flow symmetry is broken and Mach stem/incident shock are difficult to distinguish. Unburned
pockets are detached from the front and convected downstream into the burnt gas. This consumption mechanism is
due to several phenomena such as surface burning caused by instabilities at the interface with burnt gas and volume
burning by the global increase of the temperature inside the pocket [100]. Transverse waves are weaker than with
Ea = 20RT0 [101].

To further highlight the effect of the shock sensor on the flow, the dimensionless relaxation time τ/∆t = 1/2+τ/∆t
is displayed in Fig. 15. As expected, the relaxation time is increased in the shock region, corresponding to the add
of artificial viscosity. As discussed in Sec. 2.2, the particular value τ = ∆t/2 (or τ = ∆t) reached in the shock can
be interpreted as the local use of a first-order accurate scheme allowing us to damp the numerical oscillations of the
LBM close to discontinuities. Away from discontinuities, a value of τ = 0 (τ = ∆t/2), is recovered in agreement with
an inviscid description of the flow. For stable detonation, the artificial relaxation remains activated in the transverse
shock wave downstream of the triple point over a long distance. On the contrary, it vanishes rapidly in the case of
high activation energy case due to the strong instability of the transverse waves. This result confirms the previous
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Figure 13: A sequence of instantaneous temperature fields showing the dynamics of unstable detonation for Ea = 20RT0.

Figure 14: A sequence of instantaneous temperature fields showing the dynamics of unstable detonation for Ea = 48RT0.
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Figure 15: Dimensionless relaxation time τ/∆t = 0.5+ τ/∆t in the flow fields of regular (left) and irregular (right) detonations.

observation for high activation energies.

5. Conclusion

In this work, new finite-volume schemes have been proposed for the simulation of compressible reactive flows
with a hybrid LBM solver in the aim of numerically modelling inviscid gaseous detonations. For this purpose, the
methodology initially proposed in [50] has been extended to multi-species reactive flows. The key point in the strategy
is to end up with a fully conservative numerical scheme that is linearly equivalent to a non-conservative one, where
the LBM is supplemented by the characteristic equations of entropy s and mass fractions Yk. As a consequence, the
Kovásznay modes remain linearly decoupled from each other, preserving the following advantages:

• the low dissipation of the LBM for isentropic phenomena such as pressure waves is preserved,

• entropy and mass fraction transport can be explicitly controlled, in terms of stability and dissipation, by the
choice of an appropriate finite-volume scheme.

Thanks to this strategy, stable and conservative numerical discretizations of the total energy equation have been
derived, which a challenging task when the hybrid LBM is considered [53, 54]. The introduction of production terms
modelled by the Arrhenius law and numerically integrated by a splitting approach has then made it possible to consider
the chemical reactions involved in gaseous detonations.

Subsequently, three numerical schemes have been proposed for the the total energy and mass fraction equations.
The first one is directly derived from the MUSCL-Hancock method previously adopted by Farag et al. [47] in their
entropy-based hybrid LBM. The second one is an extension of it for non-aligned flows, considering diagonal points
in the spatial stencil as recently proposed by Yoo et al. [69]. The third scheme is based on a Heun version of the
MUSCL-Hancock method supplemented by a slope limiter in order to ensure TVD properties. A first numerical
validation based on standard academic cases (transport of inert species, Sod shock tube and stable one-dimensional
detonation) allowed us to draw comparisons between these numerical schemes. When supplemented with artificial
viscosity to address numerical oscillations of the shock wave, the Heun (TVD) scheme turned out to provide the best
results for compressible cases in presence of flow discontinuities. For this reason, and despite its rather dissipative
behavior exhibited in the transport of inert species, this scheme was retained for the numerical simulations of gaseous
detonations performed in the present work. The reader should however note that this conclusion may not remain true
in all cases. It is very likely that, as long as numerical oscillations remain admissible close to flow discontinuities, the
second scheme would lead to the best results. Regarding this point, the development of a second-order low-dissipative
and non-oscillating scheme for the total energy equation may be the purpose of future work.

The retained methodology led to very satisfying results for one- and two-dimensional gaseous detonations. In
particular, the detonation velocity as well as the time period of unsteady structures could be recovered with more
precision than standard low-order methods, for example that of Kasimov et al. [81]. The observed accuracy is not so
far from the one obtained by Henrick et al. [83] with a fifth-order numerical scheme. This interesting property can
be explained by the low dissipation of the LBM for the acoustics [17], which is preserved with the present hybrid
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model. It is indeed known that most of the detonation instabilities are consequent of pressure waves developing in the
reaction zone, which can therefore be accurately simulated with the proposed method.

These promising results are an important step toward the use of the hybrid LBM for industrial applications in-
volving compressible reactive flows. It is worth noting that the primary focus of the present study is centered on the
formulation and validation of numerical fluxes. This is why only the most simple introduction of chemical source term,
based on a splitting approach, was considered. Since the proposed method is not dependent on the specific integration
of the source term, it can readily be replaced by any numerical scheme. For instance, the use of a predictor-corrector
scheme can be more adapted to handle stiff chemistry [102, 103]. Also note that while the present study is restricted
to inviscid detonations, the introduction of nonzero dynamic viscosity and thermal diffusion is straightforward with
the proposed method, as shown in [50]. Its extension to unsteady detonations in the viscid case, as done in [7, 104],
would require the introduction of a diffusion term in the mass fraction equation, which may be carried out in further
studies. The validation of this numerical method for more realistic simulations including rotating detonation engines
can be the purpose of future work. Its extension to even more challenging compressible flows including high pressure
ratio may require further developments of: 1) more robust LBM schemes for higher Mach numbers, 2) new strategies
to deal with the flow discontinuities avoiding the need for a shock sensor. Last but not least, an in-depth investigation
of the competitiveness of this method with regard to finite volume schemes could be conducted in the future.
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Appendix A. Jacobian matrix between conserved and non conserved variables

The aim of this appendix is to provide an expression for the Jacobian matrix M = ∂U/∂V which remains valid
for a large variety of gas mixtures, where U = [ρ,ρu,ρE,ρYk]

T and V = [ρ,ρu,s,Yk]
T . To build this matrix, let us

use the first law of thermodynamics,

de = T ds+
p

ρ2 dρ +
Ns

∑
k=1

gkdYk

= T ds+
p

ρ2 dρ +
Ns

∑
k=2

(gk −g1)dYk, (A.1)

where gk = hk −T sk is the Gibbs free energy and where sk is the entropy of the specy k. We assume here that the
entropy of the mixture can be obtained by s = ∑Yksk.

The differential form of the total energy by unit of volume is given by

d(ρE) = edρ +ρde+d
(
(ρuα)

2

2ρ

)
=

(
e+

p
ρ
− u2

α

2

)
dρ +uα d(ρuα)+ρT ds+ρ

Ns

∑
k=2

(gk −g1)dYk. (A.2)

This leads to(
∂ (ρE)

∂ρ

)
ρuα ,s,Yk

= h−κ,

(
∂ (ρE)
∂ (ρuα)

)
ρ,s,Yk

= uα ,

(
∂ (ρE)

∂ s

)
ρ,ρuα ,Yk

= ρT,
(

∂ (ρE)
∂Yk

)
ρ,ρuα ,s

= ρ(gk −g1),

(A.3)
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where κ = ||u||2/2 is the kinetic energy. Derivatives of the volume fraction can be obtained in a straightforward way,(
∂ (ρY )

∂ρ

)
ρuα ,s,Yk

= Yk,

(
∂ (ρY )
∂ (ρuα)

)
ρ,s,Yk

= 0,
(

∂ (ρY )
∂ s

)
ρ,ρuα ,Yk

= 0,
(

∂ (ρY )
∂Yk

)
ρ,ρuα ,s

= ρ. (A.4)

This directly leads to

M =
∂U
∂V

=



1 0 0 0 0 0 . . . 0
0 1 0 0 0 0 . . . 0
0 0 1 0 0 0 . . . 0
0 0 0 1 0 0 . . . 0

h−κ ux uy uz ρT ρ(g2 −g1) . . . ρ(gNs −g1)
Y2 0 0 0 0 ρ . . . 0
...

...
...

...
...

...
. . .

...
YNs 0 0 0 0 0 . . . ρ


. (A.5)

Appendix B. Derivation of the conservative scheme

The aim of this appendix is to provide the mathematical details for the construction of the conservative scheme
obtained in Eq. (14). To this end, starting from Eq. (13), we only have to apply modifications to the non-conservative
transport term MAα δα FV,d

α . This is done here by ensuring that an equivalence remains true in the linear approximation.
We therefore define the operator =̇ representing a linear equality between left and right hand sides of an equation.

The first step of the present demonstration starts by noticing that, away from flow discontinuities, a strict equiva-
lence exists between the continuous non-conservative system

∂V
∂ t

+Aα

∂FV,c
α

∂α
= 0, (B.1)

and its conservative counterpart

∂U
∂ t

+
∂FU,c

α

∂α
= 0, (B.2)

where FU,c
α =

[
ρuα ,(ρuα uβ + pδαβ )α∈{x,y,z},ρHuα ,(ρYkuα)k∈J2,NsK

]T is the vector of conserved fluxes. Multiplying
Eq. (B.1) by M = ∂U/∂V yields

∂U
∂ t

+MAα

∂FV,c
α

∂α
= 0. (B.3)

By identification with Eq. (B.2), it follows that

MAα dFV,c
α = dFU,c

α . (B.4)

Let us now consider an arbitrary function Kα of a vector field (in space) Φ verifying Kα(Φ) = Φ+O(∆x,∆t). The
operators proposed in Sec. 2.3 are particular examples verifying this property. Eq. (B.4) then yields

MAα δαKα(FV,c
α )=̇δαKα(FU,c

α ), (B.5)

which is one of the key relations that can be used to transform the transport term MAα δα FV,d
α in Eq. (13). We then

define the projection matrices PLB, PE and PY such that

PLBU =



ρ

ρu
0
0
...
0


, PEU =



0
0

ρE
0
...
0


, PY U =



0
0
0

ρY2
...

ρYNs


. (B.6)
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Note that necessarily, PLB +PE +PY = I. Then, one has, thanks to Eq. (B.5) and for two arbitrary functions K1,α and
K2,α , the following linear equivalence:

MAα δα FV,d
α =̇MAα δα FV,d

α +PE

[
δαK1,α(FU,c

α )−MAα δαK1,α(FV,c
α )

]
+PY

[
δαK2,α(FU,c

α )−MAα δαK2,α(FV,c
α )

]
. (B.7)

By noticing that

MAβ = PLBMAβ +PEMAβ +PY MAβ , (B.8)

the linear equivalence can be written as

MAα δα FV,d
α =̇PLBMAα δα FV,d

α +PE

[
δαK1,α(FU,c

α )+MAα δα

(
FV,d

α −K1,α(FV,c
α )

)]
+PY

[
δαK2,α(FU,c

α )+MAα δα

(
FV,d

α −K2,α(FV,c
α )

)]
. (B.9)

This relation can then be transformed noticing two facts. The first thing is that, since both the original and conservative
operators use LBM for mass and momentum transport, the matrix MAβ has an identity block corresponding to the
mass and momentum variables. This reads

PLBMAβ = PLB. (B.10)

The second thing is that, due to the consistency of the discrete scheme and the operator K1,α , we have

FV,d
α −K1,α(FV,c

α ) = O(∆x,∆t), (B.11)

and similarly for K2,α . As a consequence, the MAα pre-factors can be included inside the operator δα without
modifying the linear equivalence. This leads to

MAα δα FV,d
α =̇ PLBδα FV,d

α +PEδα

[
K1,α(FU,c

α )+MAα

(
FV,d

α −K1,α(FV,c
α )

)]
+PY δα

[
K2,α(FU,c

α )+MAα

(
FV,d

α −K2,α(FV,c
α )

)]
. (B.12)

Finally, one can build the conservative scheme of Eq. (14) with

FU,d
α = PLBFV,d

α +PE

[
K1,α(FU,c

α )+MAα

(
FV,d

α −K1,α(FV,c
α )

)]
+PY

[
K2,α(FU,c

α )+MAα

(
FV,d

α −K2,α(FV,c
α )

)]
. (B.13)

We note that the mass and momentum fluxes are unchanged from FV,d
α . Therefore, the discrete conserved fluxes can

be written as FU,d
α =

[
Fρ,LB
+∆α/2,F

ρuβ ,LB
+∆α/2 ,FρE,FV

+∆α/2,F
ρYk,FV
+∆α/2

]T
. The last two fluxes (discrete total energy and mass fraction

fluxes) are given by Eq. (B.13).
To illustrate this, the choice of the Jacobian matrix M of Eq. (A.5) leads to

FρE,FV
+∆α/2 = K1,α(ρHuα)+(h−κ)

(
Fρ,LB
+∆α/2 −K1,α(ρuα)

)
+uβ

(
F

ρuβ ,LB
+∆α/2 −K1,α(ρuα uβ + pδαβ )

)
+ρTuα (Fα(s)−K1,α(s))+ρuα

Ns

∑
k=2

(gk −g1)(Gα(Yk)−K1,α(Yk)) , (B.14)

FρYk,FV
+∆α/2 = K2,α(ρYkuα)+Yk

(
Fρ,LB
+∆α/2 −K2,α(ρuα)

)
+ρuα (Gα(Yk)−K2,α(Yk)) . (B.15)
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Appendix C. Lattice Boltzmann fluxes

As shown in [50], any LB scheme given by Eq. (21) leads to a conservative evolution of mass and momentum that
can be written as

δtρ +δα Fρ,LB
+∆α/2 = 0, (C.1)

δt(ρuβ )+δα F
ρuβ ,LB
+∆α/2 = 0. (C.2)

In this appendix, the expressions for the mass and momentum fluxes are recalled in the particular case of the D2Q9
lattice, with the convention of Eq. (22). They read:

Fρ,LB
+∆x/2(x,y) =

[
f coll
1 (x,y)− f coll

5 (x+,y)+
1
2

(
f coll
2 (x,y−)− f coll

6 (x+,y)+ f coll
2 (x,y)− f coll

6 (x+,y+)

− f coll
4 (x+,y−)+ f coll

8 (x,y)− f coll
4 (x+,y)+ f coll

8 (x,y+)
)]

∆x
∆t

, (C.3)

Fρ,LB
+∆y/2(x,y) =

[
f coll
3 (x, t)− f coll

7 (x,y+)+
1
2

(
f coll
2 (x−,y)− f coll

6 (x,y+)+ f coll
2 (x,y)− f coll

6 (x+,y+)

+ f coll
4 (x,y)− f coll

8 (x−,y+)+ f coll
4 (x+,y)− f coll

8 (x,y+)
)]

∆x
∆t

, (C.4)

Fρux,LB
+∆x/2 (x,y) =

[
f coll
1 (x,y)+ f coll

5 (x+,y)+
1
2

(
f coll
2 (x,y−)+ f coll

6 (x+,y)+ f coll
2 (x,y)+ f coll

6 (x+,y+)

+ f coll
4 (x+,y−)+ f coll

8 (x,y)+ f coll
4 (x+,y)+ f coll

8 (x,y+)
)]

∆x2

∆t2 , (C.5)

Fρux,LB
+∆y/2 (x,y) =

1
2

[
f coll
2 (x−,y)+ f coll

6 (x,y+)+ f coll
2 (x,y)+ f coll

6 (x+,y+)

− f coll
4 (x,y)− f coll

8 (x−,y+)− f coll
4 (x+,y)− f coll

8 (x,y+)

]
∆x2

∆t2 ,

Fρuy,LB
+∆x/2 =

1
2

[
f coll
2 (x,y−)+ f coll

6 (x+,y)+ f coll
2 (x,y)+ f coll

6 (x+,y+)

− f coll
4 (x+,y−)− f coll

8 (x,y)− f coll
4 (x+,y)− f coll

8 (x,y+)

]
∆x2

∆t2 , (C.6)

Fρuy,LB
+∆y/2 =

[
f coll
3 (x,y)+ f coll

7 (x,y+)+
1
2

(
f coll
2 (x−,y)+ f coll

6 (x,y+)+ f coll
2 (x,y)+ f coll

6 (x+,y+)

+ f coll
4 (x,y)+ f coll

8 (x−,y+)+ f coll
4 (x+,y)+ f coll

8 (x,y+)
)]

∆x2

∆t2 , (C.7)

where x± = x±∆x, y± = y±∆x and where the conventions of Eq. (22) have been adopted for the lattice velocities.

Appendix D. Unified density-based model with recursive regularized collision operator

In the present work, the unified density-based model of Farag et al. [48] is adopted as a LB scheme, together with
a recursive regularized collision operator [34, 61–63]. The unified model is an extension of the so-called pressure-
based [47] and improved density-based [55] models involving two parameters ζ and κ in the equilibrium distribution
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functions. In what follows, this model will be summarized with ζ = 0 and κ = 0. Regarding the collision operator,
it can be viewed as the hybrid recursive regularized (HRR) model of Jacob et al. [63] with a hybridization parameter
σ = 1 (no finite differences in the regularization procedure). It reads

f coll
i (x, t) = f eq

i (x, t)+
(

1− ∆t
τ +∆t/2

)
f neq
i (x, t)+

∆t
2

FE
i (x, t), (D.1)

where f eq
i is the equilibrium distribution function, f neq

i is the regularized off-equilibrium part, FE
i is a body-force

term designed to restore the Galilean invariance at the Navier-Stokes level and τ is the relaxation time. For the D2Q9
lattice, the equilibrium distribution function reads [48]

f eq
i = wiρ

[
1+

wi −δ0i

wi
(θ −1)+

ci,α uα

c2
s

+
(ci,α ci,β −δαβ c2

s )uα uβ

2c4
s

+
ci,y(c2

i,x − c2
s )u

2
xuy

2c6
s

+
ci,x(c2

i,y − c2
s )uxu2

y

2c6
s

]
,

(D.2)

where θ = RT/c2
s , cs is the so-called lattice sound speed related to the mesh size and time step (acoustic scaling [16])

as

cs =
1√
3

∆x
∆t

, (D.3)

and wi = [4/9,1/9,1/36,1/9,1/36,1/9,1/36,1/9,1/36] are the Gaussian weights of the lattice [26]. The off-
equilibrium distribution functions are computed thanks to a recursive regularization [34, 61–63] as

f neq
i = wi

[
(ci,α ci,β − c2

s δαβ )

2c4
s

aneq,(2)
αβ

+
ci,y(c2

i,x − c2
s )

2c6
s

aneq,(3)
xxy +

ci,x(c2
i,y − c2

s )

2c6
s

aneq,(3)
xyy

]
, (D.4)

where

aneq,(2)
αβ

= ãneq,(2)
αβ

−
δαβ

D
ãneq,(2)

γγ , ãneq,(2)
αβ

= ∑
i
(ci,α ci,β − c2

s δαβ )

(
fi − f eq

i +
∆t
2

FE
i

)
, (D.5)

aneq,(3)
xxy = 2uxaneq,(2)

xy +uyaneq,(2)
xx , (D.6)

aneq,(3)
xyy = uxaneq,(2)

yy +2uyaneq,(2)
xy . (D.7)

Finally, as proposed in [47], the correction term FE
i reads

FE
i =

wi

2c4
s
(ci,α ci,β − c2

s δαβ )aF,(2)
αβ

, (D.8)

where, for the D2Q9 lattice,

aF,(2)
αβ

= c2
s δαβ

(
ρ

∂uγ

∂γ
− ∂ (ρ(1−θ))

∂ t

)
+ c2

s

(
uα

∂ (ρ(1−θ))

∂β
+uβ

∂ (ρ(1−θ))

∂α

)
− ∂ (ρu3

α)

∂α3 δαβ , (D.9)

where the first spatial derivative (velocity divergence) is estimated thanks to a second-order centered finite-difference
scheme, the time derivative is discretized using a temporal upwind scheme and every other spatial derivatives are
discretized using a first-order upwind scheme.
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