

Smurfness-based two-phase model of ageing helps deconvolve the ageing transcriptional signature

Flaminia Zane, Hayet Bouzid, Sofia Sosa Marmol, Mira Brazane, Savandara Besse, Julia Lisa Molina, Céline Cansell, Fanny Aprahamian, Sylvère Durand, Jessica Ayache, et al.

▶ To cite this version:

Flaminia Zane, Hayet Bouzid, Sofia Sosa Marmol, Mira Brazane, Savandara Besse, et al.. Smurfness-based two-phase model of ageing helps deconvolve the ageing transcriptional signature. Aging Cell, 2023, 22 (11), pp.e13946. 10.1111/acel.13946. hal-04244337

HAL Id: hal-04244337 https://hal.science/hal-04244337v1

Submitted on 24 Oct 2023

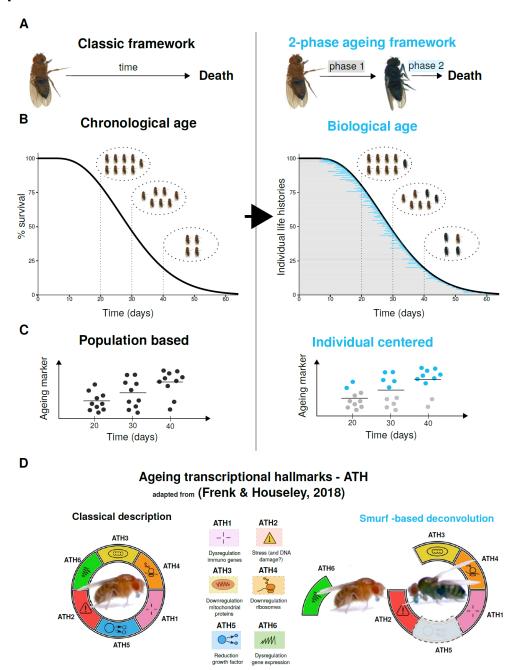
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Smurfness-based two-phase model of ageing helps deconvolve the ageing transcriptional signature

Flaminia Zane^{1,2}, Hayet Bouzid^{1,2}, Sofia Sosa Marmol¹, Mira Brazane², Savandara Besse¹, Julia Lisa Molina², Céline Cansell³, Fanny Aprahamian^{4,5}, Sylvère Durand^{4,5}, Jessica Ayache⁵, Christophe Antoniewski², Nicolas Todd⁶, Clément Carré², Michael Rera¹

Affiliations:

- ¹ Université Paris Cité, INSERM UMR U1284, 75004 Paris, France
- ² Sorbonne Université, Institut de Biologie Paris Seine, 75005, Paris, France
- ³ Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
- ⁴ Metabolomics and Cell Biology Platforms, UMS AMMICa, Institut Gustave Roussy, Villejuif 94805, France
- ⁵ Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris 75006, France
- ⁵ Université Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75013 Paris, France


<u>Keywords</u>: ageing, transcriptome, end of life, Smurfs, drosophila, lifespan increasing genetic intervention

Abstract

Ageing is characterised at the molecular level by six transcriptional 'hallmarks of ageing', that are commonly described as progressively affected as time passes. By contrast, the 'Smurf' assay separates high-and-constant-mortality risk individuals from healthy, zero-mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age. We show that transcriptional heterogeneity increases with chronological age in non-Smurf individuals preceding the other five hallmarks of ageing, that are specifically associated with the Smurf state. Using this approach, we also devise targeted pro-longevity genetic interventions delaying entry in the Smurf state. We anticipate that increased attention to the evolutionary conserved Smurf phenotype will bring about significant advances in our understanding of the mechanisms of ageing.

⁶ Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Musée de l'Homme, Paris, France corresponding author: michael.rera@cri-paris.org

Graphical abstract

The two-phase model of ageing allows to study separately the effect of chronological and physiological age. (A) Classic approaches for studying ageing tend to consider it as a black box affecting all individuals progressively from birth to death. Instead, the Smurf phenotype shows that life can be divided into two consecutive phases separated by an abrupt transition. (B) All individuals undergo this transition at a different moment in their life, prior to death. This allows us to switch from population based approaches, comparing bulks of age-matched individuals through time, to individuals-centred approaches relying on direct access to their transition status. (C) Such paradigm shift shows that hallmarks of ageing long thought to progressively change with age are actually mostly affected in a growing proportion of Smurfs, allowing for the identification of the chain of events accompanying ageing and death from natural causes. (D) By studying the behaviour of the ageing transcriptome as a function of chronological age and Smurfness separately, we demonstrate that the progressively changing transcriptional ageing signature, as described in Frenk & Houseley (2018), is in fact the convolution changes accompanying chronological age signature (increased transcriptional noise) and changes associated with Smurfness (or biological age) signature (increased stress response and inflammation, decreased expression of ribosomal and mitochondrial genes). We also identified a hallmark partially associated with only old Smurfs (ATH5), suggesting that chronological age can affect, late in life, the Smurf response.

Introduction

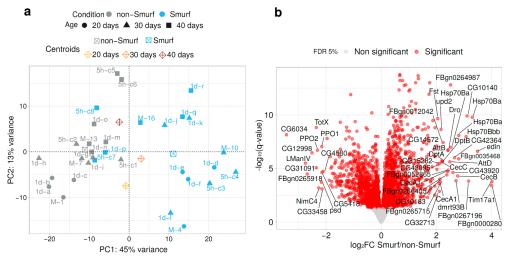
Chronological age and physiological ageing

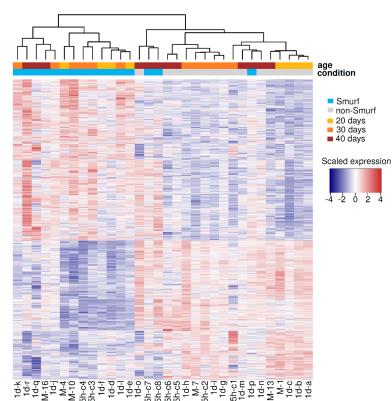
Ageing is commonly defined as a progressive decrease in functional efficiency associated with an age-related increasing vulnerability to death^{1,2}, although different modalities can be found across the livings³. In a given population, individuals of the same chronological age can yet experience different risks of mortality, showing that physiological ageing is not fully captured by chronological age. In humans, the notion of frailty - an unobserved individual modulator of the force of mortality - was introduced to explain this heterogeneity⁴. It was followed by the definition of specific frailty indexes, fixed sets of characteristics that can be used to predict an individual's risk of death independently of its chronological age⁵⁻⁷. On the one hand, the use of such frailty indexes has now been extended to several model organisms⁸⁻¹⁰. On the other hand, efforts to define ageing at the cellular and molecular levels have led to the definition "hallmarks of ageing"1,11,12, evolutionary conserved molecular markers progressively affected in ageing individuals - and to the development of ageing clocks predicting biological age based on molecular markers. Ageing clocks based on 5-cytosine methylation of CpG sites 13-16 work well in mammals but do not apply to model organisms such as Caenorabditis elegans or Drosophilia melanogaster. Nevertheless, recent work has identified a "universal" transcriptomic clock using C. elegans¹⁷, with the recent publication of the BiT age clock¹⁸, suggesting a possible conservation of critical biological age markers.

The Smurf approach to ageing

The Smurf assay is an *in vivo* non-invasive assessment of increased intestinal permeability (IP) based on co-ingestion of the non-toxic blue food dye FD&C #1 (approx. 800Da). The dye, normally not absorbed by the digestive tract, spreads throughout the body in flies with altered IP, turning them blue^{19,20}, hence their name Smurfs. The Smurf assay was previously shown to be a powerful marker of biological age in *D. melanogaster*¹⁹ as well as other model organisms²¹. Maintaining a population on standard food containing the dye reveals that the proportion of Smurfs increases as a function of time¹⁹ and that all flies undergo the Smurf transition prior to death^{19,20}. Furthermore, Smurf flies present a low remaining life expectancy (T_{50} estimated at ~ 2.04 days across different genetic backgrounds from the DGRP set²²) that appears independent of their chronological age at Smurf transition^{19,20}. In a given population at any given age, the Smurfs are the only individuals showing high mortality risk, low energy stores, low motility, high inflammation and reduced fertility, making this subpopulation a characteristic frail subpopulation. We demonstrated, thanks to a simple two-phase mathematical model, that we are able to describe longevity curves using the age-dependent linear increase (approximation) of the Smurf proportion and the constant force of mortality in Smurfs²⁰.

The above-mentioned studies led us to hypothesise that markers classically considered as progressively and continuously changing during ageing (the hallmarks of ageing) might actually accompany the Smurf transition and exhibit a biphasic behaviour (two-phase model of ageing^{20,23}. The age-dependent increase in mortality at the population-level should then be


re-interpreted as the increasing proportion of Smurfs in the population of individuals still alive²⁰. To test this hypothesis, we assessed the transcriptional changes occurring in flies as a function of both their Smurf status and chronological age. RNA-Sequencing (RNA-Seq) was performed on Smurf and non-Smurf individuals of different chronological ages after total RNA extraction from the whole body of mated female flies. Samples were collected at 20, 30 and 40 days after eclosion, corresponding to approximately 90%, 50% and 10% survival in the used line (*Drs*-GFP;Fig. S1-2).


Results

Smurfs have a stereotypical transcriptome

We first performed a Principal Component Analysis (PCA) to explore how our multiple samples did relate to each other. The first component (45% of variance) separates Smurfs and non-Smurfs samples (Fig. 1a). This component is significantly associated with Smurfness (R² ANOVA = 0.604, p-value = $1.67e^{-07}$), but not with age (p-value > 0.05). The second component (13%) segregates samples as a function of chronological age (Pearson ϱ = 0.717, p-value = $3.92e^{-06}$), with no significant association with Smurfness (p-value > 0.05). The fact that three 40 days Smurfs samples out of six clusters with same age non-Smurfs, a pattern confirmed using independent tSNE (t-distributed stochastic neighbour embedding) and hierarchical clustering on sample-to-sample distance (Fig. S3 and S4), indicates fewer differences between the transcriptomes of old Smurfs and non-Smurfs than between young ones.

We proceeded to quantify the differences between Smurfs and non-Smurfs through differential gene expression analysis (DESeq2²⁴). Comparing the 16 Smurf and the 16 non-Smurfs samples, we identified 3009 differentially expressed genes (DEGs)(Fig 1b, DESeq2 results in Supplementary File 1). Confirming the PCA results, these genes represent a Smurf-specific signature that clusters the Smurfs samples (Fig 1c). Again, the effect of chronological age is less marked in Smurf samples than in non-Smurf ones. DESeq2 results were validated using the edgeR²⁵ pipeline, which identified 2609 DEGs, 90% of which are overlapping with the DESeq2 output and present a strong correlation (Pearson ϱ = 0.99) for log₂FC estimation (Fig. S5).

C

Figure 1. Smurfness is associated with a characteristic transcriptome. a) Samples plotted in the space of the first two PCA components. PCA performed on the 1000 top-variance genes results in a clear separation of Smurf (blue) and non-Smurf (grey) samples on PC1 while samples are distributed according to age on PC2. This shows that Smurfness explains most of the transcriptome variance in our dataset (45% for PC1), followed by age (13% for PC2). Shapes indicate the age as illustrated in the legend. Centroids coordinates for a specific group are the mean of the group coordinates. Each sample is associated with an acronym specifying the collection time after the transition (5h = 5 hours, 1d = 1 day and M = mixed - unknown time -) and a unique letter or number identifying the sample itself. b) Volcano plot of the DEG analysis results. The negative logarithm with base 10 of the FDR adjusted p-value (q-value) is plotted as a function of the shrinked (DESeq2 apeglm method26) fold change (base 2 logarithm) of Smurf/non-Smurf expression ratio for each gene. The significant 3009 DEGs are represented in red. Upregulated Smurf genes (1618) plot on the right side of the graph, while downregulated genes (1391) on the left. Genes with a log₂FC > |2| are labelled. Amongst the genes annotated as upregulated we can notice the presence of immune response genes (Dro. AttB, AttC, DptA, DptB, CecA1, CecB, CecC), confirming what already described in Smurfs¹⁹. c) Smurf DEGs represent a Smurf specific signature. Unsupervised hierarchical clustering on the samples by Smurf DEGs only divides Smurfs from non-Smurfs independently of their age, demonstrating that those genes are a Smurf specific signature. Non-Smurf samples tend to cluster by age, suggesting an age trend in the expression of Smurf DEGs in non-Smurf. The same three outliers of (a) are identified, indicating that those three samples indeed present a weaker expression pattern compared to the other Smurfs. Expression of genes in the heatmap is re-centered on the mean across samples, for easy visualisation of upregulated

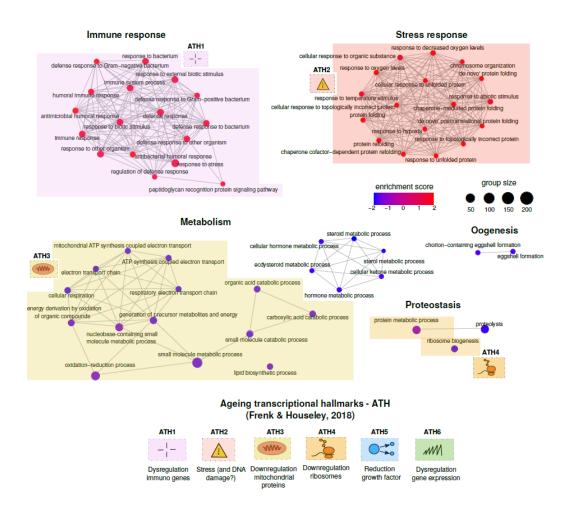
and downregulated genes.

Smurfness recapitulates the transcriptional signature of ageing

We used biological processes (BP) Gene ontology (GO)²⁷ as gene sets in Gene Set Enrichment Analysis (GSEA)²⁸ to characterise the Smurf signature. In order to fully examine the observed signal, we chose not to apply any filtering on the log₂FC (FC: fold change). We mapped our results on the hallmarks of transcriptional ageing (ATH 1-6) described in Frenk et al.²⁹ on the GSEA network (Fig. 2, Tab. S1). Genes upregulated in Smurfs are enriched in immune and stress response (ATH1), as previously reported in Smurfs¹⁹ as well as numerous ageing transcriptomic studies in Drosophila^{30–35} and other organisms^{36–41} including humans⁴². Here, the immune response is widely upregulated, with activation of both Toll (fungi and Gram-positive response)⁴³ and Immune deficiency (Imd, Gram-negative response)^{44,45} pathways. Antimicrobial peptides (AMPs), which are surrogates of inflammation in flies, are strongly upregulated (CecA1, CecA2, CecB, CecC, DptA, Def, Dpt, Drs, average log₂FC=2.33) with their upstream regulators Rel (Imd pathway, log₂FC=0.61) and dl (Imd pathway, log₂FC=0.27) also upregulated. Stress responses (ATH2) such as protein folding and unfolded protein response (UPR, with upregulation of Xbp1 and Ire1) are over represented in our dataset. Smurfs present a significant induction of 22% of Drosophila chaperons and co-chaperons (Flybase⁴⁶ annotation, version FB2022 04), with a broad upregulation of the Hsp70 family (6 out of 7 genes detected are upregulated, average log₂FC=2.60), as previously described in ageing^{33,47}. We detect a significant upregulation of 51% of the annotated cytosolic Glutathione S-transferases (Gst), a family of genes involved in detoxification and oxidative stress response.

Downregulated genes show a broad enrichment in metabolism-related categories (ATH3). The decreased expression of genes involved in fatty acid biosynthesis, such as FASN1 (log₂FC=-0.61), ACC (log₂FC=-0.31) and eloF (log₂FC=-0.41) corroborates the decreased triglycerides content previously described in Smurfs¹⁹. The mitochondrial electron transport chain (ETC) also shows a broad downregulation (ATH3). In order to provide a quantification of the ETC downregulation, we mapped the Smurf DEGs on ETC complexes Flybase annotation, and computed the percentage of downregulated genes. Through all the complexes, all the genes detected as DEGs are downregulated (no upregulation observed) (Complex I: 17 genes, 38% of the Complex I, average log2FC = -0.18; Complex II: 2 genes, 33% percent of Complex II, average log2FC = -0.17; Complex III: 4 genes, 29% of the Complex III, average log2FC = -0.21; Complex IV: 4 genes, 19% of Complex IV, average log2FC = -0.18; Complex V: 7 genes, 41% of Complex V, average log2FC = -0.19. Percentage refers to the number of genes detected in our dataset for the specific complex). Despite the minor fold changes, the ETC components' persistent downregulation may indicate that the aerobic metabolism they mediate is also downregulated. In addition, the upregulation of lactate dehydrogenase gene (Ldh) (log₂FC=0.95) could suggest a compensatory anaerobic metabolism replacing a probable dysfunction of the aerobic ETC path, or an altered pyruvate intake into the mitochondria. Consistently, Idh3A, Idh3B, Mdh1, Mdh2 and Fum1, involved in the tricarboxylic acid (TCA) cycle are downregulated, with fold changes similar to the ones reported above.

Genes involved in ecdysone biosynthesis (sad, spo and phm) and egg formation (Vm26Aa, Vm26Ab, Vml and psd are downregulated ($\log_2 FC$ is respectively -2.67, -2.63, -2.51, -2.49), giving a molecular hint for explaining the previously reported decrease in fertility in Smurf females and males⁴⁸. A few categories related to proteostasis are also present amongst the ones deregulated in Smurfs. The ribosome biogenesis category (GO:0042254), mapping to ATH4,


contains 190 genes out of which 46 are significantly deregulated, most of them, 96%, being downregulated. Regarding the proteolysis category, we detected the downregulation of 10 trypsin-like endopeptidases and 14 Jonah genes (serine endopeptidases family).

The Smurf signal overlaps with numerous changes that were described so far as ageing-related, mapping to four out of six ATH (ATH 1-4).

We compared our results with proteomic and metabolomic data obtained from Smurf and non-Smurf mated females from the same genetic background. Enrichment analysis on significantly differentially represented proteins (ANOVA p-value < 0.05, for complete results see Supplementary File 2) confirms our results of a decreased fatty acid catabolism, mitochondrial respiration and ribosomal proteins (Fig. S6). Response to stress (including genes such as *cact, Hsp70* and *Cat*) is upregulated, in line with what described in our transcriptome study.

Quantitative enrichment analysis on metabolites concentrations in Smurfs and non-Smurfs (Supplementary file 3) confirms the molecular separation between the two phases (Fig. S7) and the metabolic transcriptional signature observed. We detected deregulation of fatty acid biosynthesis and degradation pathways (KEGG⁴⁹, with palmitic acid [$log_2FC=-1.37$] and myristic acid [$log_2FC=-1.69$], Fig. S8) and pyruvate metabolism (which includes metabolites from the TCA cycle) (Table S2). Regarding glucose metabolism, the overexpression of *Ldh* is confirmed by a significant (Wilcoxon test, p-value < 0.05) lactic acid increase in Smurfs ($log_2FC=0.90$) (Fig. S9). The TCA cycle displays a significant general decrease at a transcriptomic level, and a general impairment at a metabolomic level,though the only metabolite significant to Wilcoxon test is succinate, $log_2FC=1.28$) (Fig. S10).

These results indicate that the transcriptional dysregulation observed in Smurfs has a functional impact.

Figure 2. GSEA analysis (GO biological process categories) of Smurf specific genes. GSEA results are represented as a network, where nodes are significantly enriched categories (deregulation colour code as in legend) and edges are connected categories with overlapping genes. From the 59 significant categories, we identified and manually annotated five hubs: immune response, stress response, metabolism, proteostasis and oogenesis. Hallmarks of transcriptional ageing, as enunciated in Frenk & Houseley²⁹ (bottom of figure). The hallmarks present in the Smurf specific signature (ATH1-4) are mapped close to the related categories. Overall, in the Smurfs specific genes we detect four hallmarks of transcriptional ageing. Note that the DNA damage response (ATH4) is indicated with a question mark in Fig. 2 following the conflicting data presented by Frenk & Houseley. No category maps to ATH5 (reduction in growth factor, downregulation of cell cycle genes) and ATH6 (increased transcriptional hetereogeneity, DNA and RNA dysregulation).

Old Smurfs carry additional age-related changes

Our analysis (Fig. 1a, Fig. S3 and S4) suggested transcriptional differences between the old and young Smurfs. We therefore applied a DEG analysis restricted to Smurfs. Only 4 DEGs were identified when comparing 20 and 30-day Smurfs (FDR cut-off at 5%) while the 40 days Smurfs present 2320 DEGs compared to 20-day Smurfs (1385 upregulated and 935 downregulated) (DESeq2 results in Supplementary File 4). GSEA identified 125 deregulated GO BP categories (Fig. 3 and Table S3). The majority of the detected categories are associated with RNA

processing, transcription, chromatin organisation, DNA replication and repair (ATH6). In the case of old Smurfs, we find downregulation of genes involved in histone methylation (trr, Cfp1, Dpy-30L1, Smyd5, NSD, CoRest, Lpt, average log₂FC~-0.26), amongst which genes of the Polycomb Repressive Complex 2 (esc, E(z), Su(z)12I, average log₂FC~-0.24). We also detect the downregulation of the histone deacetylase HDAC1 (log₂FC=-0.18) and genes involved in histone acetylation (as CG12316, Ing3, Ing5, Taf1, Atac3, Brd8, Spt20, mof, average log₂FC~-0.30). Chromatin-related genes are thus modestly (0 < |log₂FC| < 1) but broadly decreased in old Smurfs. Interestingly, our proteome analysis shows a significant decrease of (log₂FC=-0.43) and H4 (log₂FC=-0.54) in Smurfs suggesting a "loss heterochromatin"50. Another interesting signal is the DNA repair nodes ("GO:0006302") double-strand break repair", "GO:0006281 DNA repair"), where we retrieve 12% of the detected genes as significantly downregulated (average log₂FC=-0.24). We also retrieved nodes associated with downregulation of genes involved in cell cycle (as cyclins), or their regulators (as E2f2, log₂FC~-0.17), which map to the ATH5 (growth factor and regulation of cell cycle). Genes involved in spindle organisation during mitosis are also found downregulated (as Mtor $log_2FC \sim -0.28$ - and *Chro* - $log_2FC \sim -0.19$ -) suggesting a broad dysregulation of cell proliferation processes.

The old Smurf signature therefore partially carries ATH5 and ATH6, the two hallmarks of transcriptional ageing that we did not detect in the Smurf specific signature. It is important to highlight that we do not find Smurf-related categories in the GSEA output, confirming that young Smurf and old Smurfs indeed do carry the same Smurf signature illustrated in Fig. 2. However, our analysis shows that the old Smurfs carry additional transcriptional changes, which mostly relate to transcription and DNA regulation. To investigate if those are time-dependent changes, which are weakly carried by old individuals and then enhanced in the Smurf stage of their life, we fitted a per-gene regression model on all samples, including as explanatory variables Smurfness, time and an interaction term amongst the two. We then performed GSEA on the list of genes presenting significant coefficients (F-statistic). The RNA processing categories (as well as the "chromosome organization") were detected as significantly affected by time, suggesting that the deregulation trends for such processes may already be present in the non-Smurfs.

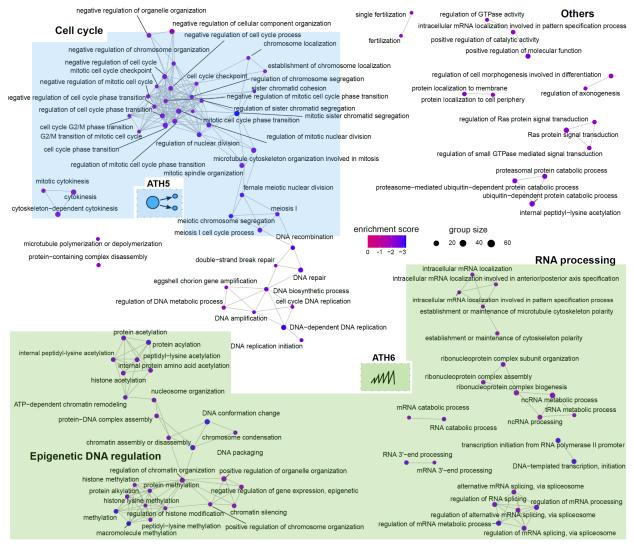


Figure 3. Old Smurfs carry an ageing-related signal amongst downregulated genes. Results of the GSEA analysis are represented as in Fig 3. Only downregulated nodes presenting at least one interconnection are represented here. Complete list of deregulated categories can be found in Supplementary Table S8. GSEA analysis identifies 115 downregulated GO BP categories, which are mostly related to DNA regulation, RNA processing and cell cycle regulation. A few nodes are associated with DNA repair. Interestingly, the signal carried by the old Smurfs maps (at least partially) to the "dysregulation in gene expression" (in green, ATH6) and the "reduction in growth factors" (ATH5) transcriptional ageing markers that were not detected in the Smurf specific signature. In addition, the DNA damage nodes show downregulation of genes involved in DNA repair, which has also been discussed as an ageing marker. Interestingly, there are no hubs in the network overlapping with the Smurf specific signature of Fig.2, showing that the core Smurf signal is not affected by chronological age. However, the old Smurfs do carry an additional signature compared to their younger counterparts, suggesting the existence of a "chronological-age burden" that might increase the probability of entering the Smurf pre-death phase, without however being necessary or sufficient for it.

Removing the Smurf-specific signature unveils the transcriptional effects of chronological age

In order to confirm the Smurf-specificity of the signature described above, we removed Smurf samples from the study and compared the non-Smurfs over time. Only 526 DEGs were found when comparing 20 and 40 days old non-Smurfs (and 57 when comparing 20 and 30 days old non-Smurfs) (DESeq2 results in Supplementary File 5). 59% of these genes are overlapping with Smurf-specific DEGs. 22 GO BP deregulated categories were found by GSEA (Fig. 4a and Table S4). Overall, the genes that are known as being downregulated with ageing are actually downregulated mostly in Smurfs (Fig 5b, point i), with little to no effect associated with chronological age (Fig. 4b, point ii). The largest overlap is observed for the immune response pathways (ATH1, increased inflammation). Out of the overlapping genes (20), 50% are AMPs, produced downstream the pathway. We do not find significant deregulation of the *dl* transcription factor (Smurf significant log₂FC=0.27), while *rel* is upregulated (log₂FC=0.42, while for the Smurfs we detected a log₂FC of 0.61). These results suggest that the immune response is active in the old non-Smurf but to a lower extent than in Smurfs.

Regarding the genes mapping to the insulin-like receptor signalling (IIS) pathway (Fig 5b, point iii), we do not detect any deregulation in the non-Smurfs, with IIS core components being affected only in Smurfs. While no significant change is detected for the *IIp* genes (insulin-like peptides activating the pathway), we find low but significant upregulation of *Inr* (receptor, $log_2FC=0.42$), *chico* (first kinase of the cascade, $log_2FC=0.23$) and the kinase *Akt1* ($log_2FC=0.18$). *Inr* and *chico* are well-described longevity genes in Drosophila, positively affecting ageing when negatively modulated^{51,52}. No significant changes are detected for the Drosophila mTOR genes *Tor* and *raptor*, nor *foxo*. However, we find significant upregulation of *Thor*, coding for the homologous mammalian translation initiation factor 4E-BP, a *foxo* target of which the upregulation was already described at the protein level in Smurfs¹⁹.

Our dataset contains all the orthologs of the 500 human genes associated with ageing present in the Ageing Atlas⁵³ (Table S5 and S6). We find that 26.8% of these genes are present in the Smurf list (121 Drosophila genes corresponding to 134 human genes), while only 4% are present in the old non-Smurfs (24 Drosophila genes corresponding to 25 human genes) (Fig. 4c).

Over the past 40 years, numerous genes have been shown to modulate ageing when artificially deregulated. We explored whether our list of DEGs is overlapping these "longevity genes". Out of the 201 Drosophila longevity genes annotated in GenAge⁵⁴, 188 are present in our dataset. Smurfs DEGs allow the detection of 37% of them, while the old non-Smurf DEGs detect only 6% (Fig. 4d and Tables S7 and S8). Furthermore, all the longevity genes present in the non-Smurf DEGs are also present in the Smurf DEGs.

Taken together, the results show that Smurfness predicts ageing-associated changes described in the literature better than chronological age.

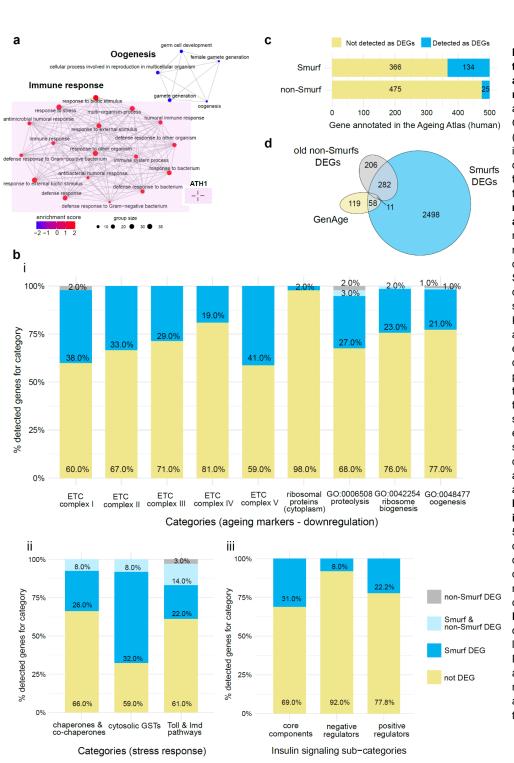


Figure 4. Smurfness is a better predictor of transcriptional ageing markers than chronological age. a) GSEA analysis (GO BP categories) on old non-Smurf specific genes. Results are represented as in Fig. 2 . GSEA analysis identifies 22 deregulated GO BP categories, related to immune response (upregulation, in red) and oogenesis (downregulation in blue). The analysis carried on chronological age can therefore detect only one hallmark of transcriptional ageing29 (ATH1, for representation of transcriptional hallmarks, see Fig. 2), b) Manual mapping of Smurf and old non-Smurf DEGs on ageing processes. For each process, the histograms represent the percentage of genes mapping to it but not detected as DEGs in our analysis (yellow), detected as Smurf DEGs (blue), detected as both Smurf and non-Smurf DEGs (light blue), or only detected in the old non-Smurf DEGs (grey). When not stated otherwise, the gene lists are retrieved from Flybase. Genes described as downregulated with ageing (i) are mostly detected only in Smurfs, with the exception of structural ribosomal proteins, whose downregulation is not significant in Smurfs. For the processes described as upregulated with ageing (ii). the Smurf samples do retrieve more information than the non-Smurfs, with the last however carrying more signal than in the case of the downregulated genes, especially for the immune response (as already showed in (a)). Similarly, the IIS pathway displays deregulation in the Smurfs, while no gene is detected as deregulated when looking only at chronological age (iii). c) Mapping of Smurf and non-Smurf DEGs to human ageing-related genes (annotated in the Ageing Atlas). The Ageing Atlas annotates 500 human ageing-related genes. All of those have orthologs in Drosophila, which are all present in our dataset. By studying the Smurf phenotype, we can detect 134 genes out of the annotated 500. The number of detected genes drops to 25 when using chronological age only as an ageing marker. d) Longevity genes and Smurfness. The Venn diagram shows the overlap between the annotated longevity genes in Drosophila (GenAge), the Smurf DEGs and the non-Smurf DEGs. While Smurf-centred analysis retrieves ~37% of the longevity genes, the non-Smurf centred analysis only retrieves ~6%, not adding information to what was already detected by the Smurf analysis.

Identifying weak chronological age-dependent signature

In light of the evidence that most of the transcriptional alterations described as age-related are Smurf-specific, with only a small part of the signal retrieved in old non-Smurfs (Fig. 4), we wondered whether weaker but relevant age-related changes might be present in non-Smurfs but missed by the DESeq2 approach. We therefore regressed gene expression data on chronological age (20, 30, 40 days) in the non-Smurfs using a linear model. After filtering for significance to F-test (p-value < 0.05) and R² (> 0.5) we identified 301 genes (207 showing an increasing expression with time, 94 decreasing) (Table S9). 51.6% of these genes also belong to the Smurf DEGs. We focused on the 146 remaining genes (93 with positive slope, 53 negative). Results are presented in Fig. 5a. No enrichment in GO categories was found (GOrilla enrichment⁵⁵, using the whole set of detected genes as background), suggesting that once the Smurf signal is removed, no strong coherent deregulation can be detected in the non-Smurfs in our dataset. Nevertheless, figure 2a shows the old non-Smurf samples to cluster with old Smurf samples. This is supported by the decreasing number of detected DEGs between age-matched Smurf and non-Smurfs with chronological age (Fig. S11).

Ageing has been reported as increasing the gene expression heterogeneity in a variety of organisms, tissues and cell types^{56–63} (ATH6). We computed the relative standard deviation (RSD) of each gene for each group (Smurfness and age), plotted the distributions of the RSD across groups and compared them using the Kolmogrov-Smirnov (KS) statistic (Fig. 5b). All genes are affected, independently of their expression levels (Figure S12). In both Smurfs and non-Smurfs, the peak of the RSD distribution shifts towards the right with age (1.93-fold increase for the Smurfs, and 1.84-fold for the non-Smurfs) suggesting that gene expression increases in heterogeneity as a function of chronological age with no further changes at the Smurf transition.

In brief, our results show that four out of six transcriptional ageing markers (ATH1-4) are specific to the Smurf phenotype, independently of their chronological age (Fig. 2). On the other hand, the alteration in chromatin-related genes and mRNA processing, as well as cell cycle genes (together with a weaker DNA repair signal) appear to be exclusively carried by the old Smurfs (ATH 5-6) (Fig. 3). We could not identify biological processes strictly related to the old non-Smurfs compared to their young counterparts (Fig. 4). However, the increased heterogeneity in gene expression (ATH6) appears to be primarily affected by chronological age (Fig. 5b). In order to visually represent the relative effect of both the chronological and biological age we computed the correlation of individual gene expression with each. We identified 113 annotated KEGG pathways where at least 10 genes present in our dataset are mapped. We finally obtained 48 correlating (Fasano-Franceschini test⁶⁴, FDR for p-value correction) with Smurfness (Table S10) and 38 correlating with chronological age (Table S11). Fig. 5c shows the Toll and Imd pathways mostly displaying positive correlation with Smurfness; the ETC (oxidative phosphorylation pathway) and fatty acid degradation/elongation mostly negatively correlates with Smurfness, while showing a lower correlation with age. Interestingly, transcription-related pathways (spliceosome and basal transcription factors) as well as DNA amplification and repair pathways show a higher negative correlation to chronological age compared to Smurfness. Finally, the proteasome and ribosome biogenesis seem equally affected by chronological age and Smurfness.

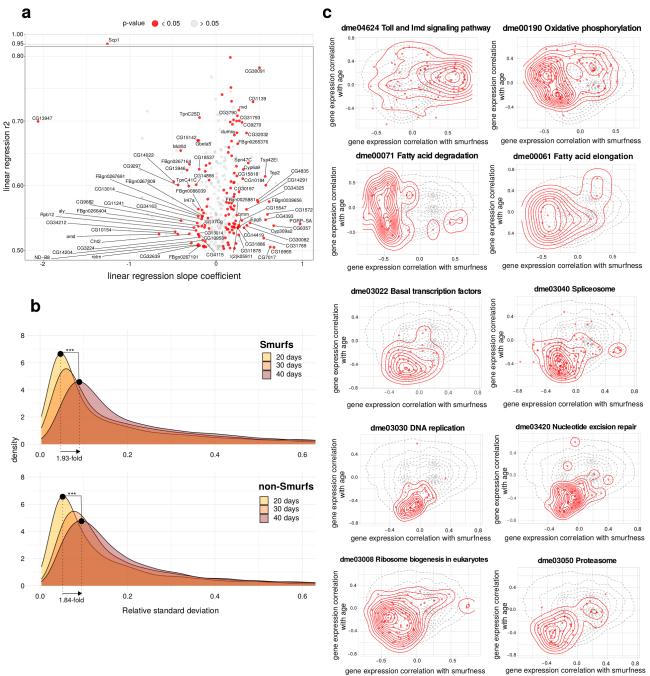
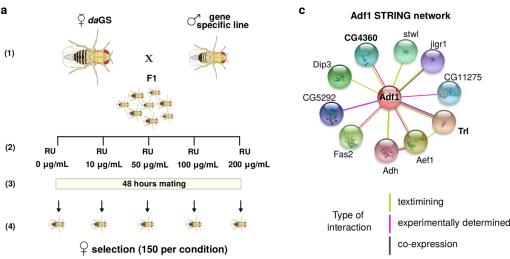


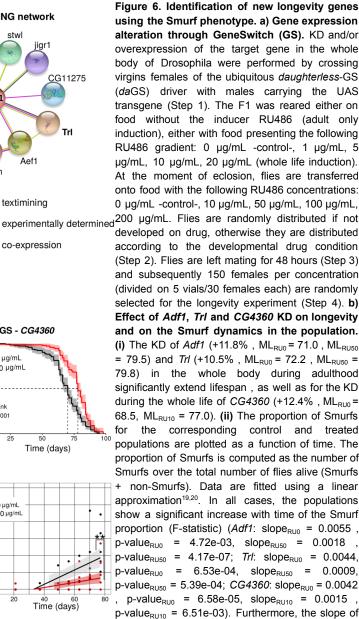
Figure 5. Chronological age and Smurfness respective effects on the transcriptome. a) Linear regression of gene expression in non-Smurfs over time. The r^2 of the applied linear model is plotted as a function of the slope coefficient. Only genes non differentially expressed in Smurfs are plotted, in order to focus on a possible weak age-related non-Smurf signal. Genes presenting a significant slope are plotted in red. b) Chronological age effect on transcriptional heterogeneity. The RSD densities are plotted for the different ages group (Smurf and non-Smurf). The tail of the distribution is cut at RSD = 0.6 for illustration purposes. Smurfs and non-Smurfs present a similar behaviour, with the peak of the distribution showing an almost 2-fold increase from 20 days to 40 days (peak_{S20} = 0.046, peak_{S40} = 0.089, peak_{NS20} = 0.051, peak_{NS40} = 0.094), showing the effect of chronological age on transcriptional noise. ***p-value < 10^{-16} (KS statistic). c) Effect of Smurfness and chronological age on biological pathways. Smurfness and chronological age both affect the biology of the individual. Here we show how some pathways are affected by age and Smurfness respectively. Dotted line in the background corresponds to the density of all the genes analysed. Red points and density correspond to the genes mapping to the pathway (KEGG database) of interest. The statistics was assessed using the Fasano-Franceschini test (FDR adjusted p-value). Toll and Imd pathways (r_{smurf} = 0.248, r_{age} = 0.080, p-value = 5.2e-06), oxidative phosphorylation (ETC genes, r_{smurf} = -0.217, r_{age} = 0.088, p-value = 4.5e-15), fatty acid degradation (r_{smurf} = -0.388, r_{age} =

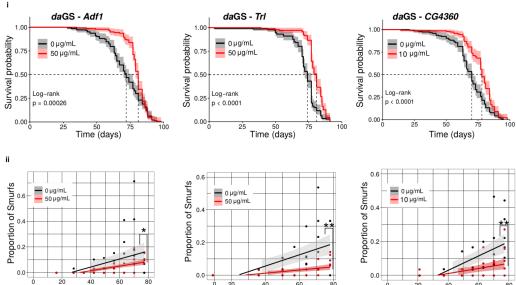
Using Smurfness to identify new "longevity genes"

We decided to investigate whether altered expression of transcription factors (TFs) could explain the transcriptional signature of Smurfs. We identified 102 TFs showing altered expression in Smurfs (77 upregulated, 25 downregulated, Table S12) out of the 629 annotated in Flybase. In order to reduce the potential functional redundancy in this list, we used i-cisTartget^{65,66} to predict putative upstream regulators of the Smurf-deregulated TFs. We selected the hits presenting a score above 4 (3 being the recommended minimum threshold). Second, to avoid limiting our selection criteria only to TFs, we applied the same i-cisTarget algorithm to genes showing at least a 4-fold difference ($|log_2FC|>2$). Results are shown in Table S13. We selected 17 TFs of interest for functional validation amongst the best i-cisTarget scores or high deregulation (Table 1).

Gene symbol	Selection method	Deregulation
Adf1	i-cisTarget	putative regulator TFs up in Smurf
Aef1	i-cisTarget	putative regulator TFs up in Smurf
CG4360	i-cisTarget	putative regulator TFs up in Smurf
FoxP	DESeq2 & i-cisTarget	up in Smurf & putative regulator TFs up in Smurf
Hsf	i-cisTarget	putative regulator genes up in Smurf
Trl	i-cisTarget	putative regulator TFs up in Smurf
dmrt93B	DESeq2	up in Smurf
Ets21C	DESeq2	up in Smurf
Неу	DESeq2	up in Smurf
kay	DESeq2	up in Smurf
Mef2	DESeq2 & i-cisTarget	up in Smurf & putative regulator TFs up in Smurf
rib	DESeq2	up in Smurf
Ets96B	DESeq2	down in Smurf
GATAd	i-cisTarget	putative regulator TFs down in Smurf
GATAe	i-cisTarget	putative regulator TFs down in Smurf
NF-YB	DESeq2 & i-cisTarget	up in Smurf & putative regulator TFs up in Smurf
srp	i-cisTarget	putative regulator TFs down in Smurf


Table 1. List of TFs selected for experimental validation. 17 TFs were selected for functional validation: 8 were found in the i-cisTarget analysis, 3 in both DESeq2 and i-cisTarget analysis and 6 in the DESeq2 analysis alone, chosen for their strong deregulation.


To assess their effect on mean lifespan (ML), we proceeded with their knock-down (KD) and/or overexpression (OX) using GeneSwitch^{67,68} (GS). This technique, widely used in Drosophila, allows spatially and temporally tuned KD or OX in individuals of the same genetic background.


The longevity experiments are summarised in Fig. S13 and Table S14. Four TFs presented a positive effect on ML when knocked-down in at least one RU486 condition during adulthood *Trl* + 9.5% , *Adf1* +7.6%, *CG4360* +7.3%, *Ets96B* +6.6%) and one when overexpressed during adulthood and development (*Hsf* +10.3%). A second independent experiment confirmed the effect of *Trl*, *Adf1*, *CG4360* (Fig. 6b, point i). A third experiment validated the ML extension of CG4360 when downregulated during adulthood only (Fig. S14), as the first two experiments showed contrasting results for the longevity effect when downregulation was performed during the whole life. We confirmed the knockdowns through RT-qPCR for each line (Fig. S15), and validated that RU486 alone has no effect on ML (Fig. S16).

We then tested whether the identified ML extension was due to delayed entry in Smurf state (Fig. 6b, point ii) by fitting two linear regression models. First, in order to test the effect of chronological age, we regressed the proportion of Smurfs on chronological age separately in both the controls and KD individuals. Secondly, in order to investigate the difference between the two populations, we regressed the proportion of Smurfs on chronological age and RU486 concentration (as a categorical variable), allowing for an interaction between chronological age and RU486 concentration.

The results show that the conditions leading to ML extension also lead to a slower increase in Smurf's prevalence (Fig. 6b, point ii). This was not the case for conditions not leading to different ML (Fig. S17). These results suggest that the KD of the studied genes increases the mean lifespan by extending the non-Smurf period of life, possibly because these genes modulate early steps of ageing. Interestingly, the three genes we validated for their role in longevity are reported to possibly interact based on the STRING database⁷¹ (Fig. 6c). We failed to identify any significant increase of mean lifespan on males (Fig. S18).

b

Time (days)

the control population is significantly different from the one of the treated (F-statistic), which displays a slower increase in the Smurf proportion with time. P-values indicated in figure: * < 0.05; ** < 0.01. (c) Adf1 interaction network from STRING database. The three TFs identified as new longevity genes have been retrieved from i-cisTarget as putative regulators of upregulated Smurf TFs. The annotated interactions in the STRING database show how those genes have been already described together. Adf1 and Trl displayed stronger evidence (text mining, co-expression and proved interaction in Drosophila *in vitro*), while the evidence for CG4360 and Adf1 interaction comes from text mining and interaction shown between homologous in *C. elegans*). We decided to assign to CG4360 the gene name of *Sag1* (Smurf Associated Gene 1) given its potential involvement in the Smurf phase. Regarding the remaining nodes of the network, they show weaker evidence (see Fig. S19). CG11275 and CG5292 have been shown to interact with Adf1 on two-yeast hybrid assay on the FlyBl project (https://flybi.hms.harvard.edu/).

Discussion

This study describes how the long defined transcriptional signature of ageing and associated "ageing transcriptional hallmarks", instead of accompanying chronological age with continuous and progressive changes, actually behave in a biphasic manner. We identified this previously hidden behaviour thanks to the Smurf, two-phase, model of ageing.

The detection of living individuals showing an increased intestinal permeability to a very small (800Da), non-toxic, blue food dye previously allowed us to propose a model of ageing with two consecutive and necessary phases. Although a recent article by Bitner and colleagues⁷² suggest that only a low proportion of flies undergo the Smurf transition, our extensive characterization of the phenotype using female flies from lines of different genetic backgrounds characterized by significantly different life expectancies ranging from 20 to 80 days (DGRP, *Drs*GFP, w¹¹¹⁸, Canton-S, Oregon-R and w^{Dahomey}) as well as in F1 individuals, monitored individually or in groups, unequivocally show that every female Drosophila dies as a Smurf. In addition, the Smurf phenotype also accompanies ageing in Drosophila males as shown by us and others. Failure by Bitner et al. to reproduce our results is likely due to their non-standard protocol.

The mathematical model we developed²⁰ fitted reasonably well survival curves while allowing for a direct interpretation of the parameters. In addition, the hypothesis that every individual turns Smurf prior to death allowed us to predict the relatively constant remaining lifespan of Smurfs irrespective of their chronological age, which we then validated using multiple DGRP lines. Given our previous description of physiological hallmarks of ageing - loss of fertility, mobility, energy stores - segregating with Smurf individuals (and defining Smurfness as an objective indicator of frailty), we decided here to explore the behaviour of the transcriptional hallmarks of ageing in light of the Smurf state of individuals and their chronological age.

Distinguishing these two subpopulations allowed us to observe the gene expression noise doubling between young and old individuals, making the transcriptional noise (ATH6) the only transcriptional hallmark of ageing to display a time-dependent behaviour in our study. This increase of noise in the gene expression level, often associated with transcriptional drift⁵⁷, is concomitant with the time-dependent increasing risk for an individual to enter the second and last phase of life, the Smurf phase. Interestingly, interventions decreasing it were already shown to extend lifespan in nematodes73. 75 76. Old non-Smurfs also show some of ATH1 suggesting that inflammation could precede the Smurf transition at least in old individuals although we cannot exclude that at an advanced age, the likelihood of sampling pre-Smurf or early Smurfs is high and this signal could be due to such individuals contaminating the non-Smurf samples. Then, individuals in the Smurf phase undergo a dramatic shift in gene expression with over 3000 genes differentially expressed compared to age-matched non-Smurf individuals. More importantly, these genes span across the six ageing transcriptional hallmarks, systemic inflammation (ATH1), active stress response (ATH2), decreased mitochondrial/energy metabolism (ATH3) and altered protein translation (ATH4). Old Smurf individuals also show a worsening of their DNA repair pathways, cell cycle regulation pathways (ATH5), chromatin regulation and RNA processing (ATH6). Recently, David Gems and João Pedro de Magalhães questioned the position of the hallmarks of ageing as a paradigm. Our results here seem to support this questioning⁷⁴.

Indeed, the hallmarks are defined as 1) manifesting in an age-related fashion, 2) their accentuation accelerating ageing and 3) intervention on them leading to delay, reverse or stop ageing¹. However, rather than causative of the process they appear to be markers of a terminal and, so far, non-reversible phase of life except for the dysregulation of gene expression. Further characterization of the chain of events might allow to discriminate between major theories of ageing such as "inflammageing", "genome maintenance" or "oxidative damage". Can an evolutionary conserved hallmark of ageing characteristic of the Smurf phase of life be a driver of ageing? On the other hand, if ageing is not programmed, how can such a late-life phase be so much evolutionarily conserved and molecularly stereotyped?

In addition, here we show how most of the pro-longevity genetic interventions identified so far involve genes affected by the Smurf transition. Our longevity experiments in Drosophila demonstrate that it is possible to significantly increase lifespan by tuning the expression of TFs likely to explain the Smurf-associated transcriptional signature (*Trl*, *Adf-1* and CG4360/*Sag1*) and delay the time of entrance in the Smurf phase. Although moderate, these increases of health and lifespan were consistent across inducing conditions and independent experiment, while of a similar extent to longevity studies properly controlling for genetic background using the gene switch system. The fact that we do not detect an increase in lifespan in males does not invalidate the results obtained on females. Those results are in line with the physiological sexual dimorphism of Drosophila longevity, an issue which has been recently more investigated^{77–79} but they could also be due to a sex-specificity of the transcriptional signature presented in this article or due to the weaker inducibility of the daGS driver⁶⁹.

Even though the aim of the paper was not to characterise the events occurring at the intestinal level - the intestinal permeability is merely a marker of the last phase of life in our model - we detected alterations of cell junction components RNA as well as the JAK/STAT pathway and ECM remodelling proteins, suggesting a broad restructuring of tissues at the scale of the whole organism. This is reminiscent of the overall alteration of controlled epithelial permeability broadly affecting living organisms during ageing⁸⁰. The recent demonstration that the Smurf phenotype is due to increased intestinal permeability but also to decreased Malpighian tubules activity⁸¹ is supportive of organismal functional failure occurring in the Smurf phase. Whether it is what is called multivisceral failure in humans is under investigation, but it might highlight the use of the Smurf model of ageing for the study of other barriers, especially the BBB.

By questioning the place of the hallmarks of ageing within the ageing process, our study highlights the high relevance of using the Smurf phenotype in ageing studies across multiple model organisms thanks to its strong evolutionary conservation. The absence of Smurf classification in the experimental design indeed results in a non-negligible confounding factor altering the interpretability of the results. Taking into consideration the Smurf phenotype in ageing studies is key to taking into account the interindividual heterogeneity. As schematized in our graphical abstract, looking at age-related phenotypes without the Smurf phenotype can lead to misinterpretation, attributing to advancing age what is actually due to an increased proportion of Smurf individuals. Based on our results, we anticipate that the Smurf phenotype will become a standard parameter in ageing research, not as a measurement of intestinal permeability but rather as a marker for frail individuals in the last phase of their life. Its broad evolutionary conservation as well as the distinct molecular changes occurring in the two phases of ageing

will certainly allow a deep reexamination of the evolutionary mechanisms at stake in the wide presence of ageing through living organisms.

All codes and associated processed data are available at https://github.com/MichaelRera/SmurfsTrsc Raw RNAseq data are available at NCBI Geo

https://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?acc=GSE219063

Supplementary figures are available at Supplementary_figures.pdf Supplementary tables are available at Supplementary_tables.pdf Supplementary files:

- Supplementary file 1: SupFile1_res_DESeq2_Smurf_nonSmurf.xlsx, DESeq2 results Smurf vs non-Smurf:
- Supplementary file 2: SupFile2_Proteomic_results_Smurf_nonSmurf.xlsx, proteome analysis results;
- Supplementary file 3: SupFile3_Metabolomic_data_Smurf_nonSmurf.xlsx, metabolomic processed data, used as an input for MetaboAnalyst;
- Supplementary file 4: SupFile4_res_DESeq2_40daysS_20daysS.xlsx, DESeq2 results 40 days Smurf vs 20 days Smurf;
- Supplementary file 5: SupFile5_res_DESeq2_40daysNS_20daysNS.xlsx, DESeq2 results 40 days non-Smurf vs 20 days non-Smurf

Material and methods

RNA-seq: experimental design. A synchronous isogenic population of *drosomycin*-GFP (*Drs*-GFP) Drosophila line was used for the RNA-sequencing experiment (40 vials of 30 mated female flies). For the longevity recording, flies were transferred on fresh food and deaths scored on alternative days. Flies were sampled for the sequencing experiment at day 20 (80% survival), day 30 (50% survival) and day 40 (10% survival). Each sample is a mixture of 8 flies. The sampling protocol for Smurfs and age-matched non-Smurfs is the following: all flies - the ones used for longevity and the ones used for sampling - are transferred on blue food overnight; at 9 a.m. 1 Smurf sample and age-matched non-Smurf are collected (Mixed samples), and all the remaining Smurfs are discharged; five hours later, 2 Smurf and non-Smurf samples are collected (5 hours Smurfs), and all the remaining Smurfs are discharged; twenty-four hours later, 3 Smurf and non-Smurf samples are collected. Note that at 90% no 5 hours Smurfs could be collected due to the low probability of flies turning Smurf at this age. After sampling, flies were immediately frozen in liquid N_2 and stored at -80°C up to RNA extraction. Each time-point has a minimum of three biological replicates.

RNA-seq: pre-processing. Sequencing was externalised to Intragen. Library preparation was done using 'TruSeq Stranded mRNA Sample Prep Illumina' kit and conducted on HiSeq4000 Illumina sequencer (paired-end sequencing). Data preprocessing was performed on Galaxy⁸² server. Quality control was performed using FastQC⁸³, and resulted in no reads filtering. Reads were aligned with Hisat2⁸⁴ on the reference *D. melanogaster* genome BDGP6.95. Reads count was performed with featureCounts⁸⁵, resulting in a raw counts matrix of 15364 genes.

RNA-seq: analysis. Unless stated otherwise, all analysis were performed on R 3.5.3 and plots generated with ggplot2 3.3.5. PCA was performed using package DESeq2 1.22.2. Association of components with Smurfness and age was computed using the functions PCA and dimdesc from FactoMineR 2.4. tSNE was performed on package Rtsne 0.15. Sample-to-sample distance heatmap was computed using function dist from stats 3.5.3, and plotted using heatmap 1.0.12. PCA, tSNE and clustering analyses were performed using normalized counts additionally transformed with the *vst* DESeq2 function to stabilize the variance. For the tSNE analysis, the perplexity parameter was set to 10. Additional ed details on the analyses can be found in the Github repository. The main DEGs analysis was performed on DESeq2 1.22.2, while

Proteomic data collection and analysis. *Drs*GFP Smurfs (8 hours) and non-Smurfs were sampled at 80 and 10% survival in quadruplicates of 10 females. Flies were quickly homogenised in 96µL NU-PAGE 1X sample buffer containing antiproteases and quickly spun to precipitate debris. 40µL of samples were then loaded on a NU-PAGE 10% Bis-Tris gel prior to being sent for label free proteomics quantification.

Metabolomic data collection and analysis. DrsGFP Smurfs and non-Smurfs were sampled at 50% survival. Each sample corresponds to a mixture of 20/30 individuals, for a total of 7 Smurf and 7 non-Smurf samples. Drosophila were weighted to reach around 30 mg in a 2 mL-homogenizer tube with ceramic beads (Hard Tissue Homogenizing CK28, 2.8 mm zirconium oxide beads; Precellys, Bertin Technologies, France). Then, 1 mL of ice-cold CH₃OH/water (9/1, -20°C, with internal standards) was added to the homogenizer tube. Samples were homogenised (3 cycles of 20 s/ 5000 rpm; Precellys 24, Bertin Technologies) and homogenates were then centrifuged (10 min at 15000 g, 4°C). Supernatants were collected and several fractions were split to be analysed by different Liquid and Gaz chromatography coupled with mass spectrometers (LC/MS and GC/MS)86. Widely targeted analysis by GC-MS/MS was performed on a coupling 7890A gas chromatography (Agilent Technologies) Triple Quadrupole 7000C (Agilent Technologies) and was previously described in⁸⁷. Polyamines, nucleotides, cofactors, bile acids and short chain fatty acids analyses were performed by LC-MS/MS with a 1260 UHPLC (Ultra-High Performance Liquid Chromatography) (Agilent Technologies) coupled to a QQQ 6410 (Agilent Technologies) and were previously described in87. Pseudo-targeted analysis by UHPLC-HRAM (Ultra-High Performance Liquid Chromatography - High Resolution Accurate Mass) was performed on a U3000 (Dionex) / Orbitrap q-Exactive (Thermo) coupling, previously described in^{87,88}. All targeted treated data were merged and cleaned with a dedicated R (version 4.0) package (@Github/Kroemerlab/GRMeta). 202 metabolites were detected. All the analysis presented (fold change estimation, Wilcoxon test and quantitative enrichment analysis) were done using MetaboAnlyst⁸⁹. One Smurf sample was removed from the analysis as generated starting from 8 individuals only, resulting in a total N of 7 non-Smurfs and 6 Smurfs. Samples were normalised by weight. Gene expression and metabolites representation KEGG maps were generated using pathview 1.290 (R package).

Longevity experiments. All the flies are kept in closed vials in incubators at controlled temperature, humidity and 12 hours light cycle. Experiments are carried at 26°C. Longevity experiments (included the one from where flies were sampled for the RNAseq) were run on the following food composition: 5.14% (w/v) yeast, 2.91\% (w/v) corn, 4.28% (w/v) sugar, 0.57% (w/v) agar and Methyl 4-hydroxybenzoate (Moldex) at a final concentration of 5.3 g/L to prevent fungi contamination. Just after eclosion, flies are collected in tubes with food and RU486 (Fig. 5a). Males and females are left together to mate for 48 hours. After that time, males or females (depending on the experiment) are sorted in a number of 30 per vial, with 5 vials for each RU concentration (total N per concentration is 150). Flies are transferred to new vials with fresh food and scored three times per week (Monday, Wednesday, Friday). An exception are the first two weeks of the experiment, when females undergo an additional transfer on Saturday or Sunday due to the fertilised eggs altering the food composition. The food is prepared the day before the scoring (1.25 mL per vial) and stored at room temperature.

Lines used. daGS driver (provided by Tricoire laboratory, Université de Paris). Bloomington stock (with associated targeted gene if GS): Drs-GFP 55707, dmrt93B, 27657; Ets21C, 39069; Hey, 41650; kay, 27722; Mef2, 28699; rib, 50682; Ets96B, 31935; GATAd, 34625; GATAe, 33748; srp, 28606; NF-yB, 57254; Aef1, 80390; CG4360, 51813; FoxP, 26774; Hsf: 41581; Trl 41582. FlyORF stock (with associated targeted genes): NF-yB, F001895; CG4360, F000063; dmrt93B, F000445; Ets96B, F000142; Ets21C,

Smurf assay recording. Flies were transferred to food containing the blue dye FD&C #1 at 2.5\% (w/v) 24 hours prior to Smurfs counting. The dye is added as the last component in the food preparation, and dissolved in it. At the moment of the counting, flies were transferred back on normal food. All the flies are therefore spending the same amount of time on blue food, in order not to introduce bias in the counts. Note that with the following method we are not having information about the time at which the Smurfs are becoming such. However, as the Smurfs spend on average the same amount of time in this phase²⁰, recording the presence of a "mixed" Smurf population provides a good estimation of their appearance in the population. Smurf counting was performed every two weeks while the population was in the survival plateau, and every week once it exited it.

RNA extraction and qPCR quantification. Extraction of RNA was performed using the Trizol protocol as in91, adapted to the amount of tissue used. Each sample corresponds to a mixture of 3 flies for the RT-qPCR experiments and 8 flies for the RNA-Seq. For the RT-qPCRs, RNA was retro-transcribed using the Applied Biosystems cDNA Reverse Transcription Kit. RT-qPCR was subsequently performed using the Applied Biosystem PowerTrack SYBR Master Mix on Biorad CFX 96. Primers were designed on Benchling. Adf1 Fw: ACAGCCCTTCAACGGCA, Adf1 Rw: CGGCTCGTAGAAGTATGGCT; CG4360 Fw: CAGCAGAGCACCCTTACCAA, CG4360 Rw: GGAGCGGGCATTGAGTGAT; Fw: Trl TCCTATCCACGCCAAAGGCAAA, Trl Rw: TAGCAAATGGGGCAAGTAGCAGG; Act Fw: CCATCAGCCAGCAGTCGTCTA, Act Rw: ACCAGAGCAGCAACTTCTTCG.

Acknowledgements

We thank Camille Garcia from the proteomic platform of Institut Jacques Monod (ProtéoSeine) for producing and pre-processing the proteomics data presented in the manuscript. We thank Bastian Greshake Tzovaras for his helpful comments on the manuscript.

Contributions

M.R. conceived the presented idea and model. F.Z and M.R. conceived, planned and performed the analysis and experiments as well as wrote the manuscript. H.B. and M.B performed the RT-qPCR experiments and analysed the results. S.S.M. and J.L.M. participated in the longevity experiments. S.B. provided technical support for the analysis. C.C., F.A. and S.D. performed and analysed the metabolomics experiments. J.A. and M.R. performed and analysed the proteomics experiments. C.A. helped with the RNAseq analysis. All authors discussed the results and contributed to the final manuscript.

Funding

Michael Rera is funded by the CNRS, Flaminia Zane is funded by Sorbonne Université Interdisciplinary research PhD grant. This project was funded by the ANR ADAGIO (ANR-20-CE44-0010) and the ATIP/Avenir young group leader program for MR. Thanks to the Bettencourt Schueller Foundation long term partnership, this work was partly supported by the CRI Core Research Fellowship to Michael Rera.

Conflicts of interest

The authors declare no conflicts of interest.

References

- 1. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. *Cell* **153**, 1194–217 (2013).
- 2. Lemoine, M. Defining aging. Biol. Philos. 35, (2020).
- 3. Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).
- 4. Vaupel, J. W., Manton, K. G. & Stallard, E. The impact of heterogeneity in individual frailty on the dynamics of mortality. *Demography* **16**, 439–454 (1979).
- 5. de Vries, N. M. *et al.* Outcome instruments to measure frailty: a systematic review. *Ageing Res. Rev.* **10**, 104–114 (2011).
- 6. Dent, E., Kowal, P. & Hoogendijk, E. O. Frailty measurement in research and clinical practice: A review. *Eur. J. Intern. Med.* **31**, 3–10 (2016).
- 7. Fulop, T. et al. Aging, frailty and age-related diseases. Biogerontology 11, 547–563 (2010).
- 8. Baumann, C. W., Kwak, D. & Thompson, L. V. Assessing onset, prevalence and survival in mice using a frailty phenotype. *Aging* **10**, 4042–4053 (2018).
- 9. Heinze-Milne, S. D., Banga, S. & Howlett, S. E. Frailty Assessment in Animal Models. *Gerontology* **65**, 610–619 (2019).
- 10. Whitehead, J. C. *et al.* A clinical frailty index in aging mice: comparisons with frailty index data in humans. *J. Gerontol. A. Biol. Sci. Med. Sci.* **69**, 621–632 (2014).
- 11. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding universe. *Cell* (2023) doi:10.1016/j.cell.2022.11.001.
- 12. Lemoine, M. The Evolution of the Hallmarks of Aging. *Front. Genet.* **0**, (2021).
- Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. *Nat. Rev. Genet.* 19, 371–384 (2018).
- 14. Bocklandt, S. et al. Epigenetic Predictor of Age. PLoS ONE 6, e14821 (2011).
- 15. Hannum, G. et al. Genome-wide Methylation Profiles Reveal Quantitative Views of

- Human Aging Rates. Mol. Cell 49, 359-367 (2013).
- Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biol.* 14, R115 (2013).
- 17. Tarkhov, A. E. *et al.* A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories. *Sci. Rep.* **9**, 1–18 (2019).
- 18. Meyer, D. H. & Schumacher, B. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. *Aging Cell* **20**, e13320 (2021).
- Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. *Proc. Natl. Acad. Sci.* 109, 21528–21533 (2012).
- 20. Tricoire, H. & Rera, M. A New, Discontinuous 2 Phases of Aging Model: Lessons from Drosophila melanogaster. *PLOS ONE* **10**, e0141920 (2015).
- 21. Dambroise, E. *et al.* Two phases of aging separated by the Smurf transition as a public path to death. *Sci. Rep.* **6**, (2016).
- 22. Mackay, T. F. *et al.* The Drosophila melanogaster Genetic Reference Panel. *Nature* **482**, 173–8 (2012).
- Clark, R. I. et al. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair
 Intestinal Function and Drive Mortality. Cell Rep. 12, 1656–1667 (2015).
- 24. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).
- 25. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140 (2010).
- 26. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. *Bioinforma. Oxf. Engl.* **35**, 2084–2092 (2019).

- 27. Ashburner, M. *et al.* Gene Ontology: tool for the unification of biology. *Nat. Genet.* **25**, 25–29 (2000).
- Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 (2005).
- 29. Frenk, S. & Houseley, J. Gene expression hallmarks of cellular ageing. *Biogerontology* **19**, 547–566 (2018).
- 30. Pletcher, S. D. *et al.* Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. *Curr Biol* **12**, 712–23 (2002).
- 31. Girardot, F., Lasbleiz, C., Monnier, V. & Tricoire, H. Specific age-related signatures in Drosophila body parts transcriptome. *BMC Genomics* **7**, 69 (2006).
- 32. Zhan, M. *et al.* Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. *Genome Res* **17**, 1236–43 (2007).
- 33. Landis, G. N. *et al.* Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. *Proc Natl Acad Sci U A* **101**, 7663–8 (2004).
- 34. Moskalev, A. A. *et al.* Transcriptome Analysis of Long-lived Drosophila melanogaster E(z) Mutants Sheds Light on the Molecular Mechanisms of Longevity. *Sci. Rep.* **9**, 9151 (2019).
- 35. Bordet, G., Lodhi, N., Kossenkov, A. & Tulin, A. Age-Related Changes of Gene Expression Profiles in Drosophila. *Genes* **12**, 1982 (2021).
- 36. Wang, X. *et al.* Ageing induces tissue-specific transcriptomic changes in Caenorhabditis elegans. *EMBO J.* **41**, e109633 (2022).
- 37. Lee, C. K., Weindruch, R. & Prolla, T. A. Gene-expression profile of the ageing brain in mice. *Nat. Genet.* **25**, 294–297 (2000).
- 38. de Magalhães, J. P., Curado, J. & Church, G. M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. *Bioinforma. Oxf. Engl.* **25**,

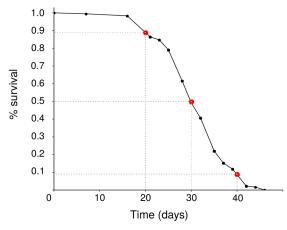
- 875-881 (2009).
- 39. Benayoun, B. A. *et al.* Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. *Genome Res.* **29**, 697–709 (2019).
- 40. Kazakevych, J., Stoyanova, E., Liebert, A. & Varga-Weisz, P. Transcriptome analysis identifies a robust gene expression program in the mouse intestinal epithelium on aging. *Sci. Rep.* **9**, 10410 (2019).
- 41. Palmer, D., Fabris, F., Doherty, A., Freitas, A. A. & de Magalhães, J. P. Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues. *Aging* **13**, 3313–3341 (2021).
- 42. Furman, D. *et al.* Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. *Nat. Med.* **23**, 174–184 (2017).
- Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. *Cell* 86, 973–983 (1996).
- 44. Lemaitre, B. *et al.* A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. *Proc. Natl. Acad. Sci.* **92**, 9465–9469 (1995).
- 45. Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. *Proc. Natl. Acad. Sci.* **93**, 10343–10347 (1996).
- 46. Larkin, A. *et al.* FlyBase: updates to the Drosophila melanogaster knowledge base.

 *Nucleic Acids Res. 49, D899–D907 (2021).
- Yang, J. & Tower, J. Expression of hsp22 and hsp70 Transgenes Is Partially Predictive of Drosophila Survival Under Normal and Stress Conditions. *J. Gerontol. A. Biol. Sci. Med. Sci.* 64A, 828–838 (2009).

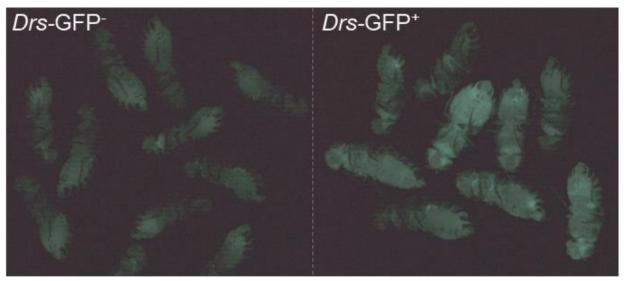
- 48. Rera, M., Vallot, C. & Lefrançois, C. The Smurf transition: new insights on ageing from end-of-life studies in animal models. *Curr. Opin. Oncol.* **30**, 38–44 (2018).
- 49. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res.* **28**, 27–30 (2000).
- 50. Villeponteau, B. The heterochromatin loss model of aging. *Exp. Gerontol.* **32**, 383–394 (1997).
- 51. Tatar, M. *et al.* A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. *Science* **292**, 107–110 (2001).
- 52. Clancy, D. J. *et al.* Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. *Science* **292**, 104–106 (2001).
- 53. Aging Atlas Consortium *et al.* Aging Atlas: a multi-omics database for aging biology.

 Nucleic Acids Res. **49**, D825–D830 (2021).
- 54. Tacutu, R. *et al.* Human Ageing Genomic Resources: new and updated databases. *Nucleic Acids Res.* **46**, D1083–D1090 (2018).
- 55. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. *BMC Bioinformatics* **10**, 48 (2009).
- 56. Bahar, R. *et al.* Increased cell-to-cell variation in gene expression in ageing mouse heart.

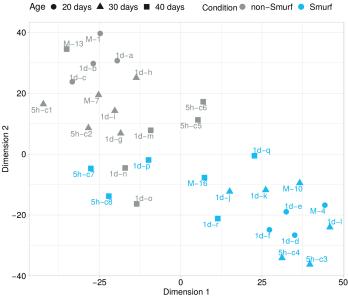
 Nature **441**, 1011 (2006).
- 57. Perez-Gomez, A., Buxbaum, J. N. & Petrascheck, M. The Aging Transcriptome: Read Between the Lines. *Curr. Opin. Neurobiol.* **63**, 170–175 (2020).
- 58. Somel, M., Khaitovich, P., Bahn, S., Pääbo, S. & Lachmann, M. Gene expression becomes heterogeneous with age. *Curr. Biol.* **16**, R359–R360 (2006).
- 59. Enge, M. *et al.* Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. *Cell* **171**, 321-330.e14 (2017).
- 60. Kedlian, V. R., Donertas, H. M. & Thornton, J. M. The widespread increase in

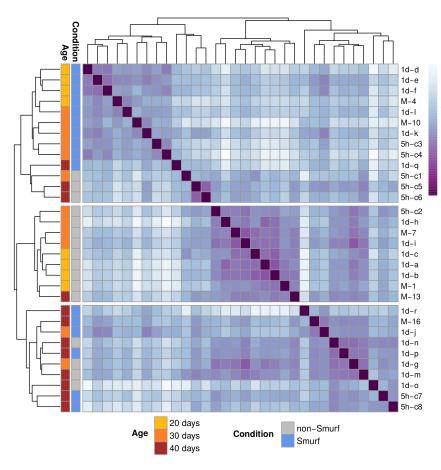

- inter-individual variability of gene expression in the human brain with age. *Aging* **11**, 2253–2280 (2019).
- 61. Işıldak, U., Somel, M., Thornton, J. M. & Dönertaş, H. M. Temporal changes in the gene expression heterogeneity during brain development and aging. *Sci. Rep.* **10**, 4080 (2020).
- 62. Brinkmeyer-Langford, C. L., Guan, J., Ji, G. & Cai, J. J. Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains. *Front. Aging Neurosci.* **8**, (2016).
- 63. Martinez-Jimenez, C. P. *et al.* Aging increases cell-to-cell transcriptional variability upon immune stimulation. *Science* **355**, 1433–1436 (2017).
- 64. FASANO, G. & FRANCESCHINI, A. A multidimensional version of the Kolmogorov-Smirnov test. *Multidimens. Version Kolmogorov-Smirnov Test* **225**, 155–170 (1987).
- 65. Herrmann, C., Van de Sande, B., Potier, D. & Aerts, S. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. *Nucleic Acids Res.* **40**, e114 (2012).
- 66. Imrichová, H., Hulselmans, G., Kalender Atak, Z., Potier, D. & Aerts, S. i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly. *Nucleic Acids Res.* **43**, W57–W64 (2015).
- 67. Osterwalder, T., Yoon, K. S., White, B. H. & Keshishian, H. A conditional tissue-specific transgene expression system using inducible GAL4. *Proc. Natl. Acad. Sci.* **98**, 12596–12601 (2001).
- 68. Roman, G., Endo, K., Zong, L. & Davis, R. L. P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. *Proc. Natl. Acad. Sci.* **98**, 12602–12607 (2001).
- 69. Tricoire, H. *et al.* The steroid hormone receptor EcR finely modulates Drosophila lifespan during adulthood in a sex-specific manner. *Mech. Ageing Dev.* **130**, 547–552 (2009).

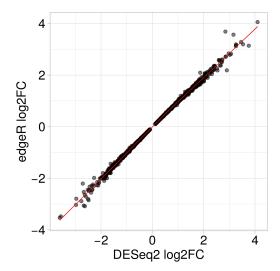
- 70. Rera, M., Monnier, V. & Tricoire, H. Mitochondrial electron transport chain dysfunction during development does not extend lifespan in Drosophila melanogaster. *Mech. Ageing Dev.* **131**, 156–164 (2010).
- 71. Szklarczyk, D. *et al.* The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Res.* **49**, D605–D612 (2021).
- 72. Bitner, K., Shahrestani, P., Pardue, E. & Mueller, L. D. Predicting death by the loss of intestinal function. *PLOS ONE* **15**, e0230970 (2020).
- 73. Rangaraju, S. *et al.* Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. *eLife* **4**, e08833 (2015).
- 74. Ibañez-Solé, O., Ascensión, A. M., Araúzo-Bravo, M. J. & Izeta, A. Lack of evidence for increased transcriptional noise in aged tissues. *eLife* **11**, e80380 (2022).
- 75. Gems, D. & de Magalhães, J. P. The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm. *Ageing Res. Rev.* **70**, 101407 (2021).
- 76. Accurate aging clocks based on accumulating stochastic variation. https://www.researchsquare.com (2023) doi:10.21203/rs.3.rs-2351315/v1.
- 77. Regan, J. C. *et al.* Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. *eLife* **5**, e10956.
- 78. Belmonte, R. L., Corbally, M.-K., Duneau, D. F. & Regan, J. C. Sexual Dimorphisms in Innate Immunity and Responses to Infection in Drosophila melanogaster. *Front. Immunol.* **10**, (2020).
- 79. Garratt, M. Why do sexes differ in lifespan extension? Sex-specific pathways of aging and underlying mechanisms for dimorphic responses. *Nutr. Healthy Aging* **5**, 247–259 (2020).
- 80. Parrish, A. R. The impact of aging on epithelial barriers. *Tissue Barriers* e1343172 (2017) doi:10.1080/21688370.2017.1343172.
- 81. Livingston, D. B. H., Patel, H., Donini, A. & MacMillan, H. A. Active transport of brilliant

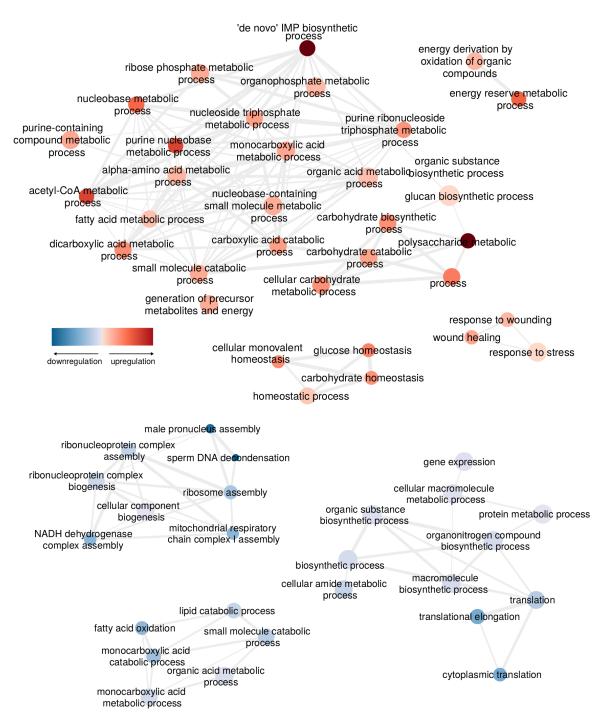

- blue FCF across the Drosophila midgut and Malpighian tubule epithelia. *Comp. Biochem. Physiol. A. Mol. Integr. Physiol.* **239**, 110588 (2020).
- 82. Afgan, E. *et al.* The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. *Nucleic Acids Res.* **46**, W537–W544 (2018).
- 83. Babraham Bioinformatics FastQC A Quality Control tool for High Throughput Sequence

 Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- 84. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**, 907–915 (2019).
- 85. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinforma. Oxf. Engl.* **30**, 923–930 (2014).
- 86. Grajeda-Iglesias, C. *et al.* Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. *Aging* **13**, 6375–6405 (2021).
- 87. Durand, S. *et al.* Chapter 11 The intracellular metabolome of starving cells. in *Methods* in *Cell Biology* (eds. Kepp, O. & Galluzzi, L.) vol. 164 137–156 (Academic Press, 2021).
- 88. Abdellatif, M. *et al.* Nicotinamide for the treatment of heart failure with preserved ejection fraction. *Sci. Transl. Med.* **13**, eabd7064 (2021).
- 89. Xia, J. & Wishart, D. S. Metabolomic Data Processing, Analysis, and Interpretation Using MetaboAnalyst. *Curr. Protoc. Bioinforma.* **34**, 14.10.1-14.10.48 (2011).
- 90. Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics* **29**, 1830–1831 (2013).
- 91. Rio, D. C., Ares, M., Hannon, G. J. & Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). *Cold Spring Harb. Protoc.* **2010**, pdb.prot5439 (2010).

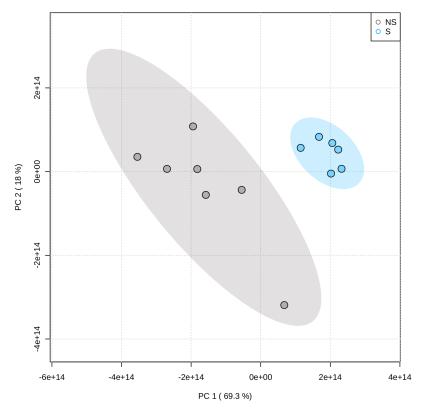

Supplementary Figures


S1. Survival curve of the *Drs*GFP population used for the RNA-seq experiment. Red dots (and axis intersecting dotted lines) highlight the sampling time points (20 days - 90% survival, 30 days - 50% survival, 40 days - 10% survival).

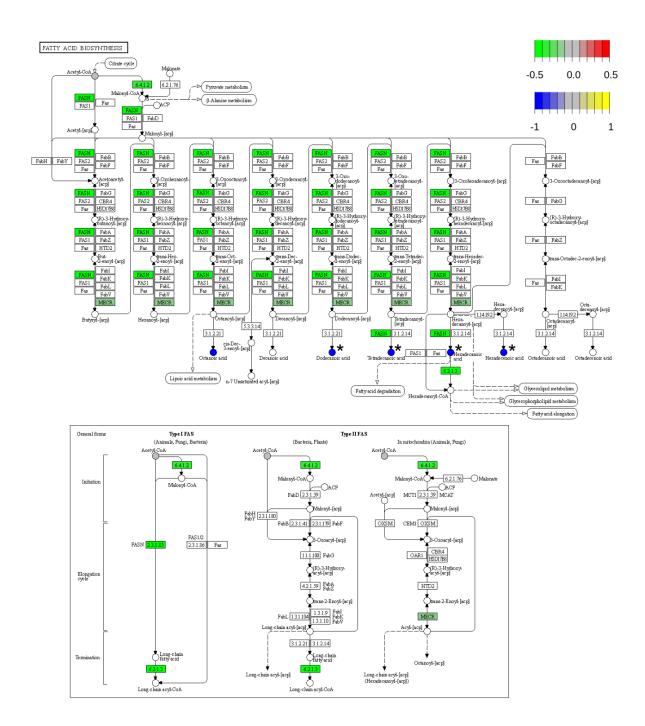

S2. **GFP**⁺ **and GFP**⁻ **flies from** *Drs***-GFP line**. Flies separated based on the GFP activation status (GFP on the left and GFP on the right), a possible alternative method for Smurf selection.


S3. tSNE (perplexity = 10) on RNA-seq samples. tSNE is computed on all genes. Colour indicates Smurf status, symbols the age (as in legend). Similarly to the PCA results in Fig. 1a, Smurf and non-Smurfs samples form two groups. In the non-Smurf groups we can notice the samples segregating by age, while the Smurf group appear more mixed. The same "mixed" behaviour for the 40 days samples as in the PCA are identified.

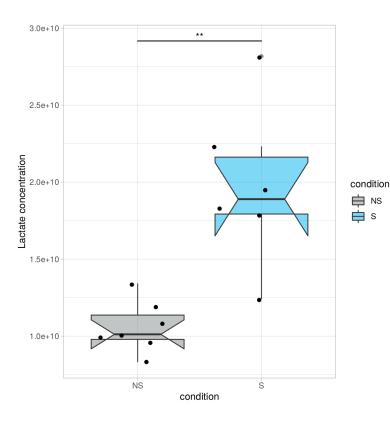
S4. hierarchical Unsupervised clustering sample-to-sample on distance. Distance matrix (euclidean distance) is computed using all genes. 40Three main clusters are identified, 30 showing good separation between Smurfs and non Smurfs but for the 40 days ²⁰samples, which appear to either correlate ₁₀with one of the two groups or form a third cluster independently of the Smurf status.

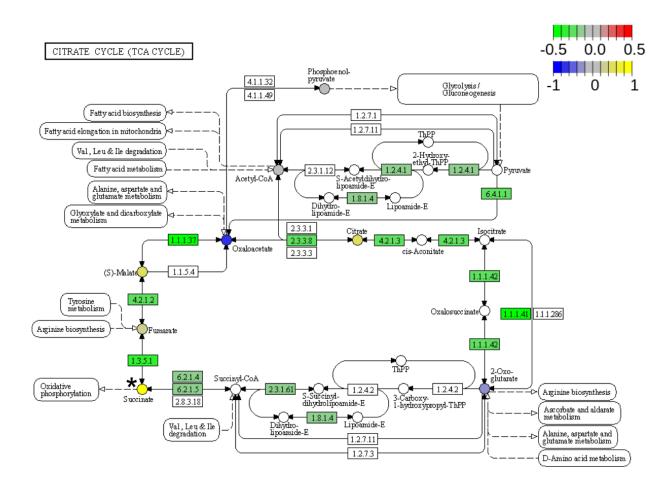


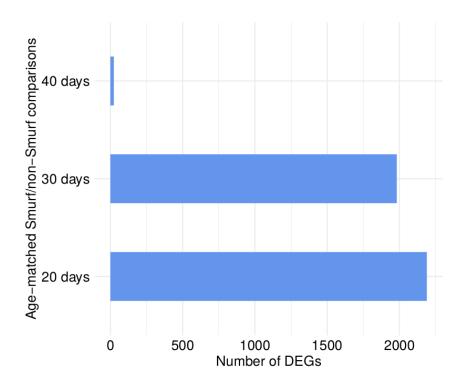
S5. edgeR pipeline validates DESeq2 analysis. Each of the commonly 2362 DEGs identified by the two pipelines is plotted as a function of the estimated fold changes. Estimated pearson correlation between the two is 0.99.

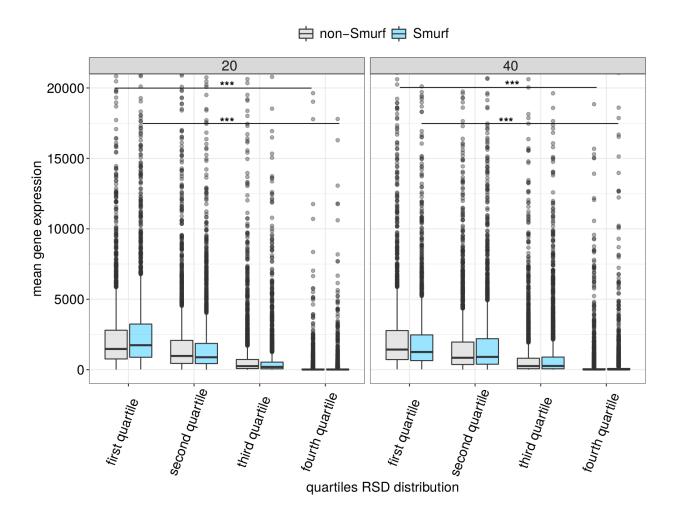


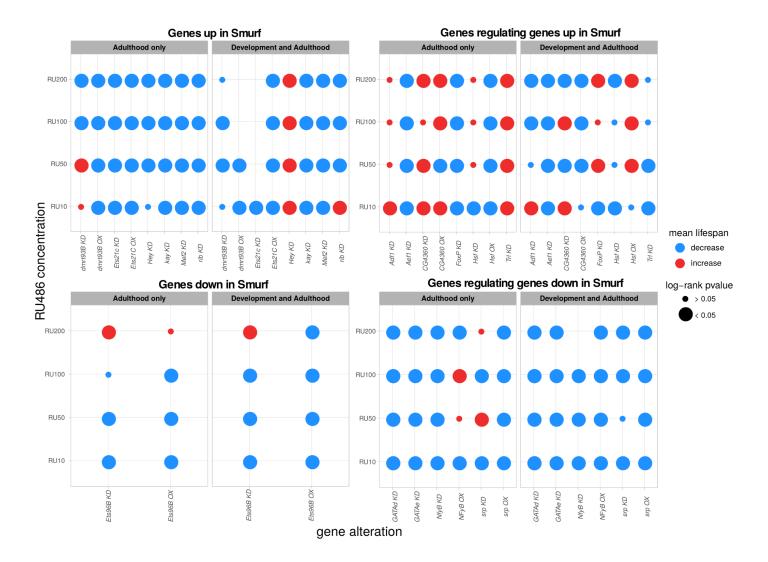
S6. Enrichment analysis on differentially expressed proteins, Smurf vs non-Smurfs. Interconnected GO BP significant categories are here represented as a network. The color indicates the level of deregulation (Panther Fold Change estimation) - http://www.pantherdb.org/ - . The node size provides an approximate indication of the GO BP category size. Amongst the upregulated categories we mostly observe response to stress and proteins involved in metabolism (with a strong signal coming from the IMP biosynthesic process category - associated to purine metabolism, not observed in the transcriptome). The downregulated categories mostly map to ribosomal proteins, mitochondrial respiratory chain (complex I), metabolism (with the lipid catabolic process confirming what is observed

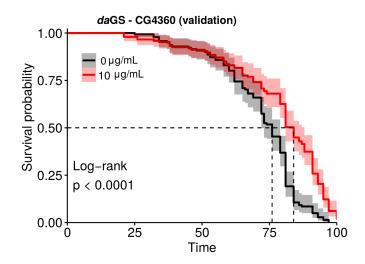

in the Smurf transcriptome). The gene expression categories include numerous ribosomal proteins and should therefore not be interpreted as a signal regarding transcriptional regulation.

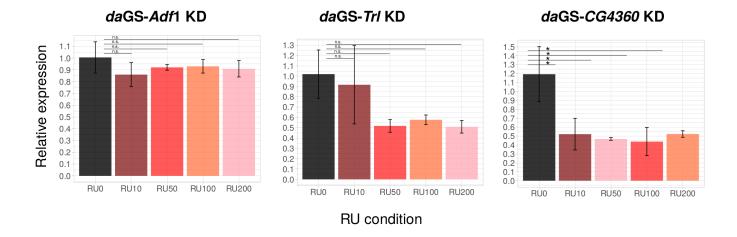

S7. PCA performed on metabolomic data. Similarly to what occurs for th transcriptomic, the PCA on the quantification of 202 metabolites clearly separates Smurf and non-Smurf samples. PCA performed through MetaboAnalyst online platform.

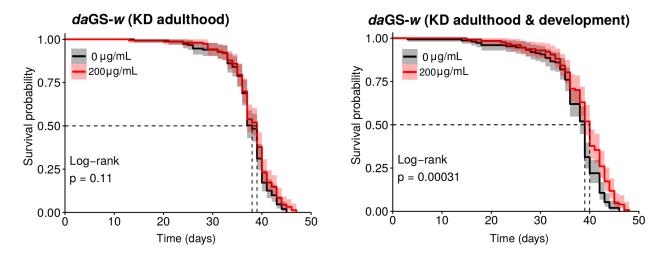

S8. Smurf DEGs and metabolites FC on KEGG fatty acid biosynthesis pathway (dm00061). The pathview R package is used to map the genes identified as DEGs in the Smurf/non-Smurf comparison and belonging to the KEGG fatty acid pathway (dm00061). The log₂FC estimated by the DESeq2 analysis is represented by the color scale. The detected metabolites are colored according Smurf/non-Smurf log₂FC, and associated to a * when significant to Wilcoxon test (p-value < 0.05). The downregulation of biosynthesis-mediating enzymes is associated by a decreased presence in Smurfs of the final fatty acid products, suggesting that the transcriptional signature is functional. Enzymatic complexes are annotated through unique identification code, while genes are automatically annotated with the humane symbol. To retrieve the Drosophila gene symbols from pathway's nodes, go to the online version and place the pointer on the gene on interest (https://www.genome.ip/pathway/dme00061).

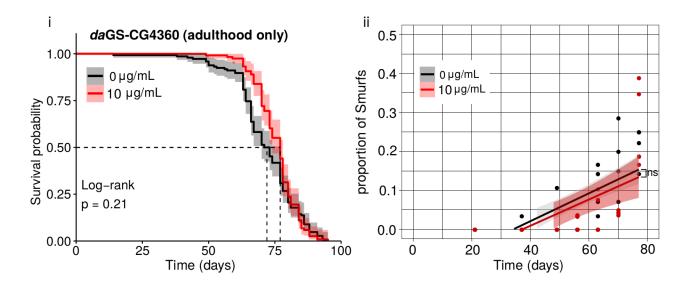

S9. Lactic acid levels are significantly higher in Smurfs. Smurf present a significant increase in lactic acid level ($\log_2FC = 0.90$; **p-value < 0.001) compared to non-Smurfs. This confirms that the transcriptional upregulation of Ldh in Smurfs is functional. Smurfs might rely more on fermentation after glycolysis (compared to the non-Smurfs) given the general impairment experience in mitochondria.


S10. Smurf DEGs and metabolites FC on KEGG TCA cycle pathway (dm00061). The pathview R package is used to map the genes identified as DEGs in the Smurf/non-Smurf comparison and belonging to the KEGG fatty acid pathway (dm00061). The log₂FC estimated by the DESeq2 analysis is represented by the color scale. The detected metabolites are colored according Smurf/non-Smurf log₂FC, and associated to a * when significant to Wilcoxon test (p-value < 0.05). As already discussed in the Smurf transcriptome characterization, the TCA cycle displays wide downregulation. At a metabolomic level, the pathway missed the threshold for significance in the quantitative enrichment analysis (FDR = 0.13), and only succinate is significant to Wilcoxon test (log₂FC = 1.28, p-value < 0.05). However, given the general impairment of mitochondrial metabolism observed at a transcriptomic and proteomic level, we believe the trend observed in the metabolomic data could still be interesting and serve as hypothesis generator for further analysis. Enzymatic complexes are annotated through unique identification code, while genes are automatically annotated with the humane symbol. To retrieve the Drosophila gene symbols from pathway's to the online version and place the pointer on the gene (https://www.genome.jp/pathway/map00020).

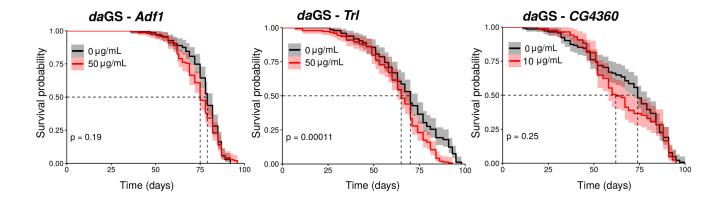

S11. The number of DEGs in age-matched Smurf/non-Smurf comparisons decreases with chronological age. When comparing age-matched Smurfs and non-Smurfs, different number of DEGs are retrieved (DEGs $_{20}$ = 2190 , DEGs $_{30}$ = 1982 , DEGs $_{40}$ = 24). The dramatic drop of DEGs at 40 days suggests that the transcriptome of old Smurfs and non-Smurfs are more similar than at younger ages. This was already suggested by the PCA (Fig. 1a) and might suggest that the old non-Smurfs samples, collected in the old population, are enriched in pre-Smurfs compared to their younger counterparts.


S12. Higher relative standard deviation (RSD) in gene expression in our dataset is associated to lower counts. We divided the RSD distributions in Fig. 4b into the four quartiles (x axis) and plotted the mean gene expression of the associated genes (y axis) for Smurfs and non-Smurfs at 20 and 40 days. The mean gene expression shows a decreasing trend over the four group, proved by the significant difference between the mean gene expression of the first and fourth quartile for both Smurf and non-Smurf at 20 and 40 days (wilcoxon test, p-value < 10^{e-16}).


S13. Longevity screening results. Summary of the results of the longevity screen carried out on the genes listed in Table 1. For each experiment, the 4 RU486 treatments and the two experimental setting ("adulthood only" and "development & adulthood") are listed. The controls are not represented as they are the reference for the statistical test (log-rank) and computation of the mean lifespan change. The size of the the point indicates the significance of the difference in the longevity curve (treatment compared to control), while the colour indicates the direction of the change - decrease or increase of mean lifespan. In most cases we detected a significant difference with negative effect on the populations' lifespan (blue large points). Interestingly most of the positive hits (red large points) map to the group of genes found by i-cisTarget as putative regulators of TFs up in Smurfs.


S14. CG4360 KD (adulthood & development) validation. The effect showed in Fig.7 on the CG4360 KD (adulthood & development setting), RU10 μ g/mL, is confirmed by a third independent experiment. The effect is not observed on the "adulthood only" setting. The dotted line point at the median lifespan of the populations. The effect on the mean lifespan (ML) is + 9.5% (ML_{RU0} = 71.5, ML_{RU10} = 78.5).

S15. Relative gene expression quantification on KD lines (*da*GS- *Adf1*, *Trl*, *CG4360*). qPCR results for quantification of Adf1, Trl and CG4360 expression in the respective KD lines (whole body RNA extraction). In no case we observe the expected gradient, suggesting that depending on the line the RU486 induction is more or less strong independently of the amount of drug. A significant downregulation (Wilcoxon test) is detected for CG4360 at all RU486 concentrations. However, even if a trend is noticeable for *Trl* and *Adf1*, the difference in relative expression is not significant to Wilcoxon test. p-value: * = 0.05, n.s. > 0.05. *Adf1*: average 2^{Λ} - Δ Ct RU0 = 1.006, RU10 = 0.860, RU50 = 0.921, RU100 = 0.930, RU200 = 0.909; SD (standard deviation) RU0 = 0.132, RU10 = 0.101, RU50 = 0.024, RU100 = 0.057, RU200 = 0.069. *Trl*: average 2^{Λ} - Δ Ct RU0 = 1.019, RU10 = 0.916, RU50 = 0.518, RU100 = 0.577, RU200 = 0.509; SD RU0 = 0.234, RU10 = 0.380, RU50 = 0.061, RU100 = 0.046, RU200 = 0.060; *CG4360*: average 2^{Λ} - Δ Ct RU0 = 1.051, RU10 = 0.522, RU50 = 0.468, RU100 = 0.438, RU200 = 0.523; SD: RU0 = 0.379, RU10 = 0.177, RU50 = 0.015, RU100 = 0.0157, RU200 = 0.036. N = 3 sample for each RU concentration, where 1 sample is the mixture of 3 flies.



S16. RU486 treatment does not affect lifespan. In order to confirm that the RU486 treatment alone does not affect lifespan, we performed GS longevity experiment with the daGS driver inducing w KD (white KD does not affect longevity). We induced the GS with RU 200 μ g/mL, corresponding to the highest treatment used in our longevity experiments. No significant difference in the longevity curves is detected in the "adulthood only" setting (ML_{RU0} = 37.4, ML_{RU200} = 37.9, p-value in figure). A significant difference is detected in the "adulthood & development" setting (ML_{Ru0} = 37.0, ML_{RU200} = 38.7, p-value in figure). However, the modest effect (+4.5%), together with the overlap of the confidence intervals of the curves, suggest that the effect is not biologically relevant.

S17. Two populations with non-significantly different lifespan experience the same Smurf proportion increase over time: the example of CG4360 KD (adulthood only). (i) Longevity experiment. CG4360 does not

extend lifespan when knocked-down during adulthood only ($ML_{RU0} = 71.6$, $ML_{RU10} = 75.5$, log-rank p-value = 0.21). (ii) **Smurf proportion evolution over time.** The Smurf proportion significantly increases over time in the populations (slope_{RU0} = 0.0036, p-value_{RU0} = 1.50e-06, slope_{RU10} = 0.0034, p-value_{RU10} = 6.12e-04). However, no significant difference is detected between the slope of the control and the treated population (p-value = 0.84), contrary to what observed when the populations have significantly different lifespan (Fig. 6b).

S18. Longevity experiments on males. In order to investigat if the longevity effect found on females applies to males, we performed the experiment on males from the same GS line. Results are reported for the condition extending lifespan on females (RU50 μ g/mL, adulthood only, for *Adf1* and *Trl*; RU10 μ g/mL, development & adulthood, for *CG4360*). No significant effect is detected for *Adf1* and *CG4360* (log-rank p-values reported in figure; *Adf1*: ML_{RU0} = 77.1 , ML_{RU50} = 74.4; *CG4360*: ML_{RU0} = 68.7 , ML_{RU10} = 65.8). A significant negative effect is detected for *Trl* KD (*Trl*: ML_{RU0} = 68.5 , ML_{RU50} = 62.9, -8.1%). However, the longevity curves are evolving similarly and the confidence intervals are diverging only after the T₅₀; this suggests that the results need to be interpreted carefully, as the significance might not imply biological relevance.

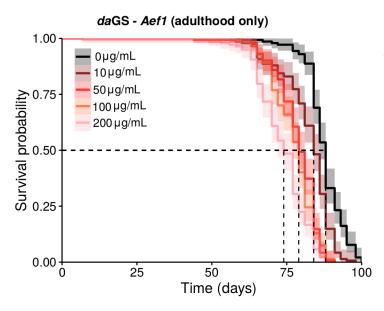


Fig S19. Aef1 KD negatively affects life expectancy following the treatment gradient. Aef1 KD negatively affects lifespan at all doses $(ML_{RU0} = 87.6, ML_{RU10} = 82.2, ML_{RU50} = 78.6,$ ML_{RU100} = 77.4, ML_{RU200} = 73.3; p-value < 0.00001 for the log-rank test, details in Table S14). Dashed lines in figure indicate the median lifespan. The dose-dependent trend suggested by the ML values is confirmed when comparing the longevity curves of the treated populations, with only the RU50 and **RU100** showing significant no difference (RU10-RU50: p-value = 3e-10 ; RU50-RU100: p-value = 0.2; RU100-RU200: p-value = 2e-04). Such trend suggest an effect on longevity of Aef1 rather than a toxic effect of the KD.

46

Supplementary Tables

GO BP category	size	NES	p.adjust
GO:0050829 defense response to Gram-negative bacterium	39	2.343910	**
GO:0019731 antibacterial humoral response	29	2.335396	**
GO:0070482 response to oxygen levels	35	2.322513	**
GO:0006457 protein folding	44	2.273671	**
GO:0019730 antimicrobial humoral response	53	2.272312	**
GO:0006458 'de novo' protein folding	15	2.253483	**
GO:0051084 'de novo' posttranslational protein folding	15	2.253483	**
GO:0051085 chaperone cofactor-dependent protein refolding	15	2.253483	**
GO:0061077 chaperone-mediated protein folding	25	2.249745	**
GO:0006986 response to unfolded protein	16	2.241839	**
GO:0035966 response to topologically incorrect protein	16	2.241839	**
GO:0034620 cellular response to unfolded protein	15	2.234994	**
GO:0035967 cellular response to topologically incorrect protein	15	2.234994	**
GO:0042026 protein refolding	15	2.116671	**
GO:0006959 humoral immune response	63	2.092197	**
GO:0001666 response to hypoxia	23	2.082786	*
GO:0036293 response to decreased oxygen levels	26	2.057510	**
GO:0042742 defense response to bacterium	80	2.042555	**
GO:0051276 chromosome organization	61	2.027083	**
GO:0050830 defense response to Gram-positive bacterium	32	2.011920	*
GO:0031347 regulation of defense response	33	1.971860	*
GO:0006955 immune response	107	1.951750	**
GO:0061057 peptidoglycan recognition protein signaling pathway	10	1.935157	*
GO:0006952 defense response	138	1.905159	**
GO:0098542 defense response to other organism	103	1.869388	*
GO:0009617 response to bacterium	97	1.844119	*
GO:0009266 response to temperature stimulus	48	1.789309	*
GO:0002376 immune system process	137	1.789089	**
GO:0009628 response to abiotic stimulus	125	1.749653	*
GO:0071310 cellular response to organic substance	75	1.745146	*
GO:0009607 response to biotic stimulus	138	1.732527	**
GO:0043207 response to external biotic stimulus	138	1.732527	**
GO:0051707 response to other organism	138	1.732527	**
GO:0006950 response to stress	356	1.731664	**

GO:0019538 protein metabolic process 534 1.395434 * GO:0055086 nucleobase-containing small molecule metabolic process 117 1.614257 * GO:0055114 oxidation-reduction process 225 -1.618842 * GO:0015980 energy derivation by oxidation of organic compounds 52 -1.797256 * GO:0016054 organic acid catabolic process 54 -1.817399 * GO:0046395 carboxylic acid catabolic process 54 -1.817399 * GO:0042254 ribosome biogenesis 314 -1.850554 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.937364 * GO:0042900 electron transport chain 27 -1.956907 * GO:0045333 cellular respiration				
GO:0055114 oxidation-reduction process 225 -1.618842 * GO:0008610 lipid biosynthetic process 68 -1.728761 * GO:0015980 energy derivation by oxidation of organic compounds 52 -1.797256 * GO:0006091 generation of precursor metabolites and energy 73 -1.811853 * GO:0016054 organic acid catabolic process 54 -1.817399 * GO:0046395 carboxylic acid catabolic process 54 -1.817399 * GO:0044281 small molecule metabolic process 314 -1.850554 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.937346 * GO:0042900 electron transport chain 27 -1.937346 * GO:0034754 cellular hormone metabolic process	GO:0019538 protein metabolic process	534	-1.395434	*
GO:0008610 lipid biosynthetic process 68 -1.728761 * GO:0015980 energy derivation by oxidation of organic compounds 52 -1.797256 * GO:0006091 generation of precursor metabolites and energy 73 -1.811853 * GO:0016054 organic acid catabolic process 54 -1.817399 * GO:0046395 carboxylic acid catabolic process 54 -1.817399 * GO:0044281 small molecule metabolic process 314 -1.850554 * GO:0007304 chorion-containing eggshell formation 30 -1.878965 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.937346 * GO:0042829 small molecule catabolic process 72 -1.937690 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process	GO:0055086 nucleobase-containing small molecule metabolic process	117	-1.614257	*
GO:0015980 energy derivation by oxidation of organic compounds 52 -1.797256 * GO:0006091 generation of precursor metabolites and energy 73 -1.811853 * GO:0016054 organic acid catabolic process 54 -1.817399 * GO:0046395 carboxylic acid catabolic process 54 -1.817399 * GO:0044281 small molecule metabolic process 314 -1.850554 * GO:0007304 chorion-containing eggshell formation 30 -1.878965 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0042773 mitochondrial ATP synthesis coupled electron transport 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:00422900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045333 cellular resp	GO:0055114 oxidation-reduction process	225	-1.618842	*
GO:0006091 generation of precursor metabolites and energy 73 -1.811853 * GO:0016054 organic acid catabolic process 54 -1.817399 * GO:0046395 carboxylic acid catabolic process 54 -1.817399 * GO:0044281 small molecule metabolic process 314 -1.850554 * GO:0007304 chorion-containing eggshell formation 30 -1.878965 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165	GO:0008610 lipid biosynthetic process	68	-1.728761	*
GO:0016054 organic acid catabolic process 54 -1.817399 * GO:0046395 carboxylic acid catabolic process 54 -1.817399 * GO:0044281 small molecule metabolic process 314 -1.850554 * GO:0007304 chorion-containing eggshell formation 30 -1.878965 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.937346 * GO:004282 small molecule catabolic process 72 -1.937346 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 *	GO:0015980 energy derivation by oxidation of organic compounds	52	-1.797256	*
GO:0046395 carboxylic acid catabolic process 54 -1.817399 * GO:0044281 small molecule metabolic process 314 -1.850554 * GO:0007304 chorion-containing eggshell formation 30 -1.878965 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0042445 hormone metabolic process 26 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 <t< td=""><td>GO:0006091 generation of precursor metabolites and energy</td><td>73</td><td>-1.811853</td><td>*</td></t<>	GO:0006091 generation of precursor metabolites and energy	73	-1.811853	*
GO:0044281 small molecule metabolic process 314 -1.850554 * GO:0007304 chorion-containing eggshell formation 30 -1.878965 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0016054 organic acid catabolic process	54	-1.817399	*
GO:0007304 chorion-containing eggshell formation 30 -1.878965 * GO:0042254 ribosome biogenesis 46 -1.902000 * GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0046395 carboxylic acid catabolic process	54	-1.817399	*
GO:0042254 ribosome biogenesis GO:0042180 cellular ketone metabolic process GO:0042775 mitochondrial ATP synthesis coupled electron transport GO:0030703 eggshell formation GO:0022904 respiratory electron transport chain GO:0042773 ATP synthesis coupled electron transport GO:0042773 ATP synthesis coupled electron transport GO:004282 small molecule catabolic process GO:0022900 electron transport chain GO:0034754 cellular hormone metabolic process GO:0045455 ecdysteroid metabolic process GO:0045333 cellular respiration GO:004508 proteolysis GO:0042445 hormone metabolic process GO:0042455 sterol metabolic process GO:0042445 hormone metabolic process GO:004255 sterol metabolic process GO:004255 sterol metabolic process GO:004255 sterol metabolic process GO:004255 sterol metabolic process GO:0042445 hormone metabolic process GO:004255 sterol metabolic process GO:004255 sterol metabolic process	GO:0044281 small molecule metabolic process	314	-1.850554	*
GO:0042180 cellular ketone metabolic process 20 -1.904478 * GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0042445 hormone metabolic process 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0007304 chorion-containing eggshell formation	30	-1.878965	*
GO:0042775 mitochondrial ATP synthesis coupled electron transport 25 -1.911838 * GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0042445 hormone metabolic process 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0042254 ribosome biogenesis	46	-1.902000	*
GO:0030703 eggshell formation 31 -1.924518 * GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0042180 cellular ketone metabolic process	20	-1.904478	*
GO:0022904 respiratory electron transport chain 26 -1.933564 * GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0042775 mitochondrial ATP synthesis coupled electron transport	25	-1.911838	*
GO:0042773 ATP synthesis coupled electron transport 26 -1.933564 * GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0030703 eggshell formation	31	-1.924518	*
GO:0044282 small molecule catabolic process 72 -1.937346 * GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0022904 respiratory electron transport chain	26	-1.933564	*
GO:0022900 electron transport chain 27 -1.956907 * GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0042773 ATP synthesis coupled electron transport	26	-1.933564	*
GO:0034754 cellular hormone metabolic process 13 -1.986510 * GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0044282 small molecule catabolic process	72	-1.937346	*
GO:0045455 ecdysteroid metabolic process 13 -1.986510 * GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0022900 electron transport chain	27	-1.956907	*
GO:0045333 cellular respiration 39 -1.998705 * GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0034754 cellular hormone metabolic process	13	-1.986510	*
GO:0006508 proteolysis 267 -2.029165 * GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0045455 ecdysteroid metabolic process	13	-1.986510	*
GO:0042445 hormone metabolic process 21 -2.039538 * GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0045333 cellular respiration	39	-1.998705	*
GO:0016125 sterol metabolic process 11 -2.125654 **	GO:0006508 proteolysis	267	-2.029165	*
<u>-</u>	GO:0042445 hormone metabolic process	21	-2.039538	*
GO:0008202 steroid metabolic process 19 -2.179092 **	GO:0016125 sterol metabolic process	11	-2.125654	**
	GO:0008202 steroid metabolic process	19	-2.179092	**

Table S1. GSEA results, Smurf/non-Smurf analysis. List of the 59 significant deregulated GO BP categories (adjusted p-value < 0.05) from the GSEA analysis on the list of Smurf DEGs. Results are illustrated in Fig. 2 of the main text. GO BP category: ID and description of the biological process category; size: number of genes annotated in the category; NES: normalized enriched score; p.adjust: FDR correction on the p-value, * < 0.05, ** < 0.01.

Metabolite Set	Total	Hits	FDR
Valine, leucine and isoleucine degradation	40	3	3.4984E-4
Biosynthesis of unsaturated fatty acids	36	5	5.067E-4
alpha-Linolenic acid metabolism	13	2	5.067E-4
Linoleic acid metabolism	5	1	5.067E-4
Fatty acid biosynthesis	47	4	0.0020546
Fatty acid degradation	39	3	0.0020546
Fatty acid elongation	38	2	0.0020546
Pyruvate metabolism	22	6	0.0071512
Valine, leucine and isoleucine biosynthesis	8	2	0.0078342
Phenylalanine metabolism	10	3	0.043592
Phenylalanine, tyrosine and tryptophan biosynthesis	4	2	0.043592
Thiamine metabolism	7	1	0.051592
Cysteine and methionine metabolism	33	5	0.059126

Table S2. Quantitative enrichment analysis on metabolites profile (S/NS), significant hits. Quantitative enrichment analysis on metabolites quantification (from MetaboAnalyst) results in 13 significant KEGG pathways. The TCA cycle missed the 5% significant threshold (FDR = 0.13), but most of the associated metabolites are present in the pyruvate metabolism pathway. In confirmation of what is seen with the transcriptomic, we find fatty acid metabolism associated pathways. A signal from amino acids metabolism is also detected. Metabolite set: KEGG pathway; Total: number of metabolites in the pathway; FDR: adjusted p-value.

GO BP category	size	NES	p.adjust
GO:0010038 response to metal ion	15	1.983838	
GO:0010035 response to inorganic substance	22	1.782223	
GO:0006030 chitin metabolic process	25	1.778918	
GO:1901071 glucosamine-containing compound metabolic process	27	1.775833	
GO:0006022 aminoglycan metabolic process	29	1.750849	
GO:0006040 amino sugar metabolic process	28	1.737450	
GO:0007606 sensory perception of chemical stimulus	24		
GO:0055114 oxidation-reduction process	134		
GO:0005975 carbohydrate metabolic process	68	1.515730	
GO:0017144 drug metabolic process		1.513730	
GO:1901988 negative regulation of cell cycle phase transition		-1.979813	
GO:1901991 negative regulation of cent cycle phase transition GO:1901991 negative regulation of mitotic cell cycle phase transition		-1.979813	
GO:0034470 ncRNA processing		-1.998833	
GO:0054470 netava processing GO:0051129 negative regulation of cellular component organization		-2.000688	
GO:0045930 negative regulation of mitotic cell cycle		-2.006150	
		-2.000130	
GO:0043254 regulation of protein complex assembly			
GO:0022613 ribonucleoprotein complex biogenesis		-2.026966	
GO:0010769 regulation of cell morphogenesis involved in differentiation		-2.043760	
GO:0006342 chromatin silencing		-2.044283	
GO:0045814 negative regulation of gene expression, epigenetic		-2.044283	
GO:0030951 establishment or maintenance of microtubule cytoskeleton polarity		-2.050560	
GO:0050770 regulation of axonogenesis		-2.057130	
GO:0060810 intracellular mRNA localization involved in pattern specification process		-2.082873	
GO:0060811 intracellular mRNA localization involved in anterior/posterior axis specification		-2.082873	
GO:0043085 positive regulation of catalytic activity		-2.084854	
GO:0007338 single fertilization		-2.090751	
GO:0009566 fertilization		-2.090751	
GO:1990778 protein localization to cell periphery		-2.098238	
GO:0031400 negative regulation of protein modification process		-2.104281	
GO:0030952 establishment or maintenance of cytoskeleton polarity		-2.111130	
GO:0007265 Ras protein signal transduction		-2.117713	
GO:0051052 regulation of DNA metabolic process		-2.127928	
GO:0046578 regulation of Ras protein signal transduction		-2.145951	
GO:0044786 cell cycle DNA replication		-2.148274	
GO:0006399 tRNA metabolic process		-2.161945	
GO:0008298 intracellular mRNA localization		-2.164617	
GO:0033047 regulation of mitotic sister chromatid segregation		-2.168912	
GO:0006402 mRNA catabolic process		-2.170716	
GO:0051056 regulation of small GTPase mediated signal transduction		-2.179228	
GO:0007093 mitotic cell cycle checkpoint		-2.194288	
GO:0010638 positive regulation of organelle organization		-2.202552	
GO:0043087 regulation of GTPase activity		-2.225064	
GO:0000075 cell cycle checkpoint		-2.228099	
GO:0022618 ribonucleoprotein complex assembly		-2.239742	
GO:0031124 mRNA 3'-end processing		-2.253050	
GO:0000281 mitotic cytokinesis		-2.253149	
GO:1902275 regulation of chromatin organization		-2.259971	
GO:0061640 cytoskeleton-dependent cytokinesis		-2.267458	
GO:0000910 cytokinesis		-2.271666	
GO:2001252 positive regulation of chromosome organization		-2.272650	
GO:0006511 ubiquitin-dependent protein catabolic process		-2.274556	
GO:0006302 double-strand break repair		-2.286608	
GO:0010948 negative regulation of cell cycle process		-2.295652	
GO:0034968 histone lysine methylation		-2.296995	
GO:0010639 negative regulation of organelle organization	24	-2.302245	*

Table S3. GSEA analysis on old Smurfs/young Smurfs.

	4 = 0.0400 = 0.4
GO:0032984 protein-containing complex disassembly	15 -2.313278 *
GO:0000086 G2/M transition of mitotic cell cycle	11 -2.327275 *
GO:0044839 cell cycle G2/M phase transition	11 -2.327275 *
GO:0051303 establishment of chromosome localization	11 -2.327275 *
GO:0065004 protein-DNA complex assembly	22 -2.333056 *
GO:0007062 sister chromatid cohesion	11 -2.343420 *
GO:0000380 alternative mRNA splicing, via spliceosome	25 -2.345997 *
GO:0000381 regulation of alternative mRNA splicing, via spliceosome	25 -2.345997 *
GO:0034728 nucleosome organization	25 -2.347394 *
GO:0043161 proteasome-mediated ubiquitin-dependent protein catabolic process	29 -2.349185 *
GO:0031109 microtubule polymerization or depolymerization	11 -2.355110 *
GO:0071826 ribonucleoprotein complex subunit organization	23 -2.366604 *
GO:0016571 histone methylation	13 -2.374419 *
GO:0031056 regulation of histone modification	13 -2.374419 *
GO:0007307 eggshell chorion gene amplification	10 -2.376503 *
GO:0006333 chromatin assembly or disassembly	22 -2.378977 *
GO:0045786 negative regulation of cell cycle	29 -2.382539 *
GO:0072657 protein localization to membrane	19 -2.385931 *
GO:0007052 mitotic spindle organization	31 -2.394738 *
GO:0034660 ncRNA metabolic process	37 -2.397254 *
GO:0010498 proteasomal protein catabolic process	32 -2.399087 *
GO:0033045 regulation of sister chromatid segregation	15 -2.401296 *
GO:1901987 regulation of cell cycle phase transition	30 -2.405488 *
GO:1901990 regulation of mitotic cell cycle phase transition	30 -2.405488 *
GO:0050000 chromosome localization	12 -2.405691 *
GO:0006470 protein dephosphorylation	18 -2.445764 *
GO:0007098 centrosome cycle	15 -2.448630 *
GO:0018022 peptidyl-lysine methylation	14 -2.461362 *
GO:0044772 mitotic cell cycle phase transition	35 -2.468455 *
GO:0044770 cell cycle phase transition	36 -2.487258 *
GO:0051983 regulation of chromosome segregation	16 -2.490788 *
GO:0002181 cytoplasmic translation	23 -2.494502 *
GO:0030261 chromosome condensation	17 -2.506977 *
GO:0043484 regulation of RNA splicing	28 -2.514039 *
GO:0048024 regulation of mRNA splicing, via spliceosome	28 -2.514039 *
GO:1902850 microtubule cytoskeleton organization involved in mitosis	35 -2.514714 *
GO:0006401 RNA catabolic process	17 -2.518757 *
GO:0044093 positive regulation of molecular function	32 -2.524733 *
GO:0006475 internal protein amino acid acetylation	25 -2.530423 *
GO:0016573 histone acetylation	25 -2.530423 *
GO:0018393 internal peptidyl-lysine acetylation	25 -2.530423 *
GO:0018394 peptidyl-lysine acetylation	25 -2.530423 *
GO:0071897 DNA biosynthetic process	19 -2.564043 *
GO:0043044 ATP-dependent chromatin remodeling	19 -2.572069 *
GO:2001251 negative regulation of chromosome organization	15 -2.578708 *
GO:0006479 protein methylation	16 -2.592930 *
GO:0008213 protein alkylation	16 -2.592930 *
GO:0061982 meiosis I cell cycle process	25 -2.638776 *
GO:0006473 protein acetylation	27 -2.647222 *
GO:0006277 DNA amplification	12 -2.652135 *
GO:0050684 regulation of mRNA processing	31 -2.666468 *
GO:0006270 DNA replication initiation	12 -2.680627 *
GO:0007127 meiosis I	17 -2.706746 *
GO:0007088 regulation of mitotic nuclear division	26 -2.717261 *
GO:0031123 RNA 3'-end processing	18 -2.732982 *
GO:1903311 regulation of mRNA metabolic process	33 -2.740358 *
College Trog and with the amount process	55 2.710000

Table S3. GSEA analysis on old Smurfs/young Smurfs.

GO:0006281 DNA repair	31 -2.753201 *
GO:0051783 regulation of nuclear division	27 -2.798919 *
GO:0006323 DNA packaging	34 -2.824701 *
GO:0043543 protein acylation	31 -2.886683 *
GO:0007143 female meiotic nuclear division	19 -2.953082 *
GO:0006352 DNA-templated transcription, initiation	27 -2.965346 *
GO:0006367 transcription initiation from RNA polymerase II promoter	27 -2.965346 *
GO:0006310 DNA recombination	17 -2.968695 *
GO:0032259 methylation	22 -3.031190 *
GO:0043414 macromolecule methylation	22 -3.031190 *
GO:0071103 DNA conformation change	38 -3.039650 *
GO:0045132 meiotic chromosome segregation	20 -3.053654 *
GO:0006261 DNA-dependent DNA replication	34 -3.079054 *
GO:0000070 mitotic sister chromatid segregation	34 -3.244982 *

Table S3. GSEA analysis on old Smurfs/young Smurfs. List of the 125 deregulated GO BP categories (adjusted p-value < 0.05) from the GSEA analysis on the list of old Smurf DEGs. Results are partially illustrated in Fig. 4 of the main text. GO BP category: ID and description of the biological process category; size: number of genes annotated in the category; NES: normalized enriched score; p.adjust: FDR correction on the p-value, 0.01 < * < 0.05.

GO BP category	size	NES	p.adjust
GO:0009617 response to bacterium	44	2.077570	**
GO:0009607 response to biotic stimulus	52	2.010078	**
GO:0043207 response to external biotic stimulus	52	2.010078	**
GO:0051707 response to other organism	52	2.010078	**
GO:0019731 antibacterial humoral response	16	1.954582	**
GO:0042742 defense response to bacterium	35	1.953953	**
GO:0009605 response to external stimulus	67	1.942054	**
GO:0050830 defense response to Gram-positive bacterium	20	1.926474	**
GO:0050829 defense response to Gram-negative bacterium	15	1.925644	**
GO:0098542 defense response to other organism	41	1.893139	**
GO:0006952 defense response	53	1.889830	**
GO:0002376 immune system process	43	1.822360	**
GO:0051704 multi-organism process	75	1.800343	**
GO:0006950 response to stress	90	1.783484	**
GO:0019730 antimicrobial humoral response	23	1.760254	*
GO:0006955 immune response	35	1.755081	*
GO:0006959 humoral immune response	26	1.739773	*
GO:0007292 female gamete generation	11	-2.120223	**
GO:0048477 oogenesis	11	-2.120223	**
GO:0022412 cellular process involved in reproduction in multicellular organism	15	-2.142952	*
GO:0007276 gamete generation	16	-2.202907	*
GO:0007281 germ cell development	13	-2.273476	*

Table S4. GSEA analysis on old/young non- Smurfs. List of the 22 significant deregulated GO BP categories (adjusted p-value < 0.05) from the GSEA analysis on the list of old non-Smurf DEGs. Results are illustrated in Fig. 3a of the main text. GO BP category: ID and description of the biological process category; size: number of genes annotated in the category; NES: normalized enriched score; p.adjust: FDR correction on the p-value, * < 0.05, ** < 0.01.

Human symbol	Flybase	Ageing marker	log2FC (DESeq2)	FDR (DFSeq2)
A2M	FBgn0041180	others	0.2825784	
A2M A2M	FBgn0041181		0.2390048	
ADCY5	FBgn0263131		0.4276719	***
ADCY6	FBqn0263131		0.4276719	
ADCY8	FBgn0024150		0.2249718	
ADH1B	FBgn0011768	genomic instability	-0.2028574	
ADH5	FBgn0011768		-0.2028574	
ADIPOR1		deregulated nutrient sensing	-0.1933041	**
ADIPOR2		deregulated nutrient sensing	-0.1933041	**
AGPAT2	FBgn0026718	3	0.1087853	*
AKT1	FBgn0010379	9	0.1800661	***
AKT2	FBgn0010379	deregulated nutrient sensing	0.1800661	***
AKT3	FBgn0010379	mitochondrial dysfunction	0.1800661	***
ALDH2	FBgn0012036	others	-0.1596763	*
ALDH2	FBgn0051075	others	-0.1747514	**
ALDH9A1	FBgn0051075	others	-0.1747514	**
APP	FBgn0000108	others	0.2690811	*
ARHGAP1	FBgn0036257	others	0.1328514	***
ATG101	FBgn0030960		0.1915968	**
BIRC2	FBgn0015247	NF-кВ related gene	0.0928874	**
BIRC2	FBgn0260635	NF-κB related gene	0.3378861	***
BIRC3	FBgn0015247	NF-κB related gene	0.0928874	**
BIRC3	0	NF-κB related gene	0.3378861	***
BMI1	FBgn0265623	stem cell exhaustion	0.1405622	**
BSCL2	FBgn0040336	deregulated nutrient sensing	-0.1233342	*
CBX7	FBgn0003042	genomic instability	0.1693354	*
CDC42	FBgn0010341	others	0.1101794	**
CDC42	FBgn0014011	others	0.1457145	*
CDK7	FBgn0263237	others	-0.1098824	*
CEBPA	FBgn0005638		0.6106055	
CEBPA	FBgn0036126		0.3134342	
CEBPB	FBgn0005638		0.6106055	
CEBPB	FBgn0036126		0.3134342	
CREB1	0	genomic instability	0.0909339	
CREB3	0	loss of proteostasis	0.3022914	
CREB3L1		loss of proteostasis	0.3022914	
CREB3L2	-	loss of proteostasis	0.3022914	
CREB3L3	0	loss of proteostasis	0.3022914	
CREB3L4	0	loss of proteostasis	0.3022914	
CTNNB1	0	altered intercellular communication	-0.0822029	
CYCS	0	cellular senescence	-0.1161409	
DCTN1	FBgn0036882		0.4812843	
DGAT1	FBgn0004797		-0.3361186	
DGAT1	FBgn0037612		-0.2345767 -0.4170074	
EGFR EGR1	0	cellular senescence cellular senescence		
EGRI EIF4EBP1	FBgn0261560		0.8073477 0.7687897	
EPS8	FBgn0038466		0.3036899	
ERBB2	FBgn0033731		-0.4170074	
FADS1	FBgn0032603		-0.3277650	
FBP1	FBgn0032820		-0.3958523	
FGF21	0	deregulated nutrient sensing	0.4182790	
FGF23	FBgn0014135	· ·	0.4182790	
FGF7	0	senescence-associated secretory phenotype	0.4182790	
FLT1	FBgn0032006		0.2281674	
FOS	0	cellular senescence	0.5257795	
GAPDH	FBgn0001297		-0.2321337	
GAPDH	FBgn0001091		-0.1092674	
3/11 D11	1 Dg110001032		0.1032074	

Table S5. Human genes from Ageing Atlas mapping to Smurf DEGs.

GCK	FBgn0001187	others	-0.6731802	***
GCK	FBgn0042711	others	2.2356232	*
GCLC	FBgn0040319	loss of proteostasis	0.2089071	***
GHRHR	FBgn0260753	deregulated nutrient sensing	-0.2815731	*
GPX4	FBgn0035438	others	0.1982219	
GSTP1	FBgn0010226	epigenetic alterations	-0.0897638	*
HK3	FBgn0001187	others	-0.6731802	***
HK3	FBgn0042711	others	2.2356232	*
HRAS	FBgn0003206	cellular senescence	0.1123010	*
HSPA1A	FBgn0001217	loss of proteostasis	0.6261976	**
HSPA1A		loss of proteostasis	0.2654464	**
HSPA1A	FBgn0001230	loss of proteostasis	2.0776757	***
HSPA1A	FBgn0013275	loss of proteostasis	1.6387273	***
HSPA1A	FBgn0013276	loss of proteostasis	1.5759412	***
HSPA1A	FBgn0013277	loss of proteostasis	2.6948100	***
HSPA1A	-	loss of proteostasis	3.4593216	***
HSPA1A		loss of proteostasis	2.9734542	***
HSPA1A		loss of proteostasis	3.2535126	***
HSPA1B		loss of proteostasis	0.6261976	**
HSPA1B	0	loss of proteostasis	0.2654464	**
HSPA1B	FBgn0001230	loss of proteostasis	2.0776757	***
HSPA1B	-	loss of proteostasis	1.6387273	***
HSPA1B	FBgn0013276	loss of proteostasis	1.5759412	***
HSPA1B	-	loss of proteostasis	2.6948100	***
HSPA1B	FBgn0013278	loss of proteostasis	3.4593216	***
HSPA1B	-	loss of proteostasis	2.9734542	***
HSPA1B	FBgn0051354	loss of proteostasis	3.2535126	***
HSPA8	FBgn0001217	loss of proteostasis	0.6261976	**
HSPA8	-	loss of proteostasis	0.2654464	**
HSPA8		loss of proteostasis	2.0776757	***
HSPA8	FBgn0013275	loss of proteostasis	1.6387273	***
HSPA8		loss of proteostasis	1.5759412	***
HSPA8		loss of proteostasis	2.6948100	***
HSPA8	-	loss of proteostasis	3.4593216	***
HSPA8	-	loss of proteostasis	2.9734542	***
HSPA8		loss of proteostasis	3.2535126	***
HSPA9	-	epigenetic alterations	0.6261976	**
HSPA9	-	epigenetic alterations	0.2654464	**
HSPA9		epigenetic alterations	2.0776757	***
HSPA9		epigenetic alterations	1.6387273	***
HSPA9	-	epigenetic alterations	2.6948100	***
HSPA9	9	epigenetic alterations	3.2535126	***
IGF1R	FBgn0283499		0.4196350	
IKBKG	-	NF-kB related gene	0.1788092	
INSR		cellular senescence	0.4196350	***
IRS1	•	cellular senescence	0.2307325	***
IRS2	0	cellular senescence	0.2307325	***
IRS4	FBgn0024248	altered intercellular communication	0.2307325	***
ITGA2	FBgn0034005	senescence-associated secretory phenotype	0.8217659	**
JUN	FBgn0001291	genomic instability	0.2579762	***
JUND	FBgn0001291	cellular senescence	0.2579762	***
KCNAB3	FBgn0263220	others	0.3437096	***
KL	FBgn0036659	others	1.2840843	***
KRAS	FBgn0003206	others	0.1123010	*
LRP2	FBgn0000119	deregulated nutrient sensing	0.2632794	
LRP2	FBgn0004649	deregulated nutrient sensing	-0.2395728	**
MAPK14	FBgn0015765	stem cell exhaustion	0.1115323	
MAPK14	FBgn0024846	stem cell exhaustion	-0.0729681	*
MMP1	FBgn0033438	senescence-associated secretory phenotype	0.3137892	
MMP1	FBgn0035049	senescence-associated secretory phenotype	0.4040943	
MMP10	FBgn0035049	senescence-associated secretory phenotype	0.4040943	ጥተት

Table S5. Human genes from Ageing Atlas mapping to Smurf DEGs.

1.63.674.0			0.4040040	
MMP12	-	senescence-associated secretory phenotype	0.4040943	***
MMP13	FBgn0035049	0 1 01	0.4040943	***
MMP14		senescence-associated secretory phenotype	0.3137892	*
MMP14	FBgn0035049	senescence-associated secretory phenotype	0.4040943	***
MMP3	FBgn0035049	senescence-associated secretory phenotype	0.4040943	***
MMP7	FBgn0033438	senescence-associated secretory phenotype	0.3137892	*
MMP7	FBgn0035049	senescence-associated secretory phenotype	0.4040943	***
MSRA	FBgn0000565	others	-0.4061796	*
MYC		cellular senescence	0.2856232	***
NFKB1	FBgn0014018	altered intercellular communication	0.6072440	***
NFKB1		altered intercellular communication	0.2692880	***
NFKB2	FBgn0014018	others	0.6072440	***
NFKB2	FBgn0260632	others	0.2692880	***
NFKBIA	FBgn0000250	deregulated nutrient sensing	0.2035375	***
NRAS	FBgn0003206	others	0.1123010	*
NRG1	FBgn0003984	cellular senescence	0.5158643	***
PDGFB	FBgn0030964	cellular senescence	0.1417094	*
PDGFRA	FBgn0032006	altered intercellular communication	0.2281674	**
PDGFRB	FBgn0032006	others	0.2281674	**
PDPK1	FBgn0020386	others	0.1321109	***
PEX5	FBgn0023516		-0.0973273	*
PPP1CA		loss of proteostasis	0.1363220	***
PRDX1	FBgn0033518		0.4193860	*
PRDX1	FBgn0033520		0.3960598	*
PRDX1	FBgn0033521		0.3631889	*
PRDX1	FBgn0038519		-0.1277483	**
PRDX1	FBgn0040308		-0.1101478	*
PRKACA	FBgn0000489		0.3546581	***
PRKACB	-	altered intercellular communication	0.3546581	***
PRKACG	FBgn0000489		0.3546581	***
PTGES		senescence-associated secretory phenotype	-0.2844010	*
PTPN11	FBgn0000382		0.0793331	**
PYCR1	FBgn0015781		-0.1159238	**
RAE1	FBgn0034646	others	-0.1450926	**
RB1CC1	FBgn0037363		0.1100045	**
RELA		altered intercellular communication	0.2692880	***
RELB	U	NF-kB related gene	0.2692880	***
RGN	FBgn0030362	~	-1.1438902	***
RGN				***
	FBgn0038257		-0.5406798	*
RORA SDHC	FBgn0000448		0.4032042 -0.1748854	*
	-	mitochondrial dysfunction		***
SERPINB2	0	senescence-associated secretory phenotype	0.6323413	***
SERPINB2	0	senescence-associated secretory phenotype	0.5292624	***
SERPINB2	FBgn0033113	0 1 01	0.4415197	
SERPINE1	FBgn0002930	cellular senescence	0.4694551	**
SERPINE1	FBgn0024293		-0.3417438	*
SERPINE1	FBgn0028983	cellular senescence	0.6323413	***
SERPINE1	FBgn0028988		0.5292624	***
SERPINE1	O	cellular senescence	0.4415197	***
SERPINE1	FBgn0265137		0.2572622	**
SHC1	FBgn0015296		0.1164009	
SIRT1	FBgn0024291	epigenetic alterations	0.1087477	
SIRT3		mitochondrial dysfunction	0.1087477	
SOD1	FBgn0003462		-0.2014963	
SOD1	FBgn0033631	cellular senescence	-0.1385804	***
SOD1	FBgn0039386	cellular senescence	-0.6108333	*
SOD2	FBqn0010213	others	-0.1498883	***

Table S5. Human genes from Ageing Atlas mapping to Smurf DEGs.

SQSTM1	FBgn0003231	deregulated nutrient sensing	0.2532735	***
TIMP1	FBgn0025879	loss of proteostasis	0.1959727	*
TIMP2	FBgn0025879	senescence-associated secretory phenotype	0.1959727	*
TLR4	FBgn0026760	NF-κB related gene	0.4731579	***
TLR4	FBgn0032095	NF-κB related gene	-3.5641912	**
TNFSF13B	FBgn0033483	NF-κB related gene	-0.5546250	***
TP53	FBgn0039044	others	0.1052510	*
TP63	FBgn0039044	genomic instability	0.1052510	*
TP73	FBgn0039044	genomic instability	0.1052510	*
TRAF2	FBgn0030748	NF-κB related gene	0.2209799	*
TRPV1	FBgn0086693	others	0.4707670	*
TXN	FBgn0040070	others	0.1124031	***
UBB	FBgn0086558	loss of proteostasis	0.0851291	*
ULK1	FBgn0260945	others	0.1710703	***
VEGFA	FBgn0030964	others	0.1417094	*
VEGFC	FBgn0030964	senescence-associated secretory phenotype	0.1417094	*
WNT2	FBgn0004360	senescence-associated secretory phenotype	0.4079440	**
XIAP	FBgn0015247	NF-κB related gene	0.0928874	**
XIAP	FBgn0260635	NF-κB related gene	0.3378861	***
XRCC5	FBgn0041627	telomere attrition	0.1538227	**
ZMPSTE24	FBgn0034175	genomic instability	0.3685906	*

Table S5. Human genes from Ageing Atlas mapping to Smurf DEGs. A total of 134 (unique) human genes are retrieved by overlapping the 500 human genes annotated in the Ageing Atlas to the Smurf DEGs. Note that in the table some human genes are "duplicated" as they map to more than one fly gene, and the opposite. In total, 121 unique fly genes are found. Human symbol: human gene name; Flybase: Drosophila gene, flybase ID; Ageing marker: ageing marker annotated to the human gene (12 in total defined); log2FC (DESeq2): log2FC estimated by DESeq2 in the Smurf/non-Smurf analysis; FDR (DESeq2): adjusted p-value, FDR method, *** FDR < 0.001, ** FDR < 0.01, * FDR < 0.05.

			1 000 (000 0)	======================================
Human symbol		Ageing marker	log2FC (DESeq2)	
PSAT1	FBgn0014427		0.3856655	
A2M	FBgn0041180		0.4872031	
A2M	FBgn0041181		0.6484273	
A2M	FBgn0041182		0.9048751	
ADCY8	0	altered intercellular communication	0.5602218	*
BIRC2	FBgn0260635	NF-кВ related gene	0.2357145	*
BIRC3	FBgn0260635	NF-κB related gene	0.2357145	*
EEF1A1	FBgn0000557	genomic instability	0.6132644	***
GCLC	FBgn0040319	loss of proteostasis	0.2589307	***
HSPA1A	FBgn0001217	loss of proteostasis	0.9303240	*
HSPA1A	FBgn0001230	loss of proteostasis	0.5126339	*
HSPA1A	FBgn0013278	loss of proteostasis	1.0812546	*
HSPA1B	FBgn0001217	loss of proteostasis	0.9303240	*
HSPA1B	FBgn0001230	loss of proteostasis	0.5126339	*
HSPA1B	FBgn0013278	loss of proteostasis	1.0812546	*
HSPA8	FBgn0001217	loss of proteostasis	0.9303240	*
HSPA8	FBgn0001230	loss of proteostasis	0.5126339	*
HSPA8	FBgn0013278	loss of proteostasis	1.0812546	*
HSPA9	FBgn0001217	epigenetic alterations	0.9303240	*
HSPA9	FBgn0001230	epigenetic alterations	0.5126339	*
KL	FBgn0036659	others	0.7809426	**
LRP2	FBgn0000119	deregulated nutrient sensing	0.3253559	*
MAPK14	FBgn0024846	stem cell exhaustion	-0.1847465	*
NFKB1	FBgn0014018	altered intercellular communication	0.4236755	*
NFKB2	FBgn0014018	others	0.4236755	*
PRDX1	FBgn0033518	others	0.5401910	*
PRDX1	FBgn0033521	others	0.5863338	***
PTGS2	FBgn0038469	altered intercellular communication	-3.8056281	*
SERPINB2	FBgn0028988	senescence-associated secretory phenotype	0.6029126	**
SERPINE1	FBgn0002930	cellular senescence	0.8500831	**
SERPINE1	FBgn0028988	cellular senescence	0.6029126	**
SERPINE1	FBgn0033574	cellular senescence	0.8299441	***
SQSTM1	FBgn0003231	deregulated nutrient sensing	0.1530703	*
TIMP1	FBgn0025879	loss of proteostasis	0.3850303	*
TIMP2	-	senescence-associated secretory phenotype	0.3850303	*
WNT2		senescence-associated secretory phenotype		*
XIAP	FBgn0260635	NF-κB related gene	0.2357145	*

Table S6. Human genes from Ageing Atlas mapping to non-Smurf DEGs. A total of 25 (unique) human genes are retrieved by overlapping the 500 human genes annotated in the Ageing Atlas to the old non-Smurf DEGs. Note that in the table some human genes are "duplicated" as they map to more than one fly gene, and the opposite. In total, 24 unique fly genes are found. Human symbol: human gene name; Flybase: Drosophila gene, flybase ID; Ageing marker: ageing marker annotated to the human gene (12 in total defined); log2FC (DESeq2): log2FC estimated by DESeq2 in the Smurf/non-Smurf analysis; FDR (DESeq2): adjusted p-value, FDR method, *** FDR < 0.001, * FDR < 0.05.

Symbol	log2FC	Effect	% effect	Method	Reference
AhcyL1	0.0501094		13	RNA interference	Parkhitko et al. (2016)
Akt1	0.1800661		11	RNA interference	Biteau et al. (2010)
alpha-Man-I	0.2894635	increase	39	RNA interference, Mutations	Liu et al. (2009)
Atg1	0.1710703		25	Overexpression	Ulgherait et al. (2014)
Atg8a	0.2575349		56	Overexpression	Simonsen et al. (2008)
Atg8a	0.2575349		50	Overexpression	Park et al. (2009)
Atg8a			not reported	-	Simonsen et al. (2007)
ATPCL	-0.2800028		32	Mutation	Peleg et al. (2016)
Cbs	-0.1084810	increase	43	Overexpression	Kabil et al. (2011)
Cct1	0.4639772	increase	8	Overexpression	Landis et al. (2003)
cert	0.2351725	decrease	not reported	Mutation	Rao et al. (2007)
CG14207	0.3129048	increase	5	Overexpression	Vos et al. (2016)
CG2789	0.5879365	increase	27	RNA interference	Lin et al. (2014)
CG5389	1.6013534	increase	11	RNA interference	Copeland et al. (2009)
CG9172	-0.1540786	increase	46	RNA interference	Copeland et al. (2009)
CG9940	-0.0911821	increase	not reported	Overexpression	Wen et al. (2016)
chico	0.2307325	increase	48	Knockout	Clancy et al. (2001)
Coq2	0.1882344	increase	31	Mutation	Liu et al. (2011)
dm	0.2856232	decrease	47	Overexpression	Greer et al. (2013)
Eip71CD	-0.4061796		70	Overexpression	Ruan et al. (2002)
Eip71CD	-0.4061796	increase	20	Overexpression	Chung et al. (2010)
elav	0.3066138	decrease	66	Mutation	Toba et al. (2010)
esg	0.3090631	increase	21	Mutation	Magwire et al. (2010)
fabp	-0.2070041	increase	81	Overexpression	Lee et al. (2012)
Gadd45	1.2993997	increase	77	Overexpression	Plyusnina et al. (2011)
Gclc	0.2089071	increase	50	Overexpression	Orr et al. (2005)
GlyP	-0.1294687	increase	17	Post developmental RNA interference	Bai et al. (2013)
GlyS	-0.1051441	increase	10	Post developmental RNA interference	
Gnmt	0.9499783	increase	not reported	Overexpression	Obata and Miura (2015)
Gpdh	-0.4076777	increase	20	Mutation	Talbert et al. (2015)
Gr63a	3.0206439	increase	30	Deletion	Poon et al. (2010)
GstS1	-0.0897638	increase	33	Overexpression	Simonsen et al. (2008)
Hex-C	-0.6731802	increase	not reported	Mutation	Talbert et al. (2015)
hk	0.1031540	decrease	not reported	Mutation	Simonsen et al. (2007)
Hsc70-3	0.2654464	increase	27	Overexpression	Simonsen et al. (2008)
Hsp27	-0.2242296	increase	30	Overexpression	Wang et al. (2004)
Hsp67Bc	1.4857872	increase	6	Overexpression	Vos et al. (2016)
Hsp68	2.0776757	increase	not reported	Overexpression	Wang et al. (2003)
Hsp68	2.0776757	increase	20	Overexpression	Biteau et al. (2010)
Hsp70Ba	2.6948100	decrease	30	Overexpression	Yang and Tower (2009)
Hsp70Ba	3.4593216	decrease	30	Overexpression	Yang and Tower (2009)
Hsp70Ba	2.9734542	decrease	30	Overexpression	Yang and Tower (2009)
Hsp70Ba	2.6948100	increase	25	Epigenetic modification	Zhao et al. (2005)
Hsp70Ba	3.4593216	increase	25	Epigenetic modification	Zhao et al. (2005)
Hsp70Ba	2.9734542	increase	25	Epigenetic modification	Zhao et al. (2005)
Ilk	0.0852463	increase	63	Mutation	Nishimura et al. (2014)
ImpL2	0.9210441	increase	23	Overexpression	Alic et al. (2011)
InR	0.4196350	increase	85	Mutation	Tatar et al. (2001)
Ire1	0.2114089	decrease	not reported	RNA interference	Luis et al. (2016)
Keap1	0.2687497	increase	10	Mutations	Sykiotis and Bohmann (2008)
l(3)neo18	-0.1273860	increase	24	RNA interference	Copeland et al. (2009)
Lnk	0.1863814	increase	18	Mutations	Slack et al. (2010)
Lnk	0.1863814	increase	33	Mutation	Song et al. (2010)
loco	0.5667916	increase	20	Knockout	Lin et al. (2011)
loco	0.5667916	decrease	20	Overexpression	Lin et al. (2011)
Men	-0.1589187	increase	45	Overexpression	Kim et al. (2015)
Mpk2	0.1115323	decrease	40	Mutation	Vrailas-Mortimer et al. (2011)

Table S7. Drosophila longevity genes (GenAge) mapping to Smurf DEGs.

Mrp4	0.4862356	decrease	47	Mutation	Huang et al. (2014)
Mrp4	0.4862356	increase	16	Overexpression	Huang et al. (2014)
MTF-1	0.1319676	increase	40	Overexpression	Bahadorani et al. (2010)
mth	-0.1491213	increase	35	Mutation	Lin et al. (1998)
mth	-0.1491213	increase	21	Overexpression	Gimenez et al. (2013)
mth	-0.1491213	increase	29	RNA interference	Gimenez et al. (2013)
mys	0.3599439	increase	20	Mutation	Goddeeris et al. (2003)
mys	0.3599439	increase	44	Mutation	Nishimura et al. (2014)
Naam	0.3628227	increase	30	Overexpression	Balan et al. (2008)
ND75	-0.2946195	increase	15	RNA interference	Owusu-Ansah et al. (2013)
Nmdmc	1.1286479	increase	120	Overexpression	Yu et al. (2015)
NPF	0.3933477	decrease	25	Overexpression	Gendron et al. (2014)
p38b	-0.0729681	decrease	60	Mutation	Vrailas-Mortimer et al. (2011)
p53	0.1052510	increase	58	Dominant negative mutation	Bauer et al. (2005)
p53	0.1052510	increase	19	Mutation	Bauer et al. (2007)
Prp19	-0.0842327	increase	25	Overexpression	Garschall et al. (2017)
puc	0.3431643	increase	not reported	Mutation	Wang et al. (2003)
Rbp9	0.1960852	decrease	33	Mutation	Toba et al. (2010)
ry	-0.4315601	decrease	not reported	Mutation	Simonsen et al. (2007)
SdhC	-0.1748854	decrease	22	Dominant negative mutation	Tsuda et al. (2007)
Sir2	0.1087477	increase	57	Overexpression	Rogina and Helfand (2004)
Sir2	0.1087477	decrease	30	RNA interference	Kusama et al. (2006)
Sir2	0.1087477	increase	13	Overexpression	Hoffmann et al. (2013)
Sod	-0.2014963	increase	33	Overexpression	Orr and Sohal (1994)
Sod	-0.2014963	decrease	not reported	Mutation	Phillips et al. (1989)
Sod	-0.2014963	increase	48	Overexpression	Sun and Tower (1999)
Sod2	-0.1498883	decrease	not reported	RNA interference	Kirby et al. (2002)
Sod2	-0.1498883	increase	20	Overexpression	Curtis et al. (2007)
teq	-0.5378343	increase	31	Mutation	Huang et al. (2015)
Thor	0.7687897	increase	20	Overexpression	Demontis and Perrimon (2010)
Thor	0.7687897	increase	22	Overexpression	Zid et al. (2009)
Trx-2	0.1124031	decrease	not reported	Mutation	Svensson and Larsson (2007)
Tsp42Ef	0.2942678	increase	18	Post developmental RNA interference	Bai et al. (2013)
Zw	-0.2204243	increase	38	Overexpression	Legan et al. (2008)

Table S7. Drosophila longevity genes (GenAge) mapping to Smurf DEGs. Drosophila longevity genes (annotated in GenAge) mapping to Smurf DEGs. A total of 58 unique genes are identified. Note that the table contains duplicated gene symbols as multiple experiments can be reported for one gene. Symbol: Drosophila gene symbol; $log_2FC: log_2FC: murf/non-Smurfs estimated by DESeq2; effect: effect of the alteration lifespan; % effect: change in mean lifespan, in %; method: type of experiment performed; reference: reference of the study.$

Symbol	log2FC	Effect	% effect	Method	Reference
Atg8a	0.3749200	increase	56	Overexpression	Simonsen et al. (2008)
Atg8a	0.3749200	increase	50	Overexpression	Park et al. (2009)
Atg8a	0.3749200	decrease	not reported	Mutation	Simonsen et al. (2007)
cert	0.2154223	decrease	not reported	Mutation	Rao et al. (2007)
CG14207	0.3336870	increase	5	Overexpression	Vos et al. (2016)
Gclc	0.2589307	increase	50	Overexpression	Orr et al. (2005)
Gnmt	3.3567578	increase	not reported	Overexpression	Obata and Miura (2015)
hk	0.1924967	decrease	not reported	Mutation	Simonsen et al. (2007)
Hsp68	0.5126339	increase	not reported	Overexpression	Wang et al. (2003)
Hsp68	0.5126339	increase	20	Overexpression	Biteau et al. (2010)
Hsp70Ba	1.0812546	decrease	30	Overexpression	Yang and Tower (2009)
Hsp70Ba	1.0812546	increase	25	Epigenetic modification	Zhao et al. (2005)
Men	0.2999653	increase	45	Overexpression	Kim et al. (2015)
Nmdmc	0.9771817	increase	120	Overexpression	Yu et al. (2015)
p38b	-0.1847465	decrease	60	Mutation	Vrailas-Mortimer et al. (2011)

Table S8. Drosophila longevity genes (GenAge) mapping to non-Smurf DEGs. Drosophila longevity genes (annotated in GenAge) mapping to old non-Smurf DEGs. A total of 11 unique genes are identified. Note that the table contains duplicated gene symbols as multiple experiments can be reported for one gene. Symbol: Drosophila gene symbol; $\log_2 FC$: $\log_2 FC$ 20 days non-Smurf/40 days non-Smurfs estimated by DESeq2; effect: effect of the alteration lifespan; % effect: change in mean lifespan, in %; method: type of experiment performed; reference: reference of the study.

Flybaco	clopo	n-valuo	P cauarod	symbol	DFCs overlan
Flybase	slope	p-value	R squared	Symbol	DEGs overlap
FBgn0041579	1.636	8.690e-03	0.578	-	Smurf & old non-Smurf
FBgn0033830	1.582	4.600e-04	0.733		Smurf & old non-Smurf
FBgn0038074	1.471	3.300e-04	0.853		Smurf & old non-Smurf
FBgn0038299	0.999	1.960e-03	0.687	Spn88Eb	Smurf & old non-Smurf
FBgn0030310	0.972	2.450e-03	0.541	PGRP-SA	old non-Smurf
FBgn0040972	0.940	1.463e-02	0.541	CG16978	Smurf & old non-Smurf
FBgn0039452	0.877	4.100e-04	0.786	CG14245	Smurf & old non-Smurf
FBgn0033927	$0.868 \\ 0.841$	4.900e-04	0.722 0.674		Smurf & old non-Smurf Smurf & old non-Smurf
FBgn0033926 FBgn0038652	0.780	1.990e-03 1.060e-03	0.674	CG7720	Smurf & old non-Smurf
FBgn0034647	0.780	3.390e-03	0.578	pirk	Smurf & old non-Smurf
FBgn0032387	0.721	6.600e-03	0.505	CG16965	old non-Smurf
FBgn0040759	0.668	6.480e-03	0.548	CG10303 CG13177	Smurf & old non-Smurf
FBgn0033875	0.667	6.060e-03	0.538	CG6357	old non-Smurf
FBgn0031562	0.655	1.215e-02	0.541	CG3604	Smurf & old non-Smurf
FBgn0036951	0.627	1.619e-02	0.505	CG7017	old non-Smurf
FBgn0039593	0.626	1.821e-02	0.551	Sid	Smurf & old non-Smurf
FBgn0039656	0.615	2.400e-03	0.576	-	old non-Smurf
FBgn0030309	0.594	1.680e-03	0.556	CG1572	old non-Smurf
FBgn0033593	0.585	3.748e-02		Listericin	Smurf & old non-Smurf
FBgn0033397	0.581	2.000e-04	0.810	Cyp4p3	Smurf & old non-Smurf
FBgn0041182	0.576	1.029e-02	0.601	Tep2	old non-Smurf
FBgn0039075	0.572	1.830e-03	0.547	CG4393	old non-Smurf
FBgn0033134	0.568	6.100e-04	0.614	Tsp42El	old non-Smurf
FBgn0035176	0.552	1.000e-02	0.746	CG13905	Smurf & old non-Smurf
FBgn0051769	0.552	2.229e-02	0.519	CG31769	old non-Smurf
FBgn0038088	0.520	3.800e-04	0.741	CG10126	Smurf & old non-Smurf
FBgn0267130	0.513	3.800e-03	0.575	-	Smurf & old non-Smurf
FBgn0010424	0.510	1.550e-03	0.704	TpnC73F	Smurf & old non-Smurf
FBgn0050091	0.502	8.240e-03	0.782	CG30091	old non-Smurf
FBgn0038660	0.484	1.770e-03	0.575	CG14291	old non-Smurf
FBgn0035607	0.478	4.730e-03	0.578		old non-Smurf
FBgn0054043	0.474	1.905e-02	0.549	CG34043	Smurf & old non-Smurf
FBgn0250871	0.459	7.650e-03	0.555	pot	Smurf & old non-Smurf
FBgn0041710	0.458	2.236e-02	0.571	yellow-f	Smurf & old non-Smurf
FBgn0020414	0.451	2.120e-03	0.680	Idgf3	Smurf & old non-Smurf
FBgn0262146	0.448	1.190e-03	0.576	MtnE	Smurf & old non-Smurf
FBgn0053258	0.430	2.084e-02	0.620	CG33258	Smurf & old non-Smurf
FBgn0035300	0.427			CG1139	old non-Smurf
FBgn0033130		9.400e-04	0.666	Tsp42Ei	Smurf & old non-Smurf
FBgn0038465	0.417	2.791e-02	0.624		Smurf & old non-Smurf
FBgn0262717	0.417	1.219e-02	0.645	Skeletor	Smurf & old non-Smurf
FBgn0013305	0.413	2.220e-03	0.555	Nmda1 Cyp309a2	Smurf & old non-Smurf old non-Smurf
FBgn0041337	0.393 0.392	2.934e-02 1.156e-02	0.543 0.606	Cyp309a2 CG10383	Smurf & old non-Smurf
FBgn0032699 FBgn0085244	0.392	1.136e-02 1.274e-02	0.543	CG10363 CG34215	Smurf & old non-Smurf
FBgn0041181	0.392	1.274e-02 1.264e-02	0.543	Tep3	Smurf & old non-Smurf
FBgn0262003	0.381	2.086e-02	0.571	CG42821	Smurf & old non-Smurf
FBgn0033574	0.373	2.900e-02	0.635	Spn47C	old non-Smurf
FBgn0037447	0.373	2.210e-03	0.805	Neurochondrin	Smurf & old non-Smurf
FBgn0033518	0.371	3.080e-03	0.545	Prx2540-2	Smurf & old non-Smurf
FBgn0038160	0.360	1.984e-02	0.519		Smurf & old non-Smurf
FBgn0050082	0.358	1.850e-03	0.539		none
FBgn0033521	0.356	3.300e-04	0.712	CG12896	Smurf & old non-Smurf
FBgn0043806	0.352	2.900e-03	0.681	CG32032	old non-Smurf
FBgn0085354	0.352	6.150e-03	0.563	CG34325	old non-Smurf
FBgn0025687	0.350	3.082e-02	0.550	LKRSDH	Smurf & old non-Smurf
FBgn0036461	0.347	7.170e-03	0.704	Zip71B	Smurf & old non-Smurf
FBgn0037796	0.343	2.157e-02	0.568		Smurf & old non-Smurf

Table S9. Linear regression on non-Smurfs gene expression (time dependence).

FBgn0039008	0.337	1.716e-02	0.615	CG6972	Smurf & old non-Smurf
FBgn0027563	0.326	1.651e-02	0.588	CG9631	Smurf & old non-Smurf
FBgn0029639	0.323	9.720e-03	0.535	CG14419	old non-Smurf
FBgn0033592	0.320	4.870e-03	0.527	CG13215	Smurf & old non-Smurf
FBgn0013771	0.316	3.480e-03	0.625	Cyp6a9	old non-Smurf
FBgn0031432	0.316	2.033e-02	0.770	Cyp309a1	Smurf & old non-Smurf
FBqn0039094	0.309	3.157e-02	0.611	CG10184	old non-Smurf
FBgn0032908	0.300	1.230e-03	0.698	CG9270	old non-Smurf
FBgn0033289	0.297	2.110e-03	0.698	CG2121	Smurf & old non-Smurf
FBgn0039809	0.297	1.146e-02	0.546	CG15547	old non-Smurf
FBgn0262057	0.297	4.093e-02	0.504	Spn77Ba	Smurf & old non-Smurf
FBgn0033110	0.296	1.230e-03	0.711	CG9447	Smurf & old non-Smurf
FBgn0250835	0.293	7.850e-03	0.590	CG15394	Smurf & old non-Smurf
FBgn0035975	0.287	3.610e-03	0.555	PGRP-LA	Smurf & old non-Smurf
FBgn0033928	0.285	3.890e-03	0.586		Smurf & old non-Smurf
FBgn0033520	0.283	7.800e-04	0.609	Prx2540-1	Smurf
FBgn0015037	0.282	4.294e-02	0.667	Cyp4p1	Smurf & old non-Smurf
FBgn0015589	0.278	1.560e-03	0.556	Apc	Smurf
FBgn0032900	0.278	1.440e-02	0.634	_	Smurf & old non-Smurf
FBgn0038651	0.270	2.540e-03	0.537	Epg5	none
FBgn0051793	0.269	3.180e-03	0.700	CG31793	old non-Smurf
FBgn0031547	0.266	2.780e-03	0.652	Sr-CIV	Smurf & old non-Smurf
FBgn0050197	0.265	2.760e-03 2.564e-02	0.590	CG30197	old non-Smurf
0	0.263		0.612	SREBP	Smurf & old non-Smurf
FBgn0261283		1.228e-02			
FBgn0259697	0.263	7.950e-03	0.717	nvd	old non-Smurf
FBgn0023129	0.261	6.410e-03	0.767	aay	Smurf & old non-Smurf
FBgn0036449	0.261	9.690e-03	0.539	bmm	old non-Smurf
FBgn0039310	0.261	3.849e-02		CG11878	old non-Smurf
FBgn0284244	0.254	2.510e-03		l(2)k05911	none
FBgn0040236	0.253	3.730e-03	0.515	c11.1	Smurf
FBgn0266369	0.253	3.860e-03	0.566	Mtp	Smurf & old non-Smurf
FBgn0032079	0.250	9.560e-03	0.535	CG31886	old non-Smurf
FBgn0265376	0.249	1.710e-03	0.665	-	old non-Smurf
FBgn0033778	0.246	3.170e-03	0.708	CG3790	none
FBgn0053469	0.245	3.530e-03	0.617	CG33469	Smurf & old non-Smurf
FBgn0026255	0.242	1.303e-02	0.682	clumsy	old non-Smurf
FBgn0031910	0.240	3.728e-02	0.615	CG15818	old non-Smurf
FBgn0025881	0.239	1.580e-03	0.555	-	none
FBgn0032601	0.237			yellow-b	Smurf & old non-Smurf
FBgn0036640	0.237	3.280e-03	0.725	nxf2	Smurf
FBgn0038000	0.237	7.440e-03	0.700	CG10014	old non-Smurf
FBgn0040212	0.236	1.270e-03	0.630	Dhap-at	none
FBgn0026415	0.231	3.652e-02	0.511	Idgf4	old non-Smurf
FBgn0262107	0.230	2.340e-03	0.621	-	Smurf & old non-Smurf
FBgn0030749	0.227	3.450e-03	0.672	AnxB11	Smurf & old non-Smurf
FBgn0035157	0.227	9.160e-03	0.535	CG13894	Smurf & old non-Smurf
FBgn0011596	0.225	6.740e-03	0.546	fzo	none
FBgn0037560	0.225	2.669e-02	0.528	-	Smurf & old non-Smurf
FBgn0000715	0.219	9.410e-03	0.759	-	Smurf & old non-Smurf
FBgn0036053	0.219	3.330e-03	0.507	iPLA2-VIA	Smurf
FBgn0036448	0.218	9.460e-03	0.540	mop	none
FBgn0050106	0.214	1.163e-02	0.535	CCHa1-R	old non-Smurf
FBgn0031957	0.213	2.750e-03	0.581	TwdlE	Smurf
FBgn0037515	0.212	5.700e-03	0.678	Sp7	old non-Smurf
FBgn0264989	0.212	2.553e-02	0.503	CG44141	old non-Smurf
FBgn0013685	0.211	1.710e-03	0.587	ND6	none
FBgn0260794	0.211	1.485e-02	0.569		none
FBgn0053289	0.211	1.912e-02	0.605	-	old non-Smurf
FBgn0266974	0.210	6.200e-04	0.620		none
1 Dg1102003/4	0.210	J.2006-04	0.020		Holic

Table S9. Linear regression on non-Smurfs gene expression (time dependence).

			0.000		
FBgn0267073	0.208	1.098e-02	0.692	-	Smurf & old non-Smurf
FBgn0011278	0.205	9.900e-04		lbe	none
FBgn0032451	0.204	4.300e-04		•	Smurf
FBgn0034400	0.204	3.510e-03		CG15099	Smurf
FBgn0035798		4.970e-02	0.605		old non-Smurf
FBgn0036364	0.204	2.682e-02		CG14109	Smurf & old non-Smurf
FBgn0038809	0.204	3.330e-03		CG16953	none
FBgn0050022	0.204	3.732e-02	0.511	CG30022	Smurf & old non-Smurf
FBgn0032689	0.202	2.990e-03	0.563	CG10413	none
FBgn0034664	0.202	3.865e-02	0.536	CG4377	old non-Smurf
FBgn0037279	0.202	1.000e-04	0.702	CG1129	none
FBgn0050438	0.202	4.681e-02	0.542	CG30438	old non-Smurf
FBgn0264876	0.202	4.350e-03	0.536	-	none
FBgn0029995	0.201	5.100e-04	0.627	CG2256	Smurf
FBgn0030159	0.201	3.999e-02	0.513	CG9689	Smurf & old non-Smurf
FBgn0035498	0.197	2.430e-03	0.521	Fit1	Smurf
FBgn0052313	0.192	4.660e-03	0.591	CG32313	Smurf
FBgn0038804	0.189	5.100e-04	0.695	CG10877	old non-Smurf
FBgn0261570	0.186	1.254e-02	0.532	CG42684	none
FBgn0035589	0.184	1.200e-04	0.755	CHMP2B	Smurf & old non-Smurf
FBgn0032139	0.183	1.541e-02	0.679	CG13116	Smurf & old non-Smurf
FBgn0058354	0.183	2.160e-03	0.537	-	none
FBgn0034221	0.180	6.890e-03	0.646	CG10764	old non-Smurf
FBgn0034513	0.180	3.397e-02	0.564	CG13423	old non-Smurf
FBgn0004897	0.179	1.780e-03	0.669	fd96Ca	none
FBgn0027569	0.179	2.600e-04	0.725	cert	Smurf & old non-Smurf
FBgn0004648	0.178	1.490e-03	0.573	svr	none
FBgn0033889	0.178	2.380e-03	0.731	CG6701	none
FBgn0035097	0.173	2.340e-03	0.607	CG13405	none
FBgn0033063	0.171	1.700e-04	0.752	CG14589	none
FBgn0037683	0.170	1.949e-02	0.732	CG18473	Smurf & old non-Smurf
FBgn0032337	0.168	1.172e-02	0.596	AstCC	none
FBgn0030994	0.167	1.980e-03	0.567	HP1D3csd	none
FBgn0260632	0.167	5.680e-03	0.506	dl	Smurf
FBgn0039266	0.166	1.803e-02	0.626	CG11791	Smurf & old non-Smurf
FBgn0013767	0.164	3.690e-03	0.798	Crz	old non-Smurf
FBgn0033476	0.164	9.650e-03	0.604		Smurf & old non-Smurf
FBgn0036567		6.900e-04		CG13074	none
FBgn0266810		3.172e-02	0.611	-	Smurf & old non-Smurf
FBgn0034184	0.161	1.390e-03		CG9646	Smurf
FBgn0060292	0.161	1.802e-02	0.504	-	none
FBgn0035875	0.156	1.532e-02	0.528	Cpr66Cb	none
FBgn0266668	0.156	2.900e-03	0.657	Exo84	Smurf & old non-Smurf
FBgn0030452	0.153	2.823e-02	0.540	MFS10	old non-Smurf
FBgn0052071	0.153	1.229e-02	0.541	CG32071	none
FBgn0263118	0.151	1.656e-02	0.805		Smurf & old non-Smurf
				tx	Smurf
FBgn0036956	0.149	3.560e-02	0.501	CG13813	
FBgn0038455	0.149	1.700e-03	0.644	CG14907	Smurf & old non-Smurf
FBgn0051105	0.149	1.276e-02		ppk22	Smurf
FBgn0037541	0.148	1.868e-02	0.573	CG2747	none
FBgn0003231	0.147	1.200e-03	0.629	ref(2)P	Smurf & old non-Smurf
FBgn0038320	0.147	1.770e-03	0.659	Sra-1	none
FBgn0266709	0.146	1.723e-02	0.556	Zmynd10	none
FBgn0267708	0.143	1.164e-02	0.508	-	none
FBgn0027843	0.141	1.833e-02	0.652	CAH2	old non-Smurf
FBgn0261983	0.141	1.700e-04	0.689	l(2)gd1	Smurf
FBgn0031897	0.139	1.311e-02	0.593	CG13784	Smurf

Table S9. Linear regression on non-Smurfs gene expression (time dependence).

FBgn0051044	0.138	9.780e-03	0.619	-	Smurf
FBgn0267936	0.138	4.150e-03	0.533	-	none
FBgn0259683		4.424e-02	0.512		none
FBgn0033814	0.133	1.775e-02	0.599	CG4670	Smurf & old non-Smurf
FBgn0027505	0.132	4.390e-03		Rab3-GAP	none
FBgn0284252	0.132	2.900e-04	0.681	Letm1	Smurf & old non-Smurf
FBgn0010909	0.131	9.110e-03	0.549	msn	Smurf
FBgn0031037	0.130	2.362e-02		CG14207	Smurf & old non-Smurf
FBgn0260655	0.128	4.402e-02		l(3)76BDm	none
FBgn0013987	0.127	1.850e-03	0.546	MAPk-Ak2	Smurf
FBgn0034182	0.127	7.410e-03	0.580	SmydA-7	Smurf
FBgn0040319	0.125	1.522e-02	0.702	Gclc	Smurf & old non-Smurf
FBgn0033755	0.124	6.790e-03	0.589		none
FBgn0266186	0.120	1.070e-03		Vamp7	none
FBgn0031356	0.114	1.470e-03	0.555	CG17660	Smurf
FBgn0259227	0.113	1.455e-02	0.535	CG42327	none
FBgn0035137	0.112	1.538e-02	0.554	CG1233	Smurf & old non-Smurf
FBgn0027554	0.111	4.101e-02		CG8042	Smurf & old non-Smurf
FBgn0051618	0.111	6.780e-03		His2A:CG31618	none
FBgn0033735	0.107	3.043e-02	0.520	CG8525	none
FBgn0050372	0.107	7.910e-03		Asap	Smurf
FBgn0001202	0.104	6.700e-03	0.684		Smurf & old non-Smurf
FBgn0028515	0.104	2.760e-03		EndoGI	Smurf
FBgn0035165	0.101	1.300e-03	0.699	CG13887	Smurf & old non-Smurf
FBgn0038110	0.094	1.084e-02	0.625	CG8031	Smurf
FBgn0038535	0.089	2.125e-02	0.593	alt	none
FBgn0265001	0.089	3.002e-02	0.503	ppk18	none
FBgn0036666	0.086	1.508e-02	0.621	TSG101	Smurf & old non-Smurf
FBgn0027598	0.084	7.800e-03	0.606	cindr	Smurf
FBgn0025865	0.081	2.559e-02	0.506	Cortactin	none
FBgn0001941	0.072	5.780e-03	0.522	ifc	Smurf
FBgn0029657	0.069 -0.075	2.251e-02 4.315e-02	0.741	CG12535	none
FBgn0029502 FBgn0034931	-0.073	4.050e-02		COQ7 CG2812	none
FBgn0035586	-0.082	1.494e-02	0.609		none
FBgn0031148	-0.082	3.054e-02	0.513		none Smurf
	-0.095	2.630e-02		eIF2Bepsilon	old non-Smurf
FBgn0023512 FBgn0265540	-0.093	2.383e-02	0.550 0.579	-	none
FBgn0050359	-0.103	4.574e-02	0.650	- Mal-A5	Smurf & old non-Smurf
FBgn0020258	-0.103	3.522e-02	0.568	ppk	none
FBgn0010213		8.210e-03		Sod2	Smurf
FBgn0024846	-0.111	2.382e-02	0.526		Smurf & old non-Smurf
FBgn0035155		4.582e-02	0.631	RabX6	old non-Smurf
FBgn0260234	-0.119	1.391e-02	0.505	Xport-B	none
FBgn0015527	-0.113	2.122e-02	0.632	peng	Smurf & old non-Smurf
FBgn0027348	-0.124	2.280e-03	0.574		Smurf & old non-smurr
FBgn0033229		4.700e-04		CG12822	none
FBgn0265177	-0.126	2.964e-02		CG44242	old non-Smurf
FBgn0020248		4.160e-03	0.539		none
FBgn0051244	-0.134	2.746e-02		CG31244	none
FBgn0032444	-0.135	3.560e-02	0.531		Smurf & old non-Smurf
FBgn0086665	-0.139	4.589e-02	0.505	-	none
FBgn0030786	-0.133	3.522e-02	0.502	mRpL22	Smurf & old non-Smurf
FBgn0033907	-0.142	2.423e-02	0.507	mRpS16	none
FBgn0027525	-0.144	1.073e-02	0.558	LTV1	none
FBgn0034808	-0.148	5.140e-03	0.621	CG9896	Smurf & old non-Smurf
FBgn0265578	-0.149	2.103e-02		CG44405	none
FBgn0038017	-0.156	4.171e-02		CG4115	none
FBgn0267809	-0.157	6.460e-03	0.553		none
- 3			5.550		

Table S9. Linear regression on non-Smurf gene expression (time dependence).

FBgn0034923	-0.159	5.660e-03	0.584	Upf3	Smurf & old non-Smurf
FBgn0086039	-0.163	4.430e-03	0.562	-	none
FBgn0267691	-0.163	5.130e-03	0.552	-	none
FBgn0086447	-0.166	1.010e-02		l(2)37Cg	none
FBgn0085192	-0.167	3.141e-02	0.548	CG34163	old non-Smurf
FBgn0031692	-0.192	2.430e-03	0.705	TpnC25D	none
FBgn0052639	-0.193	3.930e-03	0.507	CG32639	none
FBgn0031032	-0.195	9.880e-03	0.521	CG14204	none
FBgn0034323	-0.196	1.310e-03	0.625	CG18537	none
FBgn0030011	-0.201	2.400e-04	0.670	Gbeta5	none
FBgn0029885	-0.202	2.290e-03	0.524	CG3224	none
FBgn0033515	-0.205	1.400e-03	0.564	Ir47a	none
FBgn0266404	-0.206	4.070e-03	0.537	-	none
FBgn0030759	-0.207	2.500e-03	0.552	CG13014	none
FBgn0267191	-0.207	2.223e-02	0.509	-	old non-Smurf
FBgn0030004	-0.208	2.240e-03	0.525	CG10958	none
FBgn0031814	-0.213	5.210e-03	0.507	retm	none
FBgn0032645	-0.213	6.000e-04	0.670	CG15142	none
FBgn0037186	-0.218	3.544e-02	0.542	CG11241	none
FBgn0260484	-0.219	3.780e-03	0.566	HIP-R	Smurf & old non-Smurf
FBgn0038315	-0.231	1.450e-03	0.601	CG14866	none
FBgn0262954	-0.232	6.220e-03	0.531	Rpb12	old non-Smurf
FBgn0036575	-0.234	2.546e-02	0.629		Smurf & old non-Smurf
FBgn0030331	-0.235	1.666e-02	0.522	CG15221	Smurf & old non-Smurf
FBgn0031695	-0.240	6.670e-03	0.500	Cyp4ac3	Smurf
FBgn0037788	-0.244	1.470e-03	0.574	CG3940	Smurf
FBgn0040775	-0.247	5.320e-03	0.626	CG12158	Smurf & old non-Smurf
FBgn0039840	-0.249	2.573e-02	0.635	pHCl-2	Smurf
FBgn0004372	-0.257	9.380e-03	0.535	aly	none
FBgn0036362	-0.276	3.090e-03	0.533	CG10725	Smurf
FBgn0040705	-0.286	8.950e-03	0.511	ND-B8	old non-Smurf
FBgn0031865	-0.287	1.750e-02	0.510	Nha1	Smurf & old non-Smurf
FBgn0051104	-0.287	3.289e-02		CG31104	Smurf
FBgn0032253	-0.296	2.980e-03		LManI	Smurf & old non-Smurf
FBgn0039325	-0.304	1.796e-02	0.510	CG10560	Smurf & old non-Smurf
FBgn0267164	-0.309	3.900e-04	0.633	- Cht2	none old non-Smurf
FBgn0022702	-0.310	5.110e-03	0.526		
FBgn0013348	-0.316	7.100e-04	0.599	TpnC41C	none
FBgn0042201 FBgn0040725	-0.332	8.000e-05	0.830	Nplp3	Smurf & old non-Smurf
FBgn0085358	-0.336 -0.337	1.080e-03 1.170e-02	0.546	CG13946 Diedel3	none Smurf & old non-Smurf
FBgn0032008	-0.355	3.900e-03	0.600	CG14277	Smurf & old non-Smurf
FBgn0039760	-0.333	7.730e-03	0.546	CG14277	old non-Smurf
			0.640		Smurf & old non-Smurf
FBgn0035887 FBgn0010241	-0.409 -0.410	5.690e-03 2.917e-02	0.654	Jon66Cii Mdr50	
FBgn0031929	-0.410	2.060e-03	0.532	CG18585	none Smurf
FBgn0033188	-0.410	3.851e-02	0.516	Drat	Smurf
FBgn0016675	-0.415	6.500e-04	0.655	Lectin-galC1	Smurf & old non-Smurf
FBgn0034515	-0.410	1.296e-02	0.529	CG13428	Smurf & old non-Smurf
FBgn0038181	-0.420	1.290e-02 1.020e-03	0.601	CG13428 CG9297	old non-Smurf
FBgn0036361	-0.441		0.525		old non-Smurf
FBgn0037996	-0.445	2.790e-03 8.000e-04	0.592	CG10154 CG4830	Smurf
FBgn0085241	-0.443	2.840e-03	0.529	CG34212	old non-Smurf
FBgn0031700	-0.474	7.300e-04	0.606	CG34212 CG14022	none
FBgn0035734	-0.506	8.100e-04	0.592	CG14022 CG14823	Smurf
1 Dyno033734	-0.500	0.1006-04	0.592	0014023	Jilluli

Table S9. Linear regression on non-Smurfs gene expression (time dependence).

FBgn0085241	-0.474	2.840e-03	0.529	CG34212	old non-Smurf
FBgn0031700	-0.491	7.300e-04	0.606	CG14022	none
FBgn0035734	-0.506	8.100e-04	0.592	CG14823	Smurf
FBgn0050042	-0.544	7.180e-03	0.548	Cpr49Ab	Smurf & old non-Smurf
FBgn0038236	-0.609	7.660e-03	0.616	Cyp313a1	Smurf & old non-Smurf
FBgn0040074	-0.634	4.500e-04	0.682	retinin	Smurf & old non-Smurf
FBgn0031176	-0.646	2.143e-02	0.574	whe	Smurf & old non-Smurf
FBgn0000075	-0.661	4.300e-03	0.525	amd	none
FBgn0011555	-0.759	2.100e-04	0.692	thetaTry	Smurf & old non-Smurf
FBgn0037782	-0.832	2.700e-04	0.696	Npc2d	Smurf & old non-Smurf
FBgn0035886	-0.870	1.740e-03	0.613	Jon66Ci	Smurf & old non-Smurf
FBgn0020908	-1.259	0.000e+00	0.952	Scp1	old non-Smurf
FBgn0039777	-1.332	9.640e-03	0.532	Jon99Fii	Smurf & old non-Smurf
FBgn0039778	-1.369	1.698e-02	0.521	Jon99Fi	Smurf & old non-Smurf
FBgn0031277	-2.062	2.200e-04	0.699	CG13947	old non-Smurf

Table S9. Linear regression on non-Smurfs gene expression (time dependence). The 301 genes with significant slope over time in non-Smurfs, with $r^2 > 0.5$. Genes are ordered by descending slope value. Flybase: flybase ID; slope: β_1 of the linear regression; p-value: F-statistic p-value; R squared: r^2 of the estimated linear regression; symbol: Gene symbol; DEGs overlap: specifies if the genes has been detected as significantly deregulated in Smurfs, old non-Smurfs, both or none.

VECC noth	Avg age	Avg Smurf	adjust p-val (Fasano-
KEGG path	correlation	correlation	Franceschini)
dme04624 Toll and Imd signaling pathway	0.080	0.248	5.2e-06
dme00565 Ether lipid metabolism	0.096	0.232	6.3e-03
dme04130 SNARE interactions in vesicular transport	-0.097	0.229	5.8e-04
dme04144 Endocytosis	-0.084	0.207	1.5e-08
dme04213 Longevity regulating pathway - multiple	0.066	0.166	9.6e-03
species	0.000	0.100	9.06-03
dme04391 Hippo signaling pathway - fly	-0.023	0.165	3.5e-02
dme04350 TGF-beta signaling pathway	0.022	0.149	1.9e-02
dme04070 Phosphatidylinositol signaling system	-0.025	0.138	3.9e-02
dme00564 Glycerophospholipid metabolism	0.111	0.134	3.9e-03
dme04745 Phototransduction - fly	0.081	0.129	2.8e-02
dme04068 FoxO signaling pathway	-0.037	0.128	4.6e-03
dme04013 MAPK signaling pathway - fly	-0.028	0.114	1.8e-03
dme00480 Glutathione metabolism	0.054	0.088	1.1e-02
dme01100 Metabolic pathways	0.083	-0.090	3.7e-33
dme00240 Pyrimidine metabolism	0.032	-0.091	9.1e-03
dme00310 Lysine degradation	-0.065	-0.103	1.7e-03
dme00010 Glycolysis / Gluconeogenesis	0.051	-0.143	3.5e-03
dme00620 Pyruvate metabolism	0.053	-0.147	3.8e-03
dme00330 Arginine and proline metabolism	0.073	-0.169	8.3e-03
dme03010 Ribosome	-0.012	-0.191	9.8e-17
dme03008 Ribosome biogenesis in eukaryotes	-0.159	-0.203	4.0e-10
dme01230 Biosynthesis of amino acids	0.124	-0.212	1.2e-08
dme04146 Peroxisome	0.065	-0.214	1.9e-07
dme00450 Selenocompound metabolism	-0.109	-0.216	6.8e-03
dme00190 Oxidative phosphorylation	0.088	-0.217	4.5e-15
dme00270 Cysteine and methionine metabolism	0.150	-0.218	2.5e-05
dme03020 RNA polymerase	-0.186	-0.219	2.3e-04
dme01200 Carbon metabolism	0.064	-0.222	1.7e-11
dme00650 Butanoate metabolism	0.013	-0.225	5.0e-04
dme00981 Insect hormone biosynthesis	0.194	-0.235	1.1e-04
dme04512 ECM-receptor interaction	0.156	-0.235	3.8e-03
dme01040 Biosynthesis of unsaturated fatty acids	0.023	-0.240	1.7e-03
dme00030 Pentose phosphate pathway	0.107	-0.245	4.2e-03
dme00250 Alanine, aspartate and glutamate metabolism	0.209	-0.249	3.1e-05
dme00380 Tryptophan metabolism	0.083	-0.249	8.0e-05
dme00062 Fatty acid elongation	-0.031	-0.255	3.8e-03
dme00220 Arginine biosynthesis	0.214	-0.263	4.0e-03
dme00630 Glyoxylate and dicarboxylate metabolism	0.145	-0.267	2.1e-05
dme00531 Glycosaminoglycan degradation	0.136	-0.270	1.5e-02
dme00020 Citrate cycle (TCA cycle)	0.062	-0.274	1.5e-06
dme00280 Valine, leucine and isoleucine degradation	-0.028	-0.281	9.7e-07
dme01212 Fatty acid metabolism	0.035	-0.281	1.5e-08
dme01210 2-Oxocarboxylic acid metabolism	0.158	-0.299	2.1e-04
dme00640 Propanoate metabolism	0.005		1.1e-05
dme00410 beta-Alanine metabolism	0.024		2.2e-05
dme00061 Fatty acid biosynthesis	0.216		1.6e-03
dme00511 Other glycan degradation	0.116		1.3e-03
dme00071 Fatty acid degradation	-0.063		4.3e-09

Table S10. KEGG pathways affected by Smurfness. The 48 pathways identified as affected more by Smurfness than chronological age according to our expression dataset. KEGG path: KEGG ID and pathway name; Avg age correlation: average gene expression correlation with chronological age on the genes belonging to the pathway; Avg Smurf correlation: average gene expression correlation with Smurf on the genes belonging to the pathway; adjust pval (Fasano-Franceschini): adjusted p-value (FDR) from the Fasano-Franceschini test.

VECC noth	Avg age	Avg Smurf	adjust p-val (Fasano
KEGG path	correlation	correlation	Franceschini)
dme00052 Galactose metabolism	0.273	-0.087	1.7e-04
dme00670 One carbon pool by folate	0.261	-0.207	1.7e-03
dme00260 Glycine, serine and threonine metabolism	0.252	-0.196	1.5e-06
dme00830 Retinol metabolism	0.240	-0.099	3.3e-05
dme00053 Ascorbate and aldarate metabolism	0.232	-0.125	1.6e-05
dme00040 Pentose and glucuronate interconversions	0.227	-0.182	5.1e-07
dme00500 Starch and sucrose metabolism	0.219	-0.129	5.5e-05
dme00350 Tyrosine metabolism	0.201	-0.175	1.2e-03
dme02010 ABC transporters	0.177	-0.004	5.3e-03
dme04080 Neuroactive ligand-receptor interaction	0.166	0.027	1.4e-05
dme00051 Fructose and mannose metabolism	0.165	-0.121	1.1e-02
dme00983 Drug metabolism - other enzymes	0.165	0.005	2.8e-08
dme00770 Pantothenate and CoA biosynthesis	0.157	-0.151	1.3e-02
dme00980 Metabolism of xenobiotics by cytochrome P450	0.157	0.050	1.4e-07
dme00561 Glycerolipid metabolism	0.151	-0.071	8.3e-04
dme00982 Drug metabolism - cytochrome P450	0.151	0.069	1.5e-07
lme04142 Lysosome	0.148	-0.128	3.6e-08
dme00230 Purine metabolism	0.144	-0.013	6.9e-03
dme00730 Thiamine metabolism	0.135	0.015	1.3e-02
dme00520 Amino sugar and nucleotide sugar metabolism	0.129	-0.051	7.6e-03
dme00790 Folate biosynthesis	0.123	0.027	3.5e-02
dme00860 Porphyrin and chlorophyll metabolism	0.114	-0.062	2.6e-03
dme04120 Ubiquitin mediated proteolysis	-0.154	0.012	1.5e-06
dme03015 mRNA surveillance pathway	-0.177	-0.066	1.7e-06
dme03018 RNA degradation	-0.191	-0.136	9.1e-09
dme00970 Aminoacyl-tRNA biosynthesis	-0.238	-0.087	1.3e-04
dme03410 Base excision repair	-0.239	0.024	3.0e-03
dme00563 Glycosylphosphatidylinositol (GPI)-anchor	0.070	0.110	2.0.04
biosynthesis	-0.272	-0.118	3.0e-04
dme04330 Notch signaling pathway	-0.275	0.104	1.3e-04
dme03050 Proteasome	-0.276	-0.166	3.5e-09
dme03013 RNA transport	-0.288	-0.117	1.3e-15
dme03040 Spliceosome	-0.288	-0.124	1.5e-17
dme03460 Fanconi anemia pathway	-0.312		1.3e-06
dme03022 Basal transcription factors	-0.318		3.1e-08
dme03420 Nucleotide excision repair	-0.338		1.7e-09
dme03440 Homologous recombination	-0.341		1.6e-07
lme03430 Mismatch repair	-0.387		1.5e-08
dme03030 DNA replication	-0.393		2.2e-09

Table S11. KEGG pathways affected by chronological age. The 38 pathways identified as affected more by chronological age than Smurfness according to our expression dataset. KEGG path: KEGG ID and pathway name; Avg age correlation: average gene expression correlation with chronological age of the genes belonging to the pathway; Avg Smurf correlation: average gene expression correlation with Smurf on the genes belonging to the pathway; adjust pval (Fasano-Franceschini): adjusted p-value (FDR) from the Fasano-Franceschini test.

Flybase	Symbol	Avg expression	log2FC	adj p-value
FBgn0038851	dmrt93B	3.07	3.069	1.4e-04
FBgn003254	rib	3.32	1.965	4.5e-03
FBgn0027788	Hey	1.71	1.841	4.3e-03
FBgn0027788	Ets21C	335.46	1.790	1.4e-09
FBgn0022740	HLH54F	2.87	1.311	2.8e-02
FBgn0035157	CG13894	21.01	1.269	3.6e-07
FBgn0033448		3.83	1.015	2.6e-02
FBgn0034012	sna Hr51	3.13	0.961	3.1e-02
FBgn0039039	lmd	6.09	0.901	1.0e-02
0	twi	7.96	0.921	3.5e-03
FBgn0003900 FBgn0003499	sr	107.75	0.807	2.4e-06
			0.710	1.7e-02
FBgn0050401	dany	8.90		
FBgn0041156	exex Ets98B	318.94	0.697	4.3e-04 3.2e-07
FBgn0005659 FBgn0005638	slbo	398.45 44.67	0.686 0.611	5.8e-03
-				
FBgn0014018	Rel	5397.15	0.607	9.6e-08
FBgn0035144	Kah	234.96	0.604	1.6e-08 4.5e-03
FBgn0014859	Hr38	107.15	0.592	
FBgn0037275	CG14655	86.51	0.568	2.0e-06
FBgn0262477	FoxP	47.50	0.546	3.6e-03
FBgn0001168	h	1066.15	0.536	8.4e-09
FBgn0001297	kay	2357.06	0.526	1.8e-06
FBgn0002576	lz	26.50	0.526	5.1e-02
FBgn0001150	gt	10.25	0.516	3.9e-02
FBgn0004865	Eip78C	64.01	0.513	5.9e-03
FBgn0039808	CG12071	78.47	0.481	3.5e-03
FBgn0028789	Doc1	20.04	0.468	3.2e-03
FBgn0004567	slp2	19.10	0.457	1.4e-02
FBgn0263118	tx	74.98	0.419	2.2e-04
FBgn0023489	Pph13	35.10	0.414	3.5e-02
FBgn0035903	CG6765	43.37	0.410	1.4e-02
FBgn0000448	Hr3	23.74	0.403	3.2e-02
FBgn0024244	drm	325.04	0.364	1.3e-03
FBgn0028979	tio	49.28	0.353	6.3e-04
FBgn0052121	CG32121	69.87	0.339	6.4e-03
FBgn0036126	Irbp18	326.69	0.313	2.1e-07
FBgn0000567	Eip74EF	253.98	0.311	4.8e-03
FBgn0001981	esg	91.47	0.309	3.8e-03
FBgn0035691	CG7386	141.07	0.308	3.1e-02
FBgn0261283	SREBP	6601.83	0.306	3.8e-07
FBgn0004396	CrebA	684.02	0.302	4.3e-02
FBgn0016076	vri	1243.11	0.299	7.9e-04
FBgn0000287	salr	61.93	0.291	4.9e-02
FBgn0262656	Мус	3188.34	0.286	1.8e-04
FBgn0264490	Eip93F	1407.89	0.286	3.6e-02
FBgn0028996	onecut	249.03	0.272	4.8e-02
FBgn0039209	REPTOR	2579.54	0.272	1.3e-07
FBgn0260632	dl	2782.18	0.269	4.2e-07
FBgn0001291	Jra	1533.30	0.258	1.5e-06
FBgn0085432	pan	1160.96	0.253	1.3e-02
FBgn0025525	bab2	389.55	0.249	1.4e-02

Table S12. Transcription factors (TFs) deregulated in Smurfs (DESeq2).

FBgn0042696	NfI	444.20	0.240	1.2e-02
FBgn0004858	elB	207.19	0.233	1.9e-02
FBgn0259938	cwo	1999.53	0.222	9.4e-06
FBgn0038418	pad	491.51	0.216	3.7e-02
FBgn0085424	nub	570.26	0.214	4.6e-02
FBgn0259211	grh	275.93	0.214	3.9e-02
FBgn0021872	Xbp1	7454.95	0.211	7.2e-03
FBgn0032816	Nf-YB	237.31	0.208	6.5e-04
FBgn0043364	cbt	1497.76	0.197	1.2e-03
FBgn0003459	stwl	943.29	0.186	1.8e-02
FBgn0029504	CHES-1-like	1697.41	0.179	1.5e-03
FBgn0033252	CG12769	182.79	0.179	2.3e-02
FBgn0032202	REPTOR-BP	286.80	0.173	2.5e-02
FBgn0030505	NFAT	2029.69	0.157	5.3e-05
FBgn0037877	CG6689	546.74	0.145	1.5e-03
FBgn0037617	nom	361.48	0.132	3.4e-02
FBgn0040305	MTF-1	1288.49	0.132	2.6e-02
FBgn0052296	Mrtf	2068.16	0.131	1.7e-02
FBgn0032512	Bdp1	811.63	0.119	1.3e-02
FBgn0000097	aop	2273.01	0.116	4.5e-02
FBgn0039044	p53	454.53	0.105	3.7e-02
FBgn0035137	CG1233	1289.28	0.100	1.0e-02
FBgn0259176	bun	7445.06	0.098	2.0e-02
FBqn0265784	CrebB	1613.54	0.091	8.6e-03
FBgn0004914	Hnf4	2518.83	0.081	3.0e-02
FBgn0011656	Mef2	1498.21	0.078	1.8e-02
FBgn0014931	CG2678	482.96	-0.112	1.7e-02
FBgn0003963	ush	494.04	-0.204	3.2e-03
FBgn0085405	CG34376	831.14	-0.216	3.3e-02
FBgn0027364	Six4	210.21	-0.248	3.3e-02
FBgn0020912	Ptx1	204.99	-0.289	2.0e-02
FBgn0002609	E(spl)m3-HLH	92.06	-0.297	3.3e-02
FBgn0261930	vnd	167.34	-0.301	5.1e-02
FBgn0005561	SV	103.23	-0.306	2.8e-02
FBgn0036294	CG10654	104.78	-0.341	2.2e-02
FBgn0014343	mirr	89.58	-0.368	2.2e-02
FBgn0004394	pdm2	82.94	-0.378	
FBgn0267978	ap	647.97	-0.411	1.3e-02
FBgn0283451	br	181.95	-0.447	2.7e-03
FBgn0004666	sim	250.09	-0.487	3.9e-06
FBgn0013751	Awh	16.07	-0.498	1.8e-02
FBgn0003117	pnr	27.71	-0.514	3.0e-02
FBgn0015919	caup	64.40	-0.595	4.3e-04
FBgn0030899	Hesr	25.01	-0.597	1.1e-02
FBgn0015904	ara	34.83	-0.622	9.3e-05
FBgn0261963	mid	61.93	-0.695	3.7e-04
FBgn0000964	tj	527.94	-0.701	5.6e-04
FBqn0030005				3.6e-04
9	CG2120	19.15	-0.726 -0.798	3.4e-02
FBgn0001319	kn CG30431	23.68 170.77		3.4e-02 3.4e-04
FBgn0050431 FBgn0039225	Ets96B	179.77 5.99	-1.251 -1.321	3.4e-04 1.3e-04
1 Dyllo039223	F1230D	5.99	-1.341	1.36-04

Table S12. Transcription factors (TFs) deregulated in Smurfs (DESeq2). Table summarizing DESeq2 results for the transcription factors deregulated in Smurfs (ordered by log_2FC). Flybase: Flybase gene ID; Symbol: gene symbol; Avg expression: average gene expression across samples provided by DESeq2; log_2FC : log_2FC estimated by DESeq2; adj p-value: FDR corrected p-value provided by DESeq2.

			From list of TFs up in Smurfs									
Putative regulator	Score	Putat	ve targets									
Aef1	6.5	Hnf4,	grh, bab2, Eip74EF, kay, Eip93F, sr, Eip78C, CrebB, bun, CG12769, NFAT, Hr38, CG42741, twi CG42741, CG6332, Mrtf Non2, CG2691 NFAT, Hnf4, CG9896, lz, cwo, Mef2, sna, Acp62F Mrtf, drm, elB, nub, h, CHES-1-like, Ets98B, CG43218 Eip78C, CG32121, slp2, CrebA, Mrtf, AGO2, CG5418, Ptth Pph13, cbt									
CG4360	6.1	bab2, grh, Eip74EF, kay, Eip93F, sr, Eip78C, CrebB, bun, Hr38, twi CG42741, CG6332, NFAT, Hnf4, CG12769, Mrtf Non2, CG42741, nub, CG9896 CG2691 NFAT, Iz, Mef2, sna, cwo, CHES-1-like, Acp62F Mrtf, elB, CG32121, CG12071, CG43218 Eip78C, slp2, drm, AGO2, CrebA, Ets98B, Ptth Pph13, Mrtf, rib										
Trl	5.9		o, elB, Eip74EF, CHES-1-like, nub, bab2, kay, NFAT, Eip78C, Eip93F, cwo, Hr38, esg, sr, rib, sna, exex CG43880, Hnf4, CG12769, cbt, CrebA ts98B, CG43248 CrebA, aop, slbo, twi CG42741, CrebB, Mrtf Non2, h, Ets21C, grh, CG12071, vri, Mrtf, pan, Kah, c11.1 lz, slp2									
FoxP	5.54	bab2, grh, kay, Eip93F, CrebB, CG9896, Eip74EF, CG6332, CG2691 NFAT, sr, twi CG42741, bun, Eip78C, Mrtf Non2, Hnf4, cwo, CG12769, Hr3 NFAT, lz, Mrtf, CG13894, Ets98B, sna, vri, CG42741, Mef2, MED14, CHES-1-like, nub, elB, CG5418, CycT, CG32121, rib, CG43218 Eip78C, Acpt Mrtf, CrebA, mthl11										
Adf1	5.14		, Eip93F, Eip74EF, grh, kay, CG12769, sr, Hey, bab2, slbo, nub, CG5418, bun, Ets98B, CG32121, tio, CG12071, CG13894, lmd, CG42741, 48 CrebA, twi CG42741, CG9897, h, slp2, NFAT, Hnf4, drm, CG43218 Eip78C, cwo, salr, aop, vri, CrebA, Hr38									
Mef2	4.4	h, sr, k esg	un, Ets98B, Hr38, Mrtf, CG2691 NFAT, cwo, CrebA, sna, Eip78C, bab2, MTF-1, Sardh HLH54F, CG12071, lmd, dl, nub, lz, Kah MED14, kay,									
			From list of TFs down in Smurfs									
Putative re	gulator	Sc	ore Putative targets									
Nf-YB		11	9 mirr, caup, ap, sim, Awh, ara, sv, kn, vnd, Ptx1, pdm2, pnr, mid, ush, CG34376, Six4, E(spl)m3-HLH E(spl)m2-BFM, Ets96B CG5805, cbt, tj, Actbeta sv, Ets96B, ara sowah									
grn, srp, G GATAe, pnr		9.6	ush, pnr, CG34376, br, caup, CG34288 CG34376, CG11509 br, pdm2, kn, Ptx1, ara, Awh, CG30431, dor, mirr, ap, cbt, tj, CG2120, sim, vnd									
			From list of gene up (log2FC > 2) in Smurfs									
Putative regulator	Score	e Put	tive targets									
Rel	10.1		, AttA, CG9733, edin, AttD CG14323, CG15282, CG13639, Ets21C, CecC CecB, Ddc, CG12858 Dro, CecA1, AttB, CG14743 PGRP-SC1b, c, CG43367 Cpr64Ab, CG12009, CG5892, dmrt93B, CG5565, rib, CG43236, e									
Hsf	5.9	Hsp	70Bbb, Hsp70Aa Hsp70Ab, SMC1 Hsp68, Hsp70Ba									
			From list of gene down (log2FC < -2) in Smurfs									
Putative regulator	S	core l	utative targets									
Blimp-1	7.	.2 (G16956 CG43850, CG7675, CG43333, Vm26Aa, trp Jon99Ciii, CG13786									
ken	5	.4 (G43333, CG16956 CG43850, Vm26Aa, St4, CG7675, CG13786, yellow-e lr87a, lr56b									
maf-S	4		dl, CG14834, CG13998 Vm26Ab, CG2918 Vml, Yp3, Cp7Fc, CG31928, CG13114, spo, CG16956 CG43850, Vm26Aa, Vm26Ac, yellow-g ellow-g2, Ir7c dec-1, yellow-k mex1									

Table S13. i-cisTarget results. The table reports the best hits provided by i-cisTarget when the queries are 1) TFs upregulated in Smurfs, 2) TFs downregulated in Smurfs, 3) genes upregulated in Smurfs ($log_2FC > 2$), genes upregulated in Smurfs ($log_2FC < -2$). In all cases the gene symbol, score and putative detected targets are reported.

	Up in Smurfs															
				RU0		RU10			RU50		RU100			RU200		
gene	line	stock	temporal control	ML	ML	% effect	pval									
dmrt93B KD	27657	Bloomington	adulthood	76.90	79.92	3.93	9.3e-01	78.12	1.58	4.6e-01	75.85	-1.38	8.1e-02	76.78	-0.16	2.3e-01
dmrt93B KD	27657	Bloomington	development & adulthood	78.99	78.48	-0.65	8.7e-01	76.12	-3.64	1.5e-01	77.61	-1.74	3.8e-01	77.55	-1.83	6.4e-01
dmrt93B OX	F000445	FlyORF	adulthood	81.05	77.50	-4.38	7.1e-05	70.67	-12.80	1.6e-17	64.79	-20.06	2.6e-30	63.20	-22.02	4.8e-34
dmrt93B OX	F000445	FlyORF	adulthood & development	90.90	83.57	-8.06	7.1e-10	67.34	-25.91	2.9e-47	NA	NA	NA	NA	NA	NA
Ets21c KD	39069	Bloomington	adulthood	86.22	61.97	-28.13	1.9e-57	46.36	-46.23	2.1e-66	54.85	-36.39	1.9e-53	47.76	-44.61	3.2e-69
Ets21c KD	39069	Bloomington	development & adulthood	84.23	38.85	-53.87	5.2e-69	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ets21C OX	F000624	FlyORF	adulthood	87.44	46.16	-47.21	2.6e-71	43.93	-49.76	6.7e-72	41.29	-52.78	1.7e-72	41.05	-53.05	1.1e-71
Ets21C OX	F000624	FlyORF	adulthood & development	89.39	46.55	-47.93	1.7e-69	40.19	-55.04	5.5e-71	41.54	-53.52	2.4e-70	41.97	-53.05	8.0e-71
Hey KD	41650	Bloomington	adulthood	86.17	84.78	-1.62	6.4e-01	82.70	-4.04	9.4e-04	85.68	-0.57	3.4e-01	83.08	-3.59	8.9e-02
Hey KD	41650	Bloomington	development & adulthood	77.76	80.72	3.81	4.9e-01	83.39	7.24	6.8e-03	80.99	4.15	1.5e-02	79.11	1.74	2.8e-01
kay KD	27722	Bloomington	adulthood	83.94	64.21	-23.51	1.9e-31	36.96	-55.97	9.4e-58	39.84	-52.53	4.7e-39	34.52	-58.87	9.4e-54
kay KD	27722	Bloomington	development & adulthood	74.74	60.74	-18.73	5.5e-12	46.46	-37.84	4.8e-23	55.78	-25.37	5.9e-04	25.53	-65.84	2.3e-18
Mef2 KD	28699	Bloomington	adulthood	83.57	77.05	-7.80	5.3e-02	63.66	-23.82	1.3e-08	59.73	-28.53	1.1e-09	47.74	-42.87	6.7e-16
Mef2 KD	28699	Bloomington	development & adulthood	85.70	83.98	-2.01	1.3e-01	70.99	-17.17	1.7e-03	67.45	-21.30	9.0e-09	56.81	-33.71	4.3e-18
rib KD	50682	Bloomington	adulthood	84.91	84.24	-0.79	7.1e-03	74.19	-12.63	2.1e-17	72.46	-14.66	3.6e-32	71.51	-15.78	5.1e-38
rib KD	50682	Bloomington	development & adulthood	77.70	82.11	5.68	8.0e-02	72.39	-6.83	3.2e-07	73.55	-5.34	4.3e-10	71.06	-8.54	7.5e-17

	Down in Smurfs																
				RU0	RU10				RU50			RU100			RU200		
gene	line	stock	temporal control	ML	ML	% effect	pval										
Ets96B KD	31935	Bloomington	adulthood	78.71	74.87	-4.87	1.4e-03	76.10	-3.31	1.5e-01	77.63	-1.37	8.5e-01	83.90	6.61	6.4e-15	
Ets96B KD	31935	Bloomington	adulthood & development	79.70	78.59	-1.39	8.6e-02	73.22	-8.14	8.9e-04	71.02	-10.89	5.2e-03	84.03	5.44	1.3e-05	
Ets96B OX	F000142	FlyORF	adulthood	88.50	86.82	-1.90	3.9e-05	86.20	-2.60	2.0e-03	87.33	-1.33	3.7e-03	89.36	0.98	5.2e-01	
Ets96B OX	F000142	FlyORF	adulthood & development	86.35	79.11	-8.39	3.9e-08	74.65	-13.55	2.6e-12	80.56	-6.71	7.5e-06	84.64	-1.98	7.7e-03	

	Regulating genes up in Smurfs															
				RU0	RU10 RU50						RU100		RU200			
gene	line	stock	temporal control	ML	ML	% effect	pval	ML	% effect	pval	ML	% effect	pval	ML	% effect	pval
Adf1 KD	4278	VDRC	adulthood	70.50	75.80	7.57	4.3e-02	72.80	3.25	7.3e-01	71.80	1.81	9.7e-01	72.90	3.39	6.0e-02
Adf1 KD	4278	VDRC	development&adulthood	74.90	80.60	7.52	5.1e-05	74.30	-0.85	4.4e-01	67.30	-10.17	3.5e-03	65.40	-12.75	1.6e-02
Aef1 KD	80390	Bloomington	adulthood	89.64	84.20	-6.07	7.6e-09	80.61	-10.07	9.8e-31	79.41	-11.41	7.0e-33	75.33	-15.97	2.8e-44
Aef1 KD	80390	Bloomington	development & adulthood	82.93	80.87	-2.49	5.1e-03	79.33	-4.35	4.3e-07	75.70	-8.72	1.9e-20	76.87	-7.31	4.2e-17
CG4360 KD	51813	Bloomington	adulthood	75.69	81.20	7.28	4.0e-03	76.16	0.63	3.7e-01	81.16	7.22	6.6e-01	76.27	0.77	3.6e-03
CG4360 KD	51813	Bloomington	adulthood & development	84.82	86.61	2.11	3.2e-01	84.67	-0.18	1.5e-02	87.47	3.12	1.7e-02	84.71	-0.13	2.4e-04
CG4360 OX	F00063	FlyORF	adulthood	81.87	87.03	6.29	3.4e-08	81.78	-0.11	3.0e-03	84.87	3.66	9.4e-09	84.62	3.35	4.9e-07
CG4360 OX	F00063	FlyORF	adulthood & development	83.30	82.24	-1.27	6.8e-01	80.86	-2.92	1.3e-01	58.51	-29.76	8.3e-07	76.19	-8.53	2.8e-01
FoxP KD	26774	Bloomington	adulthood	84.00	77.03	-8.29	5.9e-06	77.97	-7.18	6.1e-07	79.45	-5.42	4.3e-03	80.02	-4.74	9.3e-06
FoxP KD	26774	Bloomington	adulthood & development	78.68	75.94	-3.48	1.0e-02	82.81	5.26	2.7e-01	80.53	2.35	7.3e-01	83.02	5.52	4.4e-02
Hsf KD	41581	Bloomington	adulthood	68.20	62.00	-9.03	6.1e-04	72.70	6.53	2.3e-01	72.50	6.35	6.0e-01	71.10	4.26	9.2e-01
Hsf KD	41581	Bloomington	development&adulthood	65.30	59.60	-8.72	1.1e-02	62.70	-4.06	8.5e-01	57.80	-11.51	1.2e-01	56.00	-14.24	3.4e-05
Hsf OX	F000699	FlyORF	adulthood	86.31	81.64	-5.41	2.6e-06	83.53	-3.21	1.8e-01	83.47	-3.29	3.6e-01	83.66	-3.07	1.1e-03
Hsf OX	F000699	FlyORF	adulthood & development	76.68	76.25	-0.57	8.2e-01	84.61	10.33	1.6e-09	82.57	7.68	7.0e-06	78.95	2.96	1.6e-01
Trl KD	41852	Bloomington	adulthood	78.07	79.75	2.16	2.1e-01	81.90	4.91	7.8e-03	85.51	9.53	8.4e-09	82.38	5.53	8.4e-07
Trl KD	41852	Bloomington	adulthood & development	78.11	73.33	-6.12	8.6e-03	74.95	-4.05	1.3e-01	77.38	-0.93	5.0e-01	77.66	-0.57	8.0e-01

	Regulating TFs down in Smurfs															
				RU0	RU10				RU50			RU100		RU200		
gene	line	stock	temporal control	ML	ML	% effect	pval									
GATAd KD	34625	Bloomington	adulthood	75.84	79.72	5.11	2.4e-01	69.53	-8.33	3.3e-12	71.54	-5.67	1.2e-10	70.95	-6.45	1.7e-06
GATAd KD	F000714	FlyORF	adulthood	85.84	75.95	-11.52	3.8e-17	75.45	-12.10	1.6e-22	68.40	-20.32	3.1e-36	56.62	-34.04	1.2e-59
GATAd KD	34625	Bloomington	adulthood & development	73.26	73.35	0.12	3.3e-02	59.41	-18.90	2.4e-24	65.21	-10.98	8.8e-15	61.22	-16.44	1.8e-22
GATAd KD	F000714	FlyORF	adulthood & development	85.43	59.73	-30.08	1.7e-20	47.07	-44.90	7.8e-64	51.62	-39.57	5.2e-64	54.58	-36.11	1.1e-64
GATAe KD	33748	Bloomington	adulthood	82.43	50.08	-39.25	2.3e-54	46.04	-44.15	6.2e-56	48.30	-41.40	1.0e-49	48.97	-40.60	4.2e-60
GATAe KD	33748	Bloomington	adulthood & development	76.34	46.33	-39.31	7.6e-41	34.48	-54.83	9.1e-53	35.75	-53.17	6.5e-58	33.83	-55.68	7.0e-54
NFyB OX	F001895	FlyORF	adulthood	84.91	84.36	-0.64	2.1e-03	87.36	2.89	5.3e-01	86.12	1.43	3.9e-01	76.09	-10.39	8.4e-18
NFyB OX	F001895	FlyORF	adulthood & development	84.58	77.91	-7.88	4.1e-02	66.81	-21.01	2.0e-30	80.21	-5.16	1.3e-01	76.77	-9.23	4.1e-04
srp KD	28606	Bloomington	adulthood	83.03	82.19	-1.02	2.3e-01	83.89	1.03	3.5e-02	78.39	-5.59	6.9e-03	83.95	1.11	7.7e-01
srp KD	28606	Bloomington	adulthood & development	77.71	74.79	-3.76	1.1e-01	74.98	-3.52	6.8e-01	72.81	-6.31	1.7e-03	77.25	-0.60	2.4e-01
srp OX	F000720	FlyORF	adulthood	77.37	68.84	-11.03	2.0e-21	54.09	-30.09	5.7e-50	44.62	-42.33	9.9e-53	33.56	-56.62	2.0e-58
srp OX	F000720	FlyORF	adulthood & development	71.55	60.85	-14.96	8.7e-10	4.08	-94.29	6.9e-32	9.33	-86.96	9.0e-35	6.18	-91.36	1.8e-32

Table S14. Longevity screening results. Results are organized by groups according to the way the genes were detected (DESeq2 for the first two groups - up and down in Smurfs- , and i-cisTarget for the last two groups - putative regulators of Smurf TFs). Information about the gene and its alteration (KD or OX) are provided, together with the line used and the stock center where the line was bought. Each experiment is either performed during adulthood only or adulthood & developmental (temporal control). Mean lifespan (ML), % effect (% ML change compared to controls) and log-rank p-value are provided for each RU486 condition (RU0 μg/mL - control, RU10 μg/mL, RU50 μg/mL, RU100 μg/mL and RU200 μg/mL). For visual representation of the results, see Fig. S13.