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Abstract: When the estimated strength of social associations corresponds to the proportion of time spent together, strong 9 

links, those that take up most of the recorded time of individuals, are compulsorily transitive and tend to occur in clusters. 10 

However, I describe three ways in which the frequency and position of strong associations apparently offset the expected 11 

transitivity of strong links in published association networks from 26 species of vertebrates. Instead of occurring in groups 12 

of three, strong links were mostly isolated. When they did occur in clusters, the clusters were small. The phenomena in- 13 

creased in intensity as the overall number of links of all strengths and the overall network transitivity increased. Since stable 14 

transitive motifs are beneficial to cooperation, these results can help explain why cooperative behaviors are not more fre- 15 

quent than they are in group-living vertebrates. Inversely, stable transitive motifs may be rare and small because the benefits 16 

of cooperation do not overcome the costs associated with these motifs. The summary statistics developed for this study 17 

captured information not conveyed by other network-level metrics; thus they may help quantify the socio-spatial structure 18 

of populations and potentially tease apart the environmental, species-specific, and individual drivers. 19 

Keywords: clustering coefficient; graph theory; intransitivity; socio-spatial structure; peer of a peer; epidemiology; strength 20 

of weak ties 21 

 22 

Significance statement: 23 

• Stable transitive motifs are rare and small in 26 species of group-living vertebrates. 24 

• The article describes new network-level statistics of the frequency of strong links, the dissimilarity of link strengths 25 

within triangles, and the relative fragmentation of the subnetwork of strong links. 26 

• Results help explain why cooperation is not more frequent in group-living vertebrates 27 

 28 

  29 
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Introduction 30 

Granovetter (1973) observed that strong friendships between humans tend to be transitive. In other words, 31 

when individual A has two best friends B and C, then B and C are also usually best friends. The proximate 32 

reasons for this transitivity include the “theory of cognitive balance” stating that good friends want their feel- 33 

ings towards third parties to be congruent (Heider, 1958), and “network homophily”, meaning that strong 34 

friendships tend to emerge from (and to further promote) similarity in cultural tastes etc. (McPherson et al., 35 

2001). As a result, the networks feature clusters or cliques of individuals that are tightly-knit together. There are 36 

still weak ties between these cliques, which do not obey the same transitivity rules. These weak ties then per- 37 

form a major role as the connections between, and the gateways into, the cliques: this is the “strength of weak 38 

ties paradigm” (Granovetter, 1973). 39 

In animal studies, strong ties are also expected to be more transitive than weak ties, but firstly because of 40 

the way social ties are measured as the proportion of time that dyads spend together (Holekamp et al., 2012; 41 

Rubenstein et al., 2015). Indeed, if individual A spends most of its time with B and with C, then B and C also 42 

spend most of their time together. In other words, strong associations cannot be intransitive and should thus 43 

be more transitive on average than weak associations. The resulting stable clusters of closely-knit individuals 44 

promote the evolution of cooperative behaviors and represent a fitness advantage when cooperation is effective 45 

(Grinnell et al., 1995; Nowak, 2006; Silk et al., 2009; Teunissen et al., 2021). However, there are also costs to life 46 

in a tight group. Costs include the rapid spread of pathogens (Morrison et al., 2021), reproductive conflicts and 47 

other types of conflicts within the cliques (Datta, 1988; Holekamp et al., 2012), and impaired access to infor- 48 

mation during the periods when the weak links are not active (Artime et al., 2017). If these costs exceeded the 49 

benefits, the transitivity of strong links would operate as a constraint rather than an advantage.  50 

The objective of the present paper is to apply several network statistics to decipher whether the transitivity 51 

of strong links is offset by the way strong links are distributed in animal association networks. For this purpose, 52 

I assembled a set of published animal association networks from 26 species (see methods). First, I verified that 53 

strong links were indeed more transitive than weak links. Second, I quantified three aspects of the distribution 54 

of link strength in the networks.  55 

(i) The network-level Gini coefficient of inequalities (Gini, 1936) (method section 1.5). This metric is 56 

an indicator of the overall rarity of strong links, i.e., the occurrence of a few very strong links 57 

amidst mostly weak links. For example, a group where mother-offspring bonds are much stronger 58 

than other types of associations would exhibit a high Gini coefficient if the offspring were few. The 59 

alternatives are that strong links are not very different from weak links, or that most of the links 60 

are strong.  61 
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(ii) The triadic dissimilarity between the three links in each triangle (a new metric, see method section 62 

1.6). This metric indicates whether strong links more often occur in groups of three, or in an iso- 63 

lated fashion. For example, if breeding pairs travel together and they both avoid other pairs and 64 

evict single individuals from foraging spots (Black & Owen, 1989), strong links (breeding pairs) 65 

would be mostly isolated, leading to an excess of weak triplets closed by a single strong link 66 

(Péron, 2022).    67 

(iii) The fragmentation of the subnetworks of strong links (method section 1.7). This metric indicates 68 

whether, when strong links are not isolated, the clusters of strong links are relatively small or large. 69 

For example, if there is a core group of closely tied individuals amidst a cloud of individuals that 70 

spend most of their time alone, the subnetwork of strong links should appear less fragmented than 71 

the network as a whole. By contrast, if the network is made of family units in which recent off- 72 

spring are more tightly linked to their mother than older offspring, then the subnetwork of strong 73 

links, made exclusively of the links between recent offspring and their mothers, would appear 74 

more fragmented than the network as a whole.   75 

If strong links were rare (high Gini coefficient), isolated (high triadic dissimilarity), and if any cluster of 76 

strong links was small (high fragmentation of the subnetwork of strong links), then I concluded that the ex- 77 

pected transitivity of strong links was in effect counter-balanced by the distribution of strong links in the net- 78 

work. In addition, I tested whether these patterns occurred more often or more intensely in networks that have 79 

many links and many transitive motifs compared to networks that have few links and few transitive motifs. If 80 

that was the case, this would suggest a functional response, i.e., a change in the probability to create specific 81 

patterns in the social network with a change in the availability of social partners. For example, the number of 82 

social partners could influence the perceived benefits obtained from stable partners, reinforce or weaken the 83 

effect of existing relationships on the probability to create new relationships, or the attraction exerted on bonded 84 

pairs by other bonded pairs. In practice, I first verified the expected transitivity of strong links. Next, I devel- 85 

oped and applied the aforementioned three network-level statistics and correlated them to the edge density. 86 

1. Material and methods 87 

1.1. Definitions 88 

Association networks (sometimes termed contact networks) refer to undirected social networks where con- 89 

nections occur through proximity between individuals. This definition excludes directed networks, such as 90 

dominance relationships, grooming, etc. The links (or ties, or edges) can be weighted by the relative dyadic 91 

association frequency (Holekamp et al., 2012; Rubenstein et al., 2015), hereafter termed the link strength. 92 

Following previous authors (Sah et al., 2019), I considered three types of associations in this study: (i) phys- 93 

ical contact or staying any amount of time within touching distance of associates, (ii) close proximity, a category 94 
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in which I pooled nearest neighbor data and data documenting the time spent within a given radius of associ- 95 

ates (with cutoff distance and duration defined by the original authors of the source studies), and (iii) shared 96 

group membership, which mostly applies in a fission-fusion context.  97 

Triplets correspond to situations where one individual A is associated with two different individuals B and 98 

C. In a transitive association network, most triplets are closed by a link between B and C, thereby forming a 99 

triangle (Granovetter, 1973; Newman et al., 2002). The unweighted transitivity score of an association network, 100 

hereafter denoted 𝒞0, corresponds to the proportion of closed triangles among all the triplets (Newman et al., 101 

2002). Several adjacent triangles make a transitive motif or a transitive cluster or a clique. Examples of completely 102 

intransitive networks include grid-like and tree-like networks (Newman, 2008). Some researchers use the clus- 103 

tering coefficient instead of the transitivity score which differ from the transitivity score because the clustering 104 

coefficient averages an individual transitivity score whereas the transitivity score averages a triplet score (Barrat 105 

et al., 2004). Importantly, the interpretation of the transitivity score depends on whether the links are undi- 106 

rected, as is the case in this study, or directed. In dominance networks, the links are directed, and the transitivity 107 

score measures the linearity of the social hierarchy (McDonald & Shizuka, 2013). In association networks which 108 

are the topic of the present study, the links are not directed, and the transitivity score measures the frequency 109 

and size of transitive motifs.  110 

The triplets can be also weighed according to the strength of the links inside of them, in order to generate 111 

a weighted transitivity score (Opsahl & Panzarasa, 2009), hereafter denoted 𝒞1. If 𝒞1 is larger than 𝒞0, the prob- 112 

ability that a triplet is closed increases with the strength of the links inside of it, and inversely if 𝒞1 is smaller 113 

than 𝒞0 then weak triplets are on average more likely to be closed than strong triplets (Opsahl & Panzarasa, 114 

2009).   115 

Another approach to the quantification of transitive clusters is to consider them as modules of individuals 116 

that interact more among themselves than with the rest of the network. Strong links would then correspond to 117 

within-module links and weak links would correspond to cross-module links. The network modularity quanti- 118 

fies how distinct these modules are, i.e., how rare and weak are the links between modules (Newman et al., 119 

2002; Pons & Latapy, 2005). In practice, I delineated the modules using the short random walk community- 120 

finding algorithm (routine cluster_walktrap from igraph; Pons & Latapy, 2005). Except when explicitly 121 

stated otherwise, I took into account the weight of the links when delineating the modules (argument weights 122 

= E(graph)$weight). I then computed the modularity score following the usual formula (Newman, 2008). 123 

Lastly the edge density, denoted 𝒟0, corresponds to the overall number of links in the network divided by 124 

the maximum possible number of links if all individuals were connected to each other. The edge density 125 

measures the overall probability that a link exists between any two individuals.   126 

1.2. Literature search for network association data 127 
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This study uses published data only. Original data were collected in accordance with relevant institutional 128 

and national guidelines, as explained in the source articles listed in Table 1.  129 

I focused on vertebrates that always or mostly forage in groups and/or always or mostly roost in groups, 130 

but without any criteria regarding the occurrence of cooperative behaviors within those groups. The data 131 

needed to be collected from free-ranging groups with naturally occurring kinship structure, and to document 132 

one of the aforementioned association types (see section 1.1). I first searched open data repositories: dryad.com 133 

and https://bansallab.github.io/asnr/about.html (“A social network repository” or ASNR; Sah et al., 2019) on 134 

Jan 5, 2022. Next, I used the search engine googlescholar.com with the keywords “animal” and “social net- 135 

work”. I searched the citation network of the first 60 hits upward and downward. The cutoff number 60 was 136 

chosen as a tradeoff between the risk of missing a poorly-cited study and the risk of oversight due to the sheer 137 

task at hand. If the title or abstract indicated that data corresponding to the above criterion existed, I elicited 138 

data sharing over email. This procedure yielded data from 26 species and three taxonomic classes.  139 

These original studies varied in the way they quantified dyadic association rates. The most frequent 140 

method was to use the co-occurrence frequency relative to each associate’s own frequency in the dataset. Several 141 

studies however reported indexes derived from activity time budget analyses, and a few reported a discretized 142 

index of association strength. To standardize the link strengths across datasets, I rescaled the link strengths 143 

between 0 and 1 using a logit-transformation so that the median point between the weakest and strongest links 144 

of each network was attributed strength 0.5.  145 

The seasonal timing of data collection was decided by the original authors. I did not select data according 146 

to that criterion. 147 

1.3. Verifying the natural transitivity of strong links 148 

I used two tests of the natural transitivity of strong links. First, I compared the unweighted transitivity 149 

score 𝒞0 and the weighted transitivity score 𝒞1 (Opsahl & Panzarasa, 2009). If strong links are more transitive 150 

than weak links, then triplets made of strong links are more likely to be closed than triplets made of weak links, 151 

and thus I expect 𝒞1 > 𝒞0. 152 

 Second, I manipulated the networks by removing an increasing proportion of the weakest links. I com- 153 

puted the quantity 𝑏(𝑄) =
𝒞0(𝑄)−𝒟0(𝑄)

1−𝒟0(𝑄)
 where Q is the proportion of remaining links and 𝒟0 is the edge density. 154 

If 𝒟0(𝑄) = 1, then also 𝒞0(𝑄) = 1 and 𝑏(𝑄) = 1. Note that this is the only section where 𝒞0 and 𝒟0 depend 155 

on Q. In the rest of the paper, I report the values corresponding to Q = 100%, i.e., unmanipulated networks, 156 

meaning that 𝒟0 = 𝒟0(100%) and 𝒞0 = 𝒞0(100%).    157 

The quantity 𝑏(𝑄) takes value 0 under the null hypothesis that the manipulated network is not more 158 

transitive than expected from the overall probability of a link occurring anywhere in the manipulated network. 159 

Otherwise, 𝑏(𝑄) varies between −
𝒟0(𝑄)

1−𝒟0(𝑄)
 for a completely intransitive network and +1 as the upper boundary 160 
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value for completely transitive networks. I expected b to increase as Q decreased, i.e., as I removed links. I 161 

regressed the logit-transformed b against logit-transformed Q in interaction with the initial edge density, using 162 

a nonparametric spline model (function gam in R-package mgcv).  163 

1.4. Cross-species regressions 164 

In sections 1.5 to 1.7 below, I perform regressions between population-specific metrics. A potential source 165 

of spurious inference in such regressions is phylogenetic inertia, i.e., when the dependent variable is conserved 166 

along the phylogeny, and thereby pairs of closely related taxa essentially duplicate one another. If not corrected 167 

for, this mechanism can lead to over-estimate the effect sizes or the statistical significance of the results. Phylo- 168 

genetic generalized models, which force the residuals of related species to be more similar than those of non 169 

related species, have become the default method to address the issue (Paradis et al., 2004). However, this statis- 170 

tical method requests adequate sample sizes to perform, and is only necessary if there is indeed a problematic 171 

phylogenetic structure in the data. The present study has 26 species for 23 genera, and only 2.4 species per 172 

taxonomic order on average (median: 1). In that situation, deep phylogenetic divergences expectedly take prec- 173 

edence. The potential bias can be either major if e.g., all mammals or all primates exhibited the same values, or 174 

undetectable if e.g., the variance between the 8 primates was larger than the variance across taxonomic orders. 175 

Given these constraints and predictions, and given that preliminary analyses indicated that the second scenario 176 

was most likely (Table 1), I replaced the correlated error structure by a simple random effect of the taxonomic 177 

order. Results were qualitatively similar if removing that effect altogether.       178 

1.5. The rarity of strong links 179 

I computed the network-level Gini coefficient of inequalities between link strengths as 𝐺 = 180 

1

2𝑛2𝑥̅
∑ ∑ |𝑥𝑗 − 𝑥𝑖|

𝑛
𝑗=1

𝑛
𝑖=1  where the 𝑥𝑖 are the link strengths and n is the total number of links. The null hypothesis 181 

that strong links are not rare was represented by the uniform distribution of link strength, which corresponds 182 

to G = 0.33. If a few strong links were much stronger than the bulk of the links, G would tend towards 1. If all 183 

links were of equal strength, G = 0. I tested the prediction that strong links should be rarer in dense and transitive 184 

networks using a linear model with the logit-transformed Gini index as dependent variable and the logit-trans- 185 

formed edge density of the networks as predictor.  186 

1.6. Dissimilarity between the three links in each triadic relationship 187 

The objective here is to compare the three link strengths in each triad. Hereafter, a triad is any three indi- 188 

viduals with at least one non-zero link between two of the three individuals. Triads therefore include closed 189 

triangles, open triplets, but also “false triplets” corresponding to a dyad plus a disconnected individual.  190 

The coefficient of variation is inadequate for this purpose because it captures the average pairwise differ- 191 

ence, and not the variability between the pairwise differences. Many different combinations of three link 192 

strengths can yield the same coefficient of variation. Therefore I derived new triad-level dissimilarity scores. 193 

For each triad, I denoted a, b, and c the three link strengths in increasing order. They varied between 0 (no link) 194 
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and 1 (maximum recorded strength). I measured the dissimilarity between them with 𝜔 the rescaled sum of 195 

proportional pairwise differences, and g the triad-level Gini coefficient (Péron, 2022): 196 

Eq. 1a 
𝜔 =

𝑎 − 𝑐

𝑎
+
𝑏 − 𝑐

𝑎
− 1 =

𝑏 − 2𝑐

𝑎
 

Eq. 1b 
𝑔 =

1

2

(𝑎 − 𝑏) + (𝑏 − 𝑐) + (𝑎 − 𝑐)

𝑎 + 𝑏 + 𝑐
=

𝑎 − 𝑐

𝑎 + 𝑏 + 𝑐
 

These formulae reduces the 3D space {𝑎, 𝑏, 𝑐} into a 2D space {𝜔, 𝐺}. For ease of interpretation, I suggest 197 

to divide the {𝜔, 𝑔} space into four quadrants corresponding to different triad configurations (explained in 198 

Figure 3).  199 

Next, I computed graph-level triadic dissimilarity scores based on ω and g. They are simply the average of 200 

ω and g over all the triads in the network, yielding the new network-level statistics 𝒞𝜔 and 𝒞𝑔.  201 

Eq. 2a 
𝒞𝜔 =

1

𝒯̃
∑𝜔𝑡

𝒯̃

𝑡=1

 

Eq. 2b 
𝒞𝑔 =

1

𝒯̃
∑𝑔𝑡

𝒯̃

𝑡=1

 

The index t refers to the triad number (𝒯̃ triads in total). Eqs. 2a-2b are superficially similar to the weighed 202 

transitivity score (Opsahl & Panzarasa, 2009). However I replaced the triplet strength by the triplet dissimilarity 203 

scores. The code to compute 𝒞𝜔 and 𝒞𝑔 from the adjacency matrix is provided (Appendix S1). 204 

I then devised some permutation procedures to assess whether the observed dissimilarities exceeded the 205 

expectation at random (code in Appendix S1). Test A: I generated full random networks by drawing 10 groups 206 

with individual probability of occurrence proportional to their frequency in the original data and computing 207 

the link strength as the co-occurrence frequency in the 10 groups. Thus, the expected association strength be- 208 

tween two individuals A and B was the frequency of A times the frequency of B. Test B: To represent the edge 209 

density of the original network, I removed some links at random. To do that, I drew an Erdős–Rényi graph with 210 

the same edge density as the original network. I then assigned link strengths line by line in the adjacency matrix, 211 

by drawing them from the observed link strengths departing from the focal individual. I then rescaled the link 212 

strengths so that the sum of the link strengths in each line was proportional to the observation frequency of the 213 

focal individual in the original dataset. This process generated a random matrix with an excess of zeros but the 214 

same magnitude of across- and within-row variation in link strength as the original data. Then I drew 100 215 

groups by first drawing an individual and then its associates based on that matrix. From these 100 groups, I 216 

computed dyadic co-occurrence frequencies. These frequencies represented the final link strength of the simu- 217 

lation. Compared to the initial Erdős–Rényi graph, some links were created and some disappeared during the 218 

group drawing process. In both tests, I computed the Mahalanobis distance between the simulated and ob- 219 

served 𝒞𝜔 and 𝒞𝑔 scores. The Mahalanobis distance M measures the distance between a point P (here, the two 220 
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observed dissimilarity scores 𝒞𝜔 and 𝒞𝑔) and a distribution characterized by a mean P0 and a variance-covar- 221 

iance matrix S, according to the formula 𝑀 = √(𝑃 − 𝑃0)
𝑇 ∙ 𝑆−1 ∙ (𝑃 − 𝑃0). I computed P0 and S from the cloud 222 

of simulated 𝒞𝜔 and 𝒞𝑔 values. I then assessed the Mahalanobis distance against the chi-squared distribution 223 

with two degrees of freedom.  224 

If test A was not significant, I concluded that the dissimilarities were explained by variation in individual 225 

frequencies in the dataset, i.e., the dissimilarities were not large. If test B was not significant, I concluded that 226 

the dissimilarities were large but mostly explained by missing links, rather than by the variation in the strength 227 

of existing links. If both tests A and B were significant, I concluded that there was either an excess of weak 228 

triplets closed by one strong link or an excess of balanced triangles made of three equally strong links, which 229 

an examination of the ω and g scores could decipher. 230 

I also devised a test that focused on the lack of “forbidden triads” sensu Granovetter, i.e., strong triplets 231 

closed by a weak link. For this test C, I simply shuffled the link strengths while conserving other network as- 232 

pects (Opsahl et al., 2008). I recomputed the ω and g scores after the shuffle. I used a chi-squared test with four 233 

degrees of freedom to determine whether the observed quadrant distribution differed from the expectation 234 

from shuffled networks. I expected a significant lack of triads in quadrant 3 (“forbidden triads”). This could 235 

also complete tests A and B by pointing out whether quadrant 1 (balanced triangles made of three equally 236 

strong links) or quadrant 2 (weak triplets closed by one strong link) were in excess.   237 

I compared the new transitivity scores across studies using linear mixed models with the logit-transformed 238 

𝒞𝜔 and 𝒞𝐺 as dependent variables and the logit-transformed edge density as predictor. Because the occurrence 239 

of modules of individuals that interact more amongst themselves than with the rest of the network could be the 240 

cause of triad-level dissimilarities, I also considered the additive effect of the network modularity.  241 

1.7. The fragmentation of the subnetwork of strong ties  242 

After having delineated the aforementioned modules (see section 1.1), I computed the fragmentation score 243 

as the overall network size divided by the average size of the modules that contained more than one individual. 244 

If the score is high, the network is fragmented into a large number of small modules, and inversely. I used 245 

notation ℱ𝑤 and ℱ0 for the weighted and unweighted versions of the fragmentation score, respectively. ℱ𝑤 246 

is computed when the community-finding algorithm accounts for link strength and ℱ0 is computed when it 247 

does not. I then computed the fragmentation ratio 
ℱ𝑤−ℱ0

ℱ0
. The ratio quantifies how much more fragmented the 248 

subnetwork of strong links is, compared to the network as a whole (Appendix S2 for a simulation). A large ratio 249 

indicates that strong links occur in many small modules, e.g., there is more than one module of strong links in 250 

each module of weak links (a module can contain a single link and two individuals). A small ratio indicates that 251 

there is on average about one module of strong links embedded in each module of weak links. A negative ratio 252 

indicates that some of the modules do not feature any strong link. In other words, the fragmentation ratio 
ℱ𝑤−ℱ0

ℱ0
 253 
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increases when the subnetwork made of only the stronger ties is more fragmented than the network as a whole. 254 

I predicted that this ratio should be positive and increase with the edge density. I tested these predictions using 255 

a linear model with the fragmentation ratio as the dependent variable and the logit-transformed edge density 256 

as predictor.  257 

2. Results 258 

2.1. Verifying the natural transitivity of strong links 259 

The weighted transitivity score 𝒞1 was on average larger than the unweighted score 𝒞0 but only by 2% 260 

(± SD: 6%) (Table 1). This suggests that strong triplets were too rare to influence the computation of 𝒞1 (cf. next 261 

section).   262 

In the second test, as I removed an increasing proportion of the weakest links, there was moderate evidence 263 

that the transitivity increased more than the edge density (Fig. 1a; McFadden’s r² = 0.06). Statistically speaking 264 

the effect was however significant (likelihood ratio test against the intercept-only model: df = 8.3, deviance = 265 

6.3, F-test P < 0.001). The evidence mostly came from networks of intermediate initial edge density (Fig. 1a: grey 266 

polygon; likelihood ratio test against the model without the interaction: df = 7.7, deviance = 5.8, P < 0.001, 267 

McFadden r² for the interaction = 0.04). The predicted increase in b from about 0.45 to 0.6 (grey curve) would 268 

translate in approximately a +0.08 gain in transitivity. Thus, the increase in transitivity with Q was moderate 269 

on average across studies. However, the increase was clear-cut in at least some of the studies (e.g., Fig. 1b). 270 

Fig. 1: (a) Model predictions illustrating that, when an increasing proportion of the weakest links is removed (x-axis), the 271 

network transitivity 𝒞0 is increasingly larger than expected from the edge density 𝒟0 (y-axis). (b) Raw data for a single 272 

population. The data document group membership in a killer whale (Orcinus orca) population (Weiss et al. 2020). Thick 273 

black lines indicate the 10% strongest links. 274 

 275 

 276 

(b) Killer whales only (Weiss et al. 2020)
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2.2. The rarity of strong links 277 

56% of the studies reported distributions of link strength that were more inegalitarian than a uniform dis- 278 

tribution (Fig. 2). However, most of the dense networks exhibited inegalitarian properties, as the Gini coefficient 279 

increased with the edge density (Wald’s Z = 4.8, McFadden’s r² = 0.3, ANOVA: P = 0.002; Fig. 2). In other words, 280 

strong links were rarer in dense than sparse networks.  281 

Fig. 2: The Gini coefficient (y-axis) increases with the edge density 𝒟0 of the network (x-axis). The color scale corresponds 282 

to the transitivity score 𝒞0. The Gini coefficient is a measure of dispersion based on the pairwise differences in link strength 283 

among all the connected dyads in the network. The highest Gini coefficient in the present study (acorn woodpecker Melan- 284 

erpes formicivorus; data: Shizuka et al., 2022) means that 95% of the recorded associations occurred between 5% of the con- 285 

nected dyads. The dashed line corresponds to the null hypothesis that the distribution of link strength is uniform.  286 

 287 

 288 

2.3. Dissimilarity between the three links in each triadic relationship 289 

As the edge density increased, the networks dissimilarity scores went from quadrant 4 (mostly false tri- 290 

plets) to quadrant 1 (mostly balanced triangles) through quadrant 2 (mostly weak triplets closed by one strong 291 

link) while avoiding quadrant 3 (mostly strong triplets closed by one weak link; “forbidden triad”) (Fig. 3). 292 

Triplets in quadrants 1 and 2 were more frequent and quadrant 3 was rarer than expected from shuffled net- 293 

works (test C) (Fig. 3). There was strong evidence that the excess of quadrants 1 and 2 was due to the occurrence 294 

of distinct modules, because both the 𝒞𝜔 and 𝒞𝑔 score correlated with the network modularity, even after 295 

accounting for the edge density (respectively, Z = -0.5, r²=0.01, P = 0.001 and Z = 6.2, r²=0.43, P <0.001; Table 1). 296 

The 𝒞𝜔 and 𝒞𝑔 scores nevertheless captured information neither conveyed by the modularity score nor by the 297 

usual transitivity score (Appendix S3).  298 
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Fig. 3: (a) Graph-level triadic dissimilarity scores 𝒞𝑔 and 𝒞𝜔 in 26 species (see methods for the definition). The color scale 299 

corresponds to the edge density 𝒟0. The grey outline delineates the domain of possible (𝜔, 𝑔) values. The pictograms rep- 300 

resent the six extreme cases of triads. Triplets correspond to triads where one individual A is associated with two different 301 

individuals B and C. If the triplet is closed by a link between B and C, it is called a triangle. If the three links in the triangle 302 

are equally strong, the triad falls in the lowerleft corner of the plot. Different triangular configurations correspond to differ- 303 

ent other sections of the plot, a delineated by the four quadrants 1 to 4. A false triplet is a triad made of a dyad plus a 304 

disconnected singleton, corresponding to the rightmost part of the plot. (b) Triad-level dissimilarity scores summarized 305 

over two categories of edge density and over the four quadrants. The black outline indicates the expected distribution from 306 

test C, demonstrating the lack of “forbidden triads” (quadrant 3) and the excess of triangles where the closing link is strong 307 

(quadrant 1 and quadrant 2).  308 

 309 

 310 

In most studies, including all the studies that involved more than 35 individuals, both permutation tests A 311 

and B were positive (Table 1). This confirmed that the excess of quadrants 1 and 2 was not due to links missing 312 

at random or to variation in individual frequency of occurrence. Yet, in a few studies, the dissimilarities were 313 

as expected under one of the null models. In networks that were both small and dense, I found no evidence that 314 

the triads were any different from those of a full network (Table 1: Poecila reticulata, Macaca assamensis, Macaca 315 

fuscata: PA>0.05). In the proximity logs of barn swallows Hirundo rustica, of one of the subpopulations of elk 316 

Cervus canadensis, and in the Nilgiri langur Trachypithecus johnii, the triadic dissimilarities could apparently be 317 

created by links missing at random (PB>0.05).   318 

2.4. The fragmentation of the subnetwork of strong ties  319 

Accounting for link strength increased the fragmentation score on average by 35% (±SD 50%) (Fig. 4 and 320 

Fig. 1b: average fragmentation ratio 0.35). The fragmentation ratio increased with edge density (Z = 2.3, r² = 0.09, 321 
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P = 0.003; Fig. 4). These results mean that most modules featured at least one strong link; and that within each 322 

module, strong links tended to be isolated or to form several small clusters rather than to occur as a single 323 

cluster of strong links per module. The phenomenon increased in intensity as the network edge density in- 324 

creased.  325 

Fig. 4: The fragmentation ratio (y-axis) increases with the edge density 𝒟0 of the network (x-axis). The color scale corre- 326 

sponds to the transitivity score 𝒞0. The fragmentation ratio is the proportional difference between the weighted and un- 327 

weighted fragmentation scores. The highest fragmentation ratio in the present study (a low density population of elk Cervus 328 

canadensis; data: Webber & Vander Wal, 2020) means that the weighted network was 3 times more fragmented than the 329 

unweighted network. 330 

 331 

 332 

3. Discussion 333 

By reanalyzing 26 published datasets of animal association networks, I first retrieved a major result of the 334 

field, namely that strong links are more transitive than weak links (Fig. 1). However, the effect was maybe not 335 

as strong as expected. My explanation is that, in many of the studied networks, even the strongest associations 336 

were not strong enough to mechanistically force transitivity. In addition, a few of the networks that I included 337 

feature minimal variation in link strength. Nevertheless, in the studies that were not affected by any of these 338 

two issues, the increase in transitivity with link strength was clear-cut (e.g., Fig. 1b). Next, I observed three ways 339 

in which the frequency and position of strong links offset their natural transitivity. First, strong links became 340 

rarer as the edge density and overall transitivity increased (Fig. 2). Second, the three links in each triangle were 341 
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mostly dissimilar, more dissimilar than expected, and increasingly dissimilar as the edge density and overall 342 

transitivity increased (Fig. 3). Third, the subnetworks of strong links were increasingly fragmented as the edge 343 

density and the overall transitivity increased (Fig. 4). These results do not challenge the strength of weak ties 344 

paradigm (Granovetter, 1973). Indeed the paradigm described some of the networks very well (Fig. 1b). How- 345 

ever, in many of the included studies, most ties were weak, making the strength of weak ties a somewhat tau- 346 

tological property.  347 

These results may help explain why cooperative behaviors are not more widespread than they are among 348 

group-living vertebrates. First, cooperation requires stable relationships (Nowak, 2006; Teunissen et al., 2021). 349 

I found these to be increasingly rare as the overall gregariousness, the number of association partners, increased 350 

(Fig. 2). This suggests that vertebrate social groups can either be dense or stable. Upper limits on the number of 351 

simultaneous partners, or a negative effect of existing relationships on the probability to create new ones, might 352 

be involved (Dávid-Barrett & Dunbar, 2013; Stadtfeld et al., 2020). Second, I found that stable transitive motifs 353 

were fewer and smaller than what they could have been. Compared to intransitive networks, stable transitive 354 

motifs offer more pathways for the benefits of collaboration to be collected, e.g., via indirect reciprocity (Block, 355 

2015) and contributions towards common goods (Mielke et al., 2019). Stable transitive motifs might also facili- 356 

tate the policing and coercion of selfish associates for the same reasons. The scarcity and small size of stable 357 

transitive motifs would not help cooperative behaviors to emerge. Overall, my observations help explain why 358 

many group-living vertebrates do not exhibit advanced cooperative behaviors, or why cooperative behaviors 359 

are rarely expressed. Note however the alternative interpretation that stable transitive motifs may be rare and 360 

small because cooperation does not bring enough benefits. In addition, as mentioned earlier, a functional re- 361 

sponse is also possible, in which individuals navigate their social environment in a way that is analogous to the 362 

way resource selection occurs in the physical environment (Holling, 1959). More precisely, the marginal benefit 363 

of an additional stable relationship might decrease with the number of pre-existing stable relationships, leading 364 

to a concave relationship between the number of potential partners (as proxied by the edge density) and the 365 

selection of specific partners. Formal tests would require dynamic data rather than aggregated data, so that a 366 

dynamic model of link creation, stability, and activation can be fitted, while taking individual attributes such 367 

as kin relationships into account (e.g, Snijders et al., 2010).     368 

Importantly, the patterns that I report do not necessarily emerge from individual decisions alone. Environ- 369 

mental and demographic variation clearly contribute to network structure. For example, the fragmentation ratio 370 

changed from -0.3 to +2.1 between a dense subpopulation and a sparse subpopulation of elk Cervus canadensis 371 

(data: Webber & Vander Wal, 2020). On the other hand, the observed patterns can be created by relatively 372 

simple social behaviors. Kin-biased associations in particular, especially between mother and offspring, and 373 

associations between breeding male and female, can cause an excess of weak triplets closed by one strong link 374 
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(Péron, 2022). This point is important because different species have different hard-wired socio-spatial struc- 375 

tures, e.g., in most mammals, offspring form strong bonds with their mothers that may last past weaning age, 376 

whereas in birds the dominant bond may be between the male and female of a pair. In other words, the patterns 377 

that I report stem from a wide variety of mechanisms. Some are environmental constraints, some are species- 378 

specific evolved social strategies, and others represent individual reactions norms.  379 

In terms of caveats, a major one is that the datasets are not representative of all vertebrate social systems. 380 

First, the literature is biased towards small group sizes, which are easier to monitor. Besides that, social network 381 

methods are not compulsorily used on the most social species. For example, the association network of lionesses 382 

Panthera leo can appear trivial because association is almost obligate within a pride and almost forbidden across 383 

prides. Yet, it is in this context that the strength of weak ties paradigm applies the most (Craft et al., 2011), that 384 

the transitivity expectedly increases the most with link strength, and that cooperation is expectedly the most 385 

beneficial. 386 

Another caveat is that the criteria to determine what constituted an association undoubtedly influenced 387 

the recorded network structures (Gazda et al., 2015). For example, the network drawn from the ritualized em- 388 

braces of brown spider-monkeys Ateles hybridus (Rimbach et al., 2015) was one of the few that scored almost 389 

into quadrant 3 (the “forbidden triad”; Fig. 3). This specific type of association lasts less than a minute (Rimbach 390 

et al., 2015). This would expectedly relax the physical constraint that strong links are compulsorily transitive. 391 

This suggests that the triadic dissimilarity scores 𝒞𝜔 and 𝒞𝑔 can perform as an indicator of the intransitivity 392 

of strong links. Ritualized embraces may obey a principle of preferential attachment to keystone individuals 393 

(Range & Noë, 2005; Schino, 2001), which would create strong triplets featuring a keystone in the middle, closed 394 

by weak or no links between the subordinates. The rudimentary permutation tests A and B are however not 395 

suited to formally test such hypotheses. Here also, formal tests would require dynamic data rather than aggre- 396 

gated data. Nevertheless, the statistics developed for this study captured information not summarized in other 397 

network-level metrics (Appendix S3). They can therefore help quantify the socio-spatial structure of different 398 

species and populations, the extent to which this structure favors the evolution of cooperation, and the social 399 

network response to changes that influence the costs and benefits of sociality.  400 

 401 

Supplementary Materials: Appendix S1: R script to compute the dissimilarity-weighted transitivity scores and to perform 402 
the quadrant and distance tests. Appendix S2: Simulation study supporting the use of the fragmentation ratio to quantify 403 
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analysis. 405 
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Tables 541 

Table 1: Overall results of the weighted network analysis for the 26 species. Given are the taxonomic order, the type of association (ty = GM: shared subgroup membership, PR: 542 
spatial proximity, CO: physical contact), the number of study individuals N, the edge density 𝒟0, the modularity ℳ, the variance in rescaled edge weights Var, the Gini coeffi- 543 
cient of inequality in link strength G, the fragmentation ratio FR quantifying the fragmentation of the subnetwork of strong links relative to the network as a whole, the un- 544 
weighted transitivity coefficient 𝒞0, the transitivity coefficient weighted for triplet strength 𝒞1, and the triadic dissimilarity scores 𝒞𝜔 and 𝒞𝑔. “q.” gives the quadrants that 545 
were more frequent than expected in test C. “Ref.” is the original study and “ASNR” is the reference number in “A social network repository” (Sah et al., 2019; https://bansal- 546 
lab.github.io/asnr/about.html). 547 

Species 
 

Tax. Order ty N 𝓓𝟎 𝓜 Var G FR 𝓒𝟎 𝓒𝟏 𝓒𝝎 𝓒𝒈 Test A Test B Test C q. Ref. ASNR 

Poecilia 
reticulata 

Trinidad 
guppy 

Cyprinodontif
ormes 

PR 8.7 
(8; 10) 

0.97 
(0.91; 1) 

-0.07 
(-0.10; -
0.05) 

0.1003 
(0.0382; 
0.2035) 

0.35 
(0.31-
0.43) 

0.67 (0-
1) 

0.97 
(0.92; 1) 

0.98 
(0.94; 1) 

-0.02 
(-0.13; 
0.16) 

0.48 
(0.36; 
0.68) 

0.06-
0.24 

0.004-
0.03 

0.38- 
0.45 

- (Krause et al., 
2017) 

 

Melanerpes 
formicivorus 

Acorn 
woodpecker 

Piciformes GM 58 0.42 0.07 5*10-4 0.9 -0.21 0.78 0.78 -0.03 0.68 <0.001 <0.001 <0.001 Q1 (Shizuka et al., 
2022) 

 

Cacatua 
galerita 

Sulphur-
crested 
cockatoo 

Psittaciformes GM 77 
(69; 88) 

0.20 
(0.13; 
0.37) 

0.27 
(0.12; 
0.39) 

0.0035 

(5*10-4; 

0.0067) 

0.47 
(0.38-
0.53) 

0.19 (-
0.09-
0.41) 

0.60 
(0.54; 
0.64) 

0.61 
(0.55; 
0.65) 

0.08 
(0.04; 
0.12) 

0.86 
(0.74; 
0.91) 

<0.001 <0.001 <0.001 Q1 (Aplin et al., 
2021) 

 

Acanthiza 
reguloides 

Buff-rumped 
thornbill 

Passeriformes GM 62 0.61 0.05 0.0025 0.4 0.67 0.76 0.77 0.04 0.54 <0.001 <0.001 <0.001 Q1-
Q2 

(Farine & 
Milburn, 2013) 

451 

Zonotrichia 
atricapilla 

Golden-
crowned 
sparrow 

Passeriformes GM 37 
(27; 46) 

0.40 
(0.34; 
0.47) 

0.23 
(0.22; 
0.24) 

0.0125 

(0.006; 

0.0189) 

0.5 
(0.46-
0.53) 

0.42 
(0.33-
0.5) 

0.64 
(0.58; 
0.69) 

0.67 
(0.61; 
0.74) 

0.12 
(0.1; 
0.13) 

0.76 
(0.75; 
0.78) 

<0.001 <0.001 <0.001 Q1-
Q2 

(Shizuka et al., 
2014) 

441-
442 

Hirundo 
rustica 

Rustic swallow Passeriformes CO 17 
(17; 17) 

0.64 
(0.39; 
0.90) 

0.06 
(-0.03; 
0.14) 

0.0087 

(0.0063; 

0.011) 

0.37 
(0.31-
0.43) 

0.25 (0-
0.5) 

0.70 
(0.47; 
0.92) 

0.70 
(0.48; 
0.93) 

-0.06 
(-0.36; 
0.23) 

0.49 
(0.24; 
0.74) 

0.002-
0.005 

0.06-
0.45 

0- 0.3 Q1 (Levin et al., 
2016) 

319-
320 

Macropus 
giganteus 

Eastern grey-
kangaroo 

Marsupialia PR 17 0.67 0.03 0.0089 0.57 1.27 0.84 0.86 -0.10 0.49 <0.001 <0.001 <0.001 Q1-
Q2 

(Grant, 1973) 360 

Loxodonta 
africana 

African 
elephant 

Proboscidea GM 171 
(134-
122) 

0.03 
(0.02; 
0.04) 

0.48 
(0.31; 
0.61) 

0.0018 

(9*10-4; 

0.0028) 

0.2 
(0.12-
0.25) 

-0.01 (-
0.08-
0.05) 

0.33 
(0.32; 
0.36) 

0.33 
(0.32; 
0.36) 

0.04 
(0.02; 
0.05) 

0.97 
(0.96; 
0.98) 

  <0.001 Q1-
Q3 

(Murphy et al., 
2020) 

 

Procavia 
capensis 

Rock hyrax Hyracoidea PR 32 
(20; 44) 

0.31 
(0.16; 
0.52) 

0.35 
(0.10; 
0.50) 

0.0441 

(0.0052; 

0.1679) 

0.35 
(0.29-
0.48) 

0.16 (-
0.33-
0.57) 

0.77 
(0.5; 
0.91) 

0.82 
(0.54; 
0.99) 

0.02 
(-0.07; 
0.12) 

0.86 
(0.7; 
0.93) 

0 – 0.08 <0.001 <0.001 Q2 (Barocas et al., 
2011) 

 

Ateles 
hybridus 

Brown spider-
monkey 

Primates CO 17 0.53 0.01 0.0325 0.63 0.88 0.72 0.74 0.11 0.67 <0.001 <0.001 0.002 Q1-
Q2 

(Rimbach et 
al., 2015) 

443 

Brachyteles 
arachnoides 

Southern 
muriqui 

Primates PR 22 0.72 0.01 0.0097 0.49 2 0.85 0.85 -0.10 0.45 <0.001 <0.001 <0.001 Q1-
Q2 

(Griffin & 
Nunn, 2012) 

378 



2 

 

 

Trachypithecu
s johnii 

Nilgiri langur Primates PR 10 0.29 0.2 0.1404 0.17 0.33 0 0 0.11 0.94 0.001 0.35 0.70 - (Griffin & 
Nunn, 2012) 

375 

Papio 
cynocephalus 

Yellow baboon Primates PR 16 
(10; 25) 

0.28 
(0.10; 
0.60) 

0.28 
(0.05; 
0.46) 

0.0297 

(0.0086; 

0.1205) 

0.08 
(0.03-
0.15) 

0.21 (0-
1) 

0.27 
(0; 0.52) 

0.27 
(0; 0.51) 

0.18 
(0.09; 
0.32) 

0.85 
(0.7; 
0.95) 

0 – 0.02 0.08-
0.34 

0.56- 
0.99 

- (Franz et al., 
2015) 

261-
285 

Macaca 
assamensis 

Assam 
macaque 

Primates PR 13 0.95 -0.03 0.0246 0.6 1 0.95 0.95 -0.29 0.27 0.06 <0.001 0.47 - (Puga-
Gonzalez et 
al., 2018) 

765 

Macaca 
fuscata 

Japanese 
macaque 

Primates PR 11 0.98 -0.09 0.0537 0.38 0 0.98 0.99 -0.09 0.38 0.07 0.001 0.89 - (Puga-
Gonzalez et 
al., 2018) 

760 

Macaca 
tonkeana 

Tonkean 
macaque 

Primates CO 25 0.60 0.06 0.0074 0.48 0.5 0.63 0.63 0.2 0.59 <0.001 <0.001 0.42 - (Griffin & 
Nunn, 2012) 

369 

Otospermophi
lus beecheyi 

California 
ground-
squirrel 

Rodentia PR 60.5 
(60; 61) 

0.17 
(0.14; 
0.19) 

0.36 
(0.34; 
0.39) 

0.0059 

(0.0034; 

0.0083) 

0.45 
(0.42-
0.48) 

0.29 
(0.15-
0.43) 

0.46 
(0.44; 
0.48) 

0.48 
(0.45; 
0.50) 

0.09 
(0.09; 
0.09) 

0.90 
(0.89; 
0.91) 

<0.001 0.004 <0.001 Q1-
Q2 

(Smith et al., 
2018) 

744,746 

Syncerus 
caffer 

African buffalo Cetartiodactyl
a 

GM 64 0.70 0.12 0.0684 0.53 0.5 0.84 0.90 -0.05 0.68 <0.001 <0.001 <0.001 Q2 (Cross et al., 
2004) 

 

Cervus 
canadensis 

Elk Cetartiodactyl
a 

PR 26 
(23; 29) 

0.26 
(0.18; 
0.37) 

0.12 
(0.11; 
0.12) 

0.0084 

(0.0046; 

0.0143) 

0.77 
(0.73-
0.8) 

0.93 (-
0.27-
2.08) 

0.61 
(0.56; 
0.67) 

0.63 
(0.6; 
0.68) 

0.09 
(0.05; 
0.12) 

0.82 
(0.74; 
0.89) 

0 – 0.02 0.03-
0.38 

<0.001 Q3 (Webber & 
Vander Wal, 
2020) 

 

Orcinus orca Killer whale Cetartiodactyl
a 

PR 72 0.70 0.05 0.0048 0.64 1.5 0.79 0.80 -0.04 0.46 <0.001 <0.001 <0.001 Q2 (Weiss et al., 
2020) 

 

Sousa 
sahulensis 

Australian 
humpback-
dolphin 

Cetartiodactyl
a 

GM 50 0.74 0.09 0.0295 0.58 0.5 0.85 0.89 -0.02 0.95 <0.001 <0.001 <0.001 Q2 (Hunt et al., 
2019) 

731 

Tursiops 
truncatus 

Bottlenose 
dolphin 

Cetartiodactyl
a 

PR 189 
(188; 
190) 

0.06 
(0.06; 
0.06) 

0.44 
(0.4; 
0.48) 

0.0022 

(0.0018; 

0.0026) 

0.11 
(0.1-
0.13) 

0.06 (-
0.08-
0.2) 

0.52 
(0.52; 
0.53) 

0.53 
(0.52; 
0.54) 

0.03 
(0.03; 
0.04) 

0.96 
(0.95; 
0.96) 

<0.001 <0.001 <0.001 Q1 (Gazda et al., 
2015) 

336,339 

Equus 
hemionus 

Onager Perissodactyla GM 350 0.15 0.42 0.118 0.37 0.2 0.65 0.82 0.04 0.94 * * * * (Rubenstein et 
al., 2015) 

 

Equus grevyi Grevy’s zebra Perissodactyla GM 81 0.24 0.58 0.1718 0.3 0.2 0.90 0.78 0.03 0.91 <0.001 <0.001 <0.001 Q1-
Q2 

(Rubenstein et 
al., 2015) 

 

Crocuta 
crocuta 

Spotted hyena Carnivora GM 35 
(35; 36) 

0.89 
(0.86; 
0.93) 

0.02 
(0; 0.03) 

0.0058 

(0.0046; 

0.0072) 

0.4 (0.4-
0.41) 

0.32 (-
0.03-1) 

0.92 
(0.89; 
0.96) 

0.93 
(0.9; 
0.97) 

-0.32 
(-0.43; -
0.22) 

0.27 
(0.23; 
0.30) 

<0.001 <0.001 <0.001 Q1-
Q2 

(Holekamp et 
al., 2012) 

357-
359 

Zalophus 
wollebaeki 

Galápagos 
sea-lion 

Carnivora GM 405 0.09 0.51 6*10-4 0.41 0.14 0.40 0.41 0.06 0.94 * * * * (Wolf et al., 
2007) 
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