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Abstract: When the estimated strength of social associations corresponds to the proportion of time spent together, strong 8 

links, those that take up most of the recorded time of individuals, are compulsorily transitive and tend to occur in clusters. 9 

However, I describe three ways in which the frequency and position of strong associations apparently offset the expected 10 

transitivity of strong links in published association networks from 26 species of vertebrates. Instead of occurring in groups 11 

of three, strong links were mostly isolated. When they did occur in clusters, the clusters were small. The phenomena in-12 

creased in intensity as the overall number of links of all strengths and the overall network transitivity increased. Since 13 

stable transitive motifs are beneficial to cooperation, these results can help explain why cooperative behaviors are not more 14 

frequent than they are in group-living vertebrates. Inversely, stable transitive motifs may be rare and small because the 15 

benefits of cooperation do not overcome the costs associated with these motifs. The summary statistics developed for this 16 

study captured information not conveyed by other network-level metrics; thus they may help quantify the socio-spatial 17 

structure of populations and potentially tease apart the environmental, species-specific, and individual drivers. 18 

Keywords: clustering coefficient; graph theory; intransitivity; socio-spatial structure; peer of a peer; epidemiology; strength 19 

of weak ties 20 

 21 

Significance statement: 22 

 Stable transitive motifs are rare and small in 26 species of group-living vertebrates. 23 

 The article describes new network-level statistics of the frequency of strong links, the dissimilarity of link 24 

strengths within triangles, and the relative fragmentation of the subnetwork of strong links. 25 

 Results help explain why cooperation is not more frequent in group-living vertebrates 26 

 27 

  28 
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Introduction 29 

Granovetter (1973) observed that strong friendships between humans tend to be transitive. In other 30 

words, when individual A has two best friends B and C, then B and C are also usually best friends. The 31 

proximate reasons for this transitivity include the “theory of cognitive balance” stating that good friends want 32 

their feelings towards third parties to be congruent (Heider, 1958), and “network homophily”, meaning that 33 

strong friendships tend to emerge from (and to further promote) similarity in cultural tastes etc. (McPherson et 34 

al., 2001). As a result, the networks feature clusters or cliques of individuals that are tightly-knit together. 35 

There are still weak ties between these cliques, which do not obey the same transitivity rules. These weak ties 36 

then perform a major role as the connections between, and the gateways into, the cliques: this is the “strength 37 

of weak ties paradigm” (Granovetter, 1973). 38 

In animal studies, strong ties are also expected to be more transitive than weak ties, but firstly because of 39 

the way social ties are measured as the proportion of time that dyads spend together (Holekamp et al., 2012; 40 

Rubenstein et al., 2015). Indeed, if individual A spends most of its time with B and with C, then B and C also 41 

spend most of their time together. In other words, strong associations cannot be intransitive and should thus 42 

be more transitive on average than weak associations. The resulting stable clusters of closely-knit individuals 43 

promote the evolution of cooperative behaviors and represent a fitness advantage when cooperation is effec-44 

tive (Grinnell et al., 1995; Nowak, 2006; Silk et al., 2009; Teunissen et al., 2021). However, there are also costs to 45 

life in a tight group. Costs include the rapid spread of pathogens (Morrison et al., 2021), reproductive conflicts 46 

and other types of conflicts within the cliques (Datta, 1988; Holekamp et al., 2012), and impaired access to 47 

information during the periods when the weak links are not active (Artime et al., 2017). If these costs exceeded 48 

the benefits, the transitivity of strong links would operate as a constraint rather than an advantage.  49 

The objective of the present paper is to apply several network statistics to decipher whether the transitiv-50 

ity of strong links is offset by the way strong links are distributed in animal association networks. For this 51 

purpose, I assembled a set of published animal association networks from 26 species (see methods). First, I 52 

verified that strong links were indeed more transitive than weak links. Second, I quantified three aspects of the 53 

distribution of link strength in the networks.  54 

(i) The network-level Gini coefficient of inequalities (Gini, 1936) (method section 1.5). This metric is 55 

an indicator of the overall rarity of strong links, i.e., the occurrence of a few very strong links 56 

amidst mostly weak links. For example, a group where mother-offspring bonds are much 57 

stronger than other types of associations would exhibit a high Gini coefficient if the offspring 58 

were few. The alternatives are that strong links are not very different from weak links, or that 59 

most of the links are strong.  60 

(ii) The triadic dissimilarity between the three links in each triangle (a new metric, see method section 61 

1.6). This metric indicates whether strong links more often occur in groups of three, or in an iso-62 
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lated fashion. For example, if breeding pairs travel together and they both avoid other pairs and 63 

evict single individuals from foraging spots (Black & Owen, 1989), strong links (breeding pairs) 64 

would be mostly isolated, leading to an excess of weak triplets closed by a single strong link 65 

(Péron, 2022).    66 

(iii) The fragmentation of the subnetworks of strong links (method section 1.7). This metric indicates 67 

whether, when strong links are not isolated, the clusters of strong links are relatively small or 68 

large. For example, if there is a core group of closely tied individuals amidst a cloud of individu-69 

als that spend most of their time alone, the subnetwork of strong links should appear less frag-70 

mented than the network as a whole. By contrast, if the network is made of family units in which 71 

recent offspring are more tightly linked to their mother than older offspring, then the subnetwork 72 

of strong links, made exclusively of the links between recent offspring and their mothers, would 73 

appear more fragmented than the network as a whole.   74 

If strong links were rare (high Gini coefficient), isolated (high triadic dissimilarity), and if any cluster of 75 

strong links was small (high fragmentation of the subnetwork of strong links), then I concluded that the ex-76 

pected transitivity of strong links was in effect counter-balanced by the distribution of strong links in the 77 

network. In addition, I tested whether these patterns occurred more often or more intensely in networks that 78 

have many links and many transitive motifs compared to networks that have few links and few transitive 79 

motifs. If that was the case, this would suggest a functional response, i.e., a change in the probability to create 80 

specific patterns in the social network with a change in the availability of social partners. For example, the 81 

number of social partners could influence the perceived benefits obtained from stable partners, reinforce or 82 

weaken the effect of existing relationships on the probability to create new relationships, or the attraction 83 

exerted on bonded pairs by other bonded pairs. In practice, I first verified the expected transitivity of strong 84 

links. Next, I developed and applied the aforementioned three network-level statistics and correlated them to 85 

the edge density. 86 

1. Material and methods 87 

1.1. Definitions 88 

Association networks (sometimes termed contact networks) refer to undirected social networks where 89 

connections occur through proximity between individuals. This definition excludes directed networks, such as 90 

dominance relationships, grooming, etc. The links (or ties, or edges) can be weighted by the relative dyadic 91 

association frequency (Holekamp et al., 2012; Rubenstein et al., 2015), hereafter termed the link strength. 92 

Following previous authors (Sah et al., 2019), I considered three types of associations in this study: (i) 93 

physical contact or staying any amount of time within touching distance of associates, (ii) close proximity, a cat-94 

egory in which I pooled nearest neighbor data and data documenting the time spent within a given radius of 95 
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associates (with cutoff distance and duration defined by the original authors of the source studies), and (iii) 96 

shared group membership, which mostly applies in a fission-fusion context.  97 

Triplets correspond to situations where one individual A is associated with two different individuals B 98 

and C. In a transitive association network, most triplets are closed by a link between B and C, thereby forming a 99 

triangle (Granovetter, 1973; Newman et al., 2002). The unweighted transitivity score of an association network, 100 

hereafter denoted   , corresponds to the proportion of closed triangles among all the triplets (Newman et al., 101 

2002). Several adjacent triangles make a transitive motif or a transitive cluster or a clique. Examples of com-102 

pletely intransitive networks include grid-like and tree-like networks (Newman, 2008). Some researchers use 103 

the clustering coefficient instead of the transitivity score which differ from the transitivity score because the 104 

clustering coefficient averages an individual transitivity score whereas the transitivity score averages a triplet 105 

score (Barrat et al., 2004). Importantly, the interpretation of the transitivity score depends on whether the links 106 

are undirected, as is the case in this study, or directed. In dominance networks, the links are directed, and the 107 

transitivity score measures the linearity of the social hierarchy (McDonald & Shizuka, 2013). In association 108 

networks which are the topic of the present study, the links are not directed, and the transitivity score 109 

measures the frequency and size of transitive motifs.  110 

The triplets can be also weighed according to the strength of the links inside of them, in order to generate 111 

a weighted transitivity score (Opsahl & Panzarasa, 2009), hereafter denoted   . If    is larger than   , the 112 

probability that a triplet is closed increases with the strength of the links inside of it, and inversely if    is 113 

smaller than    then weak triplets are on average more likely to be closed than strong triplets (Opsahl & 114 

Panzarasa, 2009).   115 

Another approach to the quantification of transitive clusters is to consider them as modules of individuals 116 

that interact more among themselves than with the rest of the network. Strong links would then correspond to 117 

within-module links and weak links would correspond to cross-module links. The network modularity quanti-118 

fies how distinct these modules are, i.e., how rare and weak are the links between modules (Newman et al., 119 

2002; Pons & Latapy, 2005). In practice, I delineated the modules using the short random walk communi-120 

ty-finding algorithm (routine cluster_walktrap from igraph; Pons & Latapy, 2005). Except when ex-121 

plicitly stated otherwise, I took into account the weight of the links when delineating the modules (argument 122 

weights = E(graph)$weight). I then computed the modularity score following the usual formula 123 

(Newman, 2008). 124 

Lastly the edge density, denoted   , corresponds to the overall number of links in the network divided by 125 

the maximum possible number of links if all individuals were connected to each other. The edge density 126 

measures the overall probability that a link exists between any two individuals.   127 

1.2. Literature search for network association data 128 
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This study uses published data only. Original data were collected in accordance with relevant institu-129 

tional and national guidelines, as explained in the source articles listed in Table 1.  130 

I focused on vertebrates that always or mostly forage in groups and/or always or mostly roost in groups, 131 

but without any criteria regarding the occurrence of cooperative behaviors within those groups. The data 132 

needed to be collected from free-ranging groups with naturally occurring kinship structure, and to document 133 

one of the aforementioned association types (see section 1.1). I first searched open data repositories: dryad.com 134 

and https://bansallab.github.io/asnr/about.html (“A social network repository” or ASNR; Sah et al., 2019) on 135 

Jan 5, 2022. Next, I used the search engine googlescholar.com with the keywords “animal” and “social net-136 

work”. I searched the citation network of the first 60 hits upward and downward. The cutoff number 60 was 137 

chosen as a tradeoff between the risk of missing a poorly-cited study and the risk of oversight due to the sheer 138 

task at hand. If the title or abstract indicated that data corresponding to the above criterion existed, I elicited 139 

data sharing over email. This procedure yielded data from 26 species and three taxonomic classes.  140 

These original studies varied in the way they quantified dyadic association rates. The most frequent 141 

method was to use the co-occurrence frequency relative to each associate’s own frequency in the dataset. Sev-142 

eral studies however reported indexes derived from activity time budget analyses, and a few reported a dis-143 

cretized index of association strength. To standardize the link strengths across datasets, I rescaled the link 144 

strengths between 0 and 1 using a logit-transformation so that the median point between the weakest and 145 

strongest links of each network was attributed strength 0.5.  146 

The seasonal timing of data collection was decided by the original authors. I did not select data according 147 

to that criterion. 148 

1.3. Verifying the natural transitivity of strong links 149 

I used two tests of the natural transitivity of strong links. First, I compared the unweighted transitivity 150 

score    and the weighted transitivity score    (Opsahl & Panzarasa, 2009). If strong links are more transi-151 

tive than weak links, then triplets made of strong links are more likely to be closed than triplets made of weak 152 

links, and thus I expect      . 153 

 Second, I manipulated the networks by removing an increasing proportion of the weakest links. I com-154 

puted the quantity      
           

       
 where Q is the proportion of remaining links and    is the edge den-155 

sity. If        , then also         and       . Note that this is the only section where    and    156 

depend on Q. In the rest of the paper, I report the values corresponding to Q = 100%, i.e., unmanipulated 157 

networks, meaning that             and            .    158 

The quantity      takes value 0 under the null hypothesis that the manipulated network is not more 159 

transitive than expected from the overall probability of a link occurring anywhere in the manipulated net-160 

work. Otherwise,      varies between  
     

       
 for a completely intransitive network and +1 as the upper 161 
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boundary value for completely transitive networks. I expected b to increase as Q decreased, i.e., as I removed 162 

links. I regressed the logit-transformed b against logit-transformed Q in interaction with the initial edge den-163 

sity, using a nonparametric spline model (function gam in R-package mgcv).  164 

1.4. Cross-species regressions 165 

In sections 1.5 to 1.7 below, I perform regressions between population-specific metrics. A potential source 166 

of spurious inference in such regressions is phylogenetic inertia, i.e., when the dependent variable is con-167 

served along the phylogeny, and thereby pairs of closely related taxa essentially duplicate one another. If not 168 

corrected for, this mechanism can lead to over-estimate the effect sizes or the statistical significance of the 169 

results. Phylogenetic generalized models, which force the residuals of related species to be more similar than 170 

those of non related species, have become the default method to address the issue (Paradis et al., 2004). How-171 

ever, this statistical method requests adequate sample sizes to perform, and is only necessary if there is indeed 172 

a problematic phylogenetic structure in the data. The present study has 26 species for 23 genera, and only 2.4 173 

species per taxonomic order on average (median: 1). In that situation, deep phylogenetic divergences expect-174 

edly take precedence. The potential bias can be either major if e.g., all mammals or all primates exhibited the 175 

same values, or undetectable if e.g., the variance between the 8 primates was larger than the variance across 176 

taxonomic orders. Given these constraints and predictions, and given that preliminary analyses indicated that 177 

the second scenario was most likely (Table 1), I replaced the correlated error structure by a simple random 178 

effect of the taxonomic order. Results were qualitatively similar if removing that effect altogether.       179 

1.5. The rarity of strong links 180 

I computed the network-level Gini coefficient of inequalities between link strengths as 181 

  
 

     
         

 
   

 
    where the    are the link strengths and n is the total number of links. The null hy-182 

pothesis that strong links are not rare was represented by the uniform distribution of link strength, which 183 

corresponds to G = 0.33. If a few strong links were much stronger than the bulk of the links, G would tend 184 

towards 1. If all links were of equal strength, G = 0. I tested the prediction that strong links should be rarer in 185 

dense and transitive networks using a linear model with the logit-transformed Gini index as dependent vari-186 

able and the logit-transformed edge density of the networks as predictor.  187 

1.6. Dissimilarity between the three links in each triadic relationship 188 

The objective here is to compare the three link strengths in each triad. Hereafter, a triad is any three indi-189 

viduals with at least one non-zero link between two of the three individuals. Triads therefore include closed 190 

triangles, open triplets, but also “false triplets” corresponding to a dyad plus a disconnected individual.  191 

The coefficient of variation is inadequate for this purpose because it captures the average pairwise dif-192 

ference, and not the variability between the pairwise differences. Many different combinations of three link 193 

strengths can yield the same coefficient of variation. Therefore I derived new triad-level dissimilarity scores. 194 

For each triad, I denoted a, b, and c the three link strengths in increasing order. They varied between 0 (no 195 
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link) and 1 (maximum recorded strength). I measured the dissimilarity between them with   the rescaled 196 

sum of proportional pairwise differences, and g the triad-level Gini coefficient (Péron, 2022): 197 

Eq. 1a 
  

   

 
 

   

 
   

    

 
 

Eq. 1b 
  

 

 

                 

     
 

   

     
 

These formulae reduces the 3D space         into a 2D space      . For ease of interpretation, I suggest 198 

to divide the       space into four quadrants corresponding to different triad configurations (explained in 199 

Figure 3).  200 

Next, I computed graph-level triadic dissimilarity scores based on ω and g. They are simply the average 201 

of ω and g over all the triads in the network, yielding the new network-level statistics    and   .  202 

Eq. 2a 
   

 

  
   

  

   

 

Eq. 2b 
   

 

  
   

  

   

 

The index t refers to the triad number (   triads in total). Eqs. 2a-2b are superficially similar to the 203 

weighed transitivity score (Opsahl & Panzarasa, 2009). However I replaced the triplet strength by the triplet 204 

dissimilarity scores. The code to compute    and    from the adjacency matrix is provided (Appendix S1). 205 

I then devised some permutation procedures to assess whether the observed dissimilarities exceeded the 206 

expectation at random (code in Appendix S1). Test A: I generated full random networks by drawing 10 groups 207 

with individual probability of occurrence proportional to their frequency in the original data and computing 208 

the link strength as the co-occurrence frequency in the 10 groups. Thus, the expected association strength 209 

between two individuals A and B was the frequency of A times the frequency of B. Test B: To represent the 210 

edge density of the original network, I removed some links at random. To do that, I drew an Erdős–Rényi 211 

graph with the same edge density as the original network. I then assigned link strengths line by line in the 212 

adjacency matrix, by drawing them from the observed link strengths departing from the focal individual. I 213 

then rescaled the link strengths so that the sum of the link strengths in each line was proportional to the ob-214 

servation frequency of the focal individual in the original dataset. This process generated a random matrix 215 

with an excess of zeros but the same magnitude of across- and within-row variation in link strength as the 216 

original data. Then I drew 100 groups by first drawing an individual and then its associates based on that 217 

matrix. From these 100 groups, I computed dyadic co-occurrence frequencies. These frequencies represented 218 

the final link strength of the simulation. Compared to the initial Erdős–Rényi graph, some links were created 219 

and some disappeared during the group drawing process. In both tests, I computed the Mahalanobis distance 220 

between the simulated and observed    and    scores. The Mahalanobis distance M measures the distance 221 

between a point P (here, the two observed dissimilarity scores    and   ) and a distribution characterized 222 
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by a mean P0 and a variance-covariance matrix S, according to the formula          
            . I 223 

computed P0 and S from the cloud of simulated    and    values. I then assessed the Mahalanobis distance 224 

against the chi-squared distribution with two degrees of freedom.  225 

If test A was not significant, I concluded that the dissimilarities were explained by variation in individual 226 

frequencies in the dataset, i.e., the dissimilarities were not large. If test B was not significant, I concluded that 227 

the dissimilarities were large but mostly explained by missing links, rather than by the variation in the 228 

strength of existing links. If both tests A and B were significant, I concluded that there was either an excess of 229 

weak triplets closed by one strong link or an excess of balanced triangles made of three equally strong links, 230 

which an examination of the ω and g scores could decipher. 231 

I also devised a test that focused on the lack of “forbidden triads” sensu Granovetter, i.e., strong triplets 232 

closed by a weak link. For this test C, I simply shuffled the link strengths while conserving other network 233 

aspects (Opsahl et al., 2008). I recomputed the ω and g scores after the shuffle. I used a chi-squared test with 234 

four degrees of freedom to determine whether the observed quadrant distribution differed from the expecta-235 

tion from shuffled networks. I expected a significant lack of triads in quadrant 3 (“forbidden triads”) . This 236 

could also complete tests A and B by pointing out whether quadrant 1 (balanced triangles made of three 237 

equally strong links) or quadrant 2 (weak triplets closed by one strong link) were in excess.   238 

I compared the new transitivity scores across studies using linear mixed models with the 239 

logit-transformed    and    as dependent variables and the logit-transformed edge density as predictor. 240 

Because the occurrence of modules of individuals that interact more amongst themselves than with the rest of 241 

the network could be the cause of triad-level dissimilarities, I also considered the additive effect of the net-242 

work modularity.  243 

1.7. The fragmentation of the subnetwork of strong ties  244 

After having delineated the aforementioned modules (see section 1.1), I computed the fragmentation score 245 

as the overall network size divided by the average size of the modules that contained more than one individ-246 

ual. If the score is high, the network is fragmented into a large number of small modules, and inversely. I used 247 

notation    and    for the weighted and unweighted versions of the fragmentation score, respectively.    248 

is computed when the community-finding algorithm accounts for link strength and    is computed when it 249 

does not. I then computed the fragmentation ratio 
     

  
. The ratio quantifies how much more fragmented the 250 

subnetwork of strong links is, compared to the network as a whole (Appendix S2 for a simulation). A large 251 

ratio indicates that strong links occur in many small modules, e.g., there is more than one module of strong 252 

links in each module of weak links (a module can contain a single link and two individuals). A small ratio 253 

indicates that there is on average about one module of strong links embedded in each module of weak links. 254 

A negative ratio indicates that some of the modules do not feature any strong link. In other words, the frag-255 
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mentation ratio 
     

  
 increases when the subnetwork made of only the stronger ties is more fragmented 256 

than the network as a whole. I predicted that this ratio should be positive and increase with the edge density. 257 

I tested these predictions using a linear model with the fragmentation ratio as the dependent variable and the 258 

logit-transformed edge density as predictor.  259 

2. Results 260 

2.1. Verifying the natural transitivity of strong links 261 

The weighted transitivity score    was on average larger than the unweighted score    but only by 2% 262 

(± SD: 6%) (Table 1). This suggests that strong triplets were too rare to influence the computation of    (cf. next 263 

section).   264 

In the second test, as I removed an increasing proportion of the weakest links, there was moderate evi-265 

dence that the transitivity increased more than the edge density (Fig. 1a; McFadden’s r² = 0.06). Statistically 266 

speaking the effect was however significant (likelihood ratio test against the intercept-only model: df = 8.3, 267 

deviance = 6.3, F-test P < 0.001). The evidence mostly came from networks of intermediate initial edge density 268 

(Fig. 1a: grey polygon; likelihood ratio test against the model without the interaction: df = 7.7, deviance = 5.8, P 269 

< 0.001, McFadden r² for the interaction = 0.04). The predicted increase in b from about 0.45 to 0.6 (grey curve) 270 

would translate in approximately a +0.08 gain in transitivity. Thus, the increase in transitivity with Q was 271 

moderate on average across studies. However, the increase was clear-cut in at least some of the studies (e.g., 272 

Fig. 1b). 273 

2.2. The rarity of strong links 274 

56% of the studies reported distributions of link strength that were more inegalitarian than a uniform 275 

distribution (Fig. 2). However, most of the dense networks exhibited inegalitarian properties, as the Gini coef-276 

ficient increased with the edge density (Wald’s Z = 4.8, McFadden’s r² = 0.3, ANOVA: P = 0.002; Fig. 2). In other 277 

words, strong links were rarer in dense than sparse networks.  278 

2.3. Dissimilarity between the three links in each triadic relationship 279 

As the edge density increased, the networks dissimilarity scores went from quadrant 4 (mostly false tri-280 

plets) to quadrant 1 (mostly balanced triangles) through quadrant 2 (mostly weak triplets closed by one strong 281 

link) while avoiding quadrant 3 (mostly strong triplets closed by one weak link; “forbidden triad”) (Fig. 3). 282 

Triplets in quadrants 1 and 2 were more frequent and quadrant 3 was rarer than expected from shuffled net-283 

works (test C) (Fig. 3). There was strong evidence that the excess of quadrants 1 and 2 was due to the occur-284 

rence of distinct modules, because both the    and    score correlated with the network modularity, even 285 

after accounting for the edge density (respectively, Z = -0.5, r²=0.01, P = 0.001 and Z = 6.2, r²=0.43, P <0.001; 286 

Table 1). The    and    scores nevertheless captured information neither conveyed by the modularity score 287 

nor by the usual transitivity score (Appendix S3).  288 
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In most studies, including all the studies that involved more than 35 individuals, both permutation tests A 289 

and B were positive (Table 1). This confirmed that the excess of quadrants 1 and 2 was not due to links missing 290 

at random or to variation in individual frequency of occurrence. Yet, in a few studies, the dissimilarities were 291 

as expected under one of the null models. In networks that were both small and dense, I found no evidence 292 

that the triads were any different from those of a full network (Table 1: Poecila reticulata, Macaca assamensis, 293 

Macaca fuscata: PA>0.05). In the proximity logs of barn swallows Hirundo rustica, of one of the subpopulations of 294 

elk Cervus canadensis, and in the Nilgiri langur Trachypithecus johnii, the triadic dissimilarities could apparently 295 

be created by links missing at random (PB>0.05).   296 

2.4. The fragmentation of the subnetwork of strong ties  297 

Accounting for link strength increased the fragmentation score on average by 35% (±SD 50%) (Fig. 4 and 298 

Fig. 1b: average fragmentation ratio 0.35). The fragmentation ratio increased with edge density (Z = 2.3, r² = 299 

0.09, P = 0.003; Fig. 4). These results mean that most modules featured at least one strong link; and that within 300 

each module, strong links tended to be isolated or to form several small clusters rather than to occur as a single 301 

cluster of strong links per module. The phenomenon increased in intensity as the network edge density in-302 

creased.  303 

3. Discussion 304 

By reanalyzing 26 published datasets of animal association networks, I first retrieved a major result of the 305 

field, namely that strong links are more transitive than weak links (Fig. 1). However, the effect was maybe not 306 

as strong as expected. My explanation is that, in many of the studied networks, even the strongest associations 307 

were not strong enough to mechanistically force transitivity. In addition, a few of the networks that I included 308 

feature minimal variation in link strength. Nevertheless, in the studies that were not affected by any of these 309 

two issues, the increase in transitivity with link strength was clear-cut (e.g., Fig. 1b). Next, I observed three 310 

ways in which the frequency and position of strong links offset their natural transitivity. First, strong links 311 

became rarer as the edge density and overall transitivity increased (Fig. 2). Second, the three links in each 312 

triangle were mostly dissimilar, more dissimilar than expected, and increasingly dissimilar as the edge density 313 

and overall transitivity increased (Fig. 3). Third, the subnetworks of strong links were increasingly fragmented 314 

as the edge density and the overall transitivity increased (Fig. 4). These results do not challenge the strength of 315 

weak ties paradigm (Granovetter, 1973). Indeed the paradigm described some of the networks very well (Fig. 316 

1b). However, in many of the included studies, most ties were weak, making the strength of weak ties a 317 

somewhat tautological property.  318 

These results may help explain why cooperative behaviors are not more widespread than they are among 319 

group-living vertebrates. First, cooperation requires stable relationships (Nowak, 2006; Teunissen et al., 2021). I 320 

found these to be increasingly rare as the overall gregariousness, the number of association partners, increased 321 
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(Fig. 2). This suggests that vertebrate social groups can either be dense or stable. Upper limits on the number of 322 

simultaneous partners, or a negative effect of existing relationships on the probability to create new ones, 323 

might be involved (Dávid-Barrett & Dunbar, 2013; Stadtfeld et al., 2020). Second, I found that stable transitive 324 

motifs were fewer and smaller than what they could have been. Compared to intransitive networks, stable 325 

transitive motifs offer more pathways for the benefits of collaboration to be collected, e.g., via indirect reci-326 

procity (Block, 2015) and contributions towards common goods (Mielke et al., 2019). Stable transitive motifs 327 

might also facilitate the policing and coercion of selfish associates for the same reasons. The scarcity and small 328 

size of stable transitive motifs would not help cooperative behaviors to emerge. Overall, my observations help 329 

explain why many group-living vertebrates do not exhibit advanced cooperative behaviors, or why coopera-330 

tive behaviors are rarely expressed. Note however the alternative interpretation that stable transitive motifs 331 

may be rare and small because cooperation does not bring enough benefits. In addition, as mentioned earlier, a 332 

functional response is also possible, in which individuals navigate their social environment in a way that is 333 

analogous to the way resource selection occurs in the physical environment (Holling, 1959). More precisely, the 334 

marginal benefit of an additional stable relationship might decrease with the number of pre-existing stable 335 

relationships, leading to a concave relationship between the number of potential partners (as proxied by the 336 

edge density) and the selection of specific partners. Formal tests would require dynamic data rather than ag-337 

gregated data, so that a dynamic model of link creation, stability, and activation can be fitted, while taking 338 

individual attributes such as kin relationships into account (e.g, Snijders et al., 2010).     339 

Importantly, the patterns that I report do not necessarily emerge from individual decisions alone. Envi-340 

ronmental and demographic variation clearly contribute to network structure. For example, the fragmentation 341 

ratio changed from -0.3 to +2.1 between a dense subpopulation and a sparse subpopulation of elk Cervus 342 

canadensis (data: Webber & Vander Wal, 2020). On the other hand, the observed patterns can be created by 343 

relatively simple social behaviors. Kin-biased associations in particular, especially between mother and off-344 

spring, and associations between breeding male and female, can cause an excess of weak triplets closed by one 345 

strong link (Péron, 2022). This point is important because different species have different hard-wired so-346 

cio-spatial structures, e.g., in most mammals, offspring form strong bonds with their mothers that may last 347 

past weaning age, whereas in birds the dominant bond may be between the male and female of a pair. In other 348 

words, the patterns that I report stem from a wide variety of mechanisms. Some are environmental constraints, 349 

some are species-specific evolved social strategies, and others represent individual reactions norms.  350 

In terms of caveats, a major one is that the datasets are not representative of all vertebrate social systems. 351 

First, the literature is biased towards small group sizes, which are easier to monitor. Besides that, social net-352 

work methods are not compulsorily used on the most social species. For example, the association network of 353 

lionesses Panthera leo can appear trivial because association is almost obligate within a pride and almost for-354 

bidden across prides. Yet, it is in this context that the strength of weak ties paradigm applies the most (Craft et 355 
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al., 2011), that the transitivity expectedly increases the most with link strength, and that cooperation is ex-356 

pectedly the most beneficial. 357 

Another caveat is that the criteria to determine what constituted an association undoubtedly influenced 358 

the recorded network structures (Gazda et al., 2015). For example, the network drawn from the ritualized 359 

embraces of brown spider-monkeys Ateles hybridus (Rimbach et al., 2015) was one of the few that scored almost 360 

into quadrant 3 (the “forbidden triad”; Fig. 3). This specific type of association lasts less than a minute 361 

(Rimbach et al., 2015). This would expectedly relax the physical constraint that strong links are compulsorily 362 

transitive. This suggests that the triadic dissimilarity scores    and    can perform as an indicator of the 363 

intransitivity of strong links. Ritualized embraces may obey a principle of preferential attachment to keystone 364 

individuals (Range & Noë, 2005; Schino, 2001), which would create strong triplets featuring a keystone in the 365 

middle, closed by weak or no links between the subordinates. The rudimentary permutation tests A and B are 366 

however not suited to formally test such hypotheses. Here also, formal tests would require dynamic data ra-367 

ther than aggregated data. Nevertheless, the statistics developed for this study captured information not 368 

summarized in other network-level metrics (Appendix S3). They can therefore help quantify the socio-spatial 369 

structure of different species and populations, the extent to which this structure favors the evolution of coop-370 

eration, and the social network response to changes that influence the costs and benefits of sociality.  371 

 372 

Supplementary Materials: Appendix S1: R script to compute the dissimilarity-weighted transitivity scores and to perform 373 

the quadrant and distance tests. Appendix S2: Simulation study supporting the use of the fragmentation ratio to quantify 374 

whether the subnetwork of strong links is more fragmented than the network as a whole. Appendix S3: Principal compo-375 

nent analysis. 376 
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Tables 515 

Table 1: Overall results of the weighted network analysis for the 26 species. Given are the taxonomic order, the type of 516 

association (ty = GM: shared subgroup membership, PR: spatial proximity, CO: physical contact), the number of study 517 

individuals N, the edge density   , the modularity  , the variance in rescaled edge weights Var, the Gini coefficient of 518 

inequality in link strength G, the fragmentation ratio FR quantifying the fragmentation of the subnetwork of strong links 519 

relative to the network as a whole, the unweighted transitivity coefficient   , the transitivity coefficient weighted for 520 

triplet strength   , and the triadic dissimilarity scores    and   . “q.” gives the quadrants that were more frequent than 521 

expected in test C. “Ref.” is the original study and “ASNR” is the reference number in “A social network repository” (Sah et 522 

al., 2019; https://bansallab.github.io/asnr/about.html). 523 

 524 

Figure legends 525 

Fig. 1: (a) Model predictions illustrating that, when an increasing proportion of the weakest links is removed (x-axis), the 526 

network transitivity    is increasingly larger than expected from the edge density    (y-axis). (b) Raw data for a single 527 

population. The data document group membership in a killer whale (Orcinus orca) population (Weiss et al. 2020). Thick 528 

black lines indicate the 10% strongest links. 529 

Fig. 2: The Gini coefficient (y-axis) increases with the edge density    of the network (x-axis). The color scale corresponds 530 

to the transitivity score   . The Gini coefficient is a measure of dispersion based on the pairwise differences in link strength 531 

among all the connected dyads in the network. The highest Gini coefficient in the present study (acorn woodpecker 532 

Melanerpes formicivorus; data: Shizuka et al., 2022) means that 95% of the recorded associations occurred between 5% of the 533 

connected dyads. The dashed line corresponds to the null hypothesis that the distribution of link strength is uniform.  534 

Fig. 3: (a) Graph-level triadic dissimilarity scores    and    in 26 species (see methods for the definition). The color scale 535 

corresponds to the edge density   . The grey outline delineates the domain of possible       values. The pictograms 536 

represent the six extreme cases of triads. Triplets correspond to triads where one individual A is associated with two dif-537 

ferent individuals B and C. If the triplet is closed by a link between B and C, it is called a triangle. If the three links in the 538 

triangle are equally strong, the triad falls in the lowerleft corner of the plot. Different triangular configurations correspond 539 

to different other sections of the plot, a delineated by the four quadrants 1 to 4. A false triplet is a triad made of a dyad plus a 540 

disconnected singleton, corresponding to the rightmost part of the plot. (b) Triad-level dissimilarity scores summarized 541 

over two categories of edge density and over the four quadrants. The black outline indicates the expected distribution from 542 

test C, demonstrating the lack of “forbidden triads” (quadrant 3) and the excess of triangles where the closing link is strong 543 

(quadrant 1 and quadrant 2).  544 

Fig. 4: The fragmentation ratio (y-axis) increases with the edge density    of the network (x-axis). The color scale corre-545 

sponds to the transitivity score   . The fragmentation ratio is the proportional difference between the weighted and un-546 

weighted fragmentation scores. The highest fragmentation ratio in the present study (a low density population of elk 547 

Cervus canadensis; data: Webber & Vander Wal, 2020) means that the weighted network was 3 times more fragmented than 548 

the unweighted network. 549 
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