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Abstract—Magnetoencephalography (MEG) recordings of pa-
tients with epilepsy exhibit spikes, a typical biomarker of the
pathology. Detecting those spikes allows accurate localization
of brain regions triggering seizures. Spike detection is often
performed manually. However, it is a burdensome and error
prone task due to the complexity of MEG data. To address this
problem, we propose a 1D temporal convolutional neural network
(Time CNN) coupled with a graph convolutional network (GCN)
to classify short time frames of MEG recording as containing a
spike or not. Compared to other recent approaches, our models
have fewer parameters to train and we propose to use a GCN
to account for MEG sensors spatial relationships. Our models
produce clinically relevant results and outperform deep learning-
based state-of-the-art methods reaching a classification f1-score
of 76.7% on a balanced dataset and of 25.5% on a realistic,
highly imbalanced dataset, for the spike class.

Index Terms—MEG, Epilepsy, Classification, CNN, GCN

I. INTRODUCTION

Magnetoencephalography (MEG) is a non-invasive tech-
nique to record neural activity with a high temporal and spatial
resolution. A major clinical application of MEG is for the pre-
surgical evaluation of drug-resistant epilepsy to identify brain
regions triggering seizures [1]. MEG recordings of epilepsy
patients present, outside seizures, morphologically defined
events, called interictal spikes. These spikes are focal, visible
only on a subset of MEG sensors, and highly variable among
patients [1]. Their identification in the MEG recordings allows
accurate localization of brain regions triggering seizures, but
is a burdensome task due to the large number of sensors.

For these reasons, automated methods for interictal spike
detection were proposed. Most methods were based on tra-
ditional machine learning models and consisted in extracting
features from short time frames of MEG recordings and then

using a classifier to identify frames with spikes [2]. Recently,
two studies developed deep learning methods, offering more
generalizable and better optimized models compared to those
based on a priori features [3], [4]. Both proposed to use deep
convolutional neural network (CNNs) applied on time frames
of raw MEG data, as shown on the left box of Fig. 1.

Zeng et al. [3] proposed a model called EMS-Net, in which
sensors are split into 39 subgroups based on their spatial
proximity, corresponding to different brain cortical regions.
The authors annotated short MEG time frames (300ms) per
subgroup and implemented a CNN extracting both single-
sensor features and global features, from the subgroup of
sensors. The single-sensor branch of the CNN uses 1D convo-
lutions over time while the global branch uses 2D convolutions
over the MEG time frame. Both feature types are combined
for the final decision. The authors tested their method on
recordings from 22 patients. They demonstrated increased
classification performances compared to traditional machine
learning methods including a support vector machine model
and a logistic regression model trained on the flattened data
from the time frames. Nevertheless, they tackled a simplified
problem by looking at sensors’ subgroups. Training such a
model requires intensive data annotating to get a label per
sensors subgroup, which is very rare in clinical practice where
simpler annotations containing spike timing information only
are most often realized.

Hirano et al. [4] used a large database of 375 annotated
MEG recordings to train and evaluate a 2D CNN, called
FAMED, based on a SE-ResNet [5] to classify MEG time
frames of 2 seconds. Then, the authors developed a segmen-
tation model to delineate the spike within the frame. When
comparing their classification model to EMS-Net, the authors
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Fig. 1. Graphical diagram of the proposed approach. Raw MEG data with annotated spike timings are used as input. Plain line boxes illustrate the Time
convolutional neural network (CNN) model architecture while dashed line boxes and arrows show the graph convolutional network (GCN) components. In
the GCN, sensor-specific features from the Time CNN are used as node features and the normalized geodesic distance between sensors is used to compute
edge weights. The decision block outputs a binary prediction for each short MEG time frame.

found higher classification accuracy with their approach, al-
though they specify that only typical spikes were selected for
the task, which might not be representative of realistic data.

None of the previously proposed approaches accounted for
3D spatial relationships between MEG sensors within the
classification model. However, this information was shown
to be relevant in other medical applications based on sim-
ilar recordings where graph-based models were used to in-
tegrate sensor relationship information [6]. In [7], for ex-
ample, a graph convolutional network (GCN) was used to
distinguish normal from pathological electroencephalography
(EEG) recording time frames of 30 seconds using frequency
features extracted as a prior step. In this context, the proposed
GCN outperformed two comparison models: a fully-connected
neural network and a random forest model trained on the
same frequency features. Nevertheless, to our knowledge, no
previous study considered the use of GCNs in the context of
interictal spike detection [6].

In this work, we present a lightweight Time CNN model
coupled with a GCN for automated interictal spike detection
in raw MEG recordings (Fig. 1). Our method aims to classify
short MEG recording frames as containing an interictal spike
or not. The lightweight Time CNN model extracts sensor-
specific temporal features with 1D convolutional kernels. Cou-
pling our Time CNN with a GCN (Time CNN-GCN model)
allows to model the distances between MEG sensors. Our
main contributions are (1) a lightweight Time CNN model
which outperforms deeper CNN models for automated spike
detection in a balanced and realistic dataset and (2) the
investigation of the benefits of using a GCN to account for
MEG sensors spatial relationships. We test and compare our

models to two state-of-the-art deep learning models [3], [4] on
MEG recordings from a large cohort of 95 epileptic patients.

II. PROPOSED METHOD

A. Problem definition

In this work, the aim is to train a binary classification model
on short time frames of MEG recordings, labeled as containing
a spike or not.

Each time frame can be denoted as Xi ∈ R(ns×nt) where ns
corresponds to the number of MEG sensors S = {S1, ..., Sns}
and nt to the number of time points.

B. Time CNN

The Time CNN model extracts sensor-specific temporal
features using 1D convolution kernels. Its architecture was
inspired from the work by Peng et al. [8]. It is made of five
blocks, each one containing a convolutional layer with a (1
× 5) kernel and varying number of channels (32, 64, 128,
256, 1) followed by a batch normalization layer and leaky
ReLU activation. The first two blocks include a max pooling
layer with a 1D kernel (1x2) to reduce the feature space
dimensionality. The 1D kernels ensure that no information
leaks between the sensors. The output of the CNN is a feature
matrix Zi ∈ R(ns×nf) where nf represents the number of
temporal features for each sensor, i.e., 7. Finally, the feature
matrix is flattened and passed through the decision block made
of four fully connected layers of size (128, 64, 32, 1), the last
one having a sigmoid activation.

C. Coupling with a GCN

In a second time, we propose to insert a GCN between
the convolutional layers and the fully connected layers of the



decision block. To do so, after the final convolutional layer,
the samples Zi are represented as graphs Gi = (V,E) where
nodes are the set of MEG sensors with |V | = ns and E the
set of edges with |E| = ns×(ns−1)

2 as we have an undirected
fully connected graph. E is represented as an adjacency matrix
A ∈ R(ns×ns) with Aj,k = 1 − d(Sj , Sk), where d is
the min-max normalized geodesic distance. Therefore, edges
connecting neighbouring nodes have high weights. Finally, the
output of the CNN, Zi, represents the node feature vectors of
Gi. GCN layers [9] perform convolutions over the graph nodes
resulting in updated node features depending on neighboring
node features, edge weights and trainable parameters. The
GCN contains three graph convolutional layers with hidden
dimensions of (30, 128, 256), followed by a global add pooling
layer, which adds graph node features across nodes, resulting
in one embedding vector of length 256 representing the full
graph Gi. This graph embedding is finally passed through the
decision block as described in section II. B.

III. EXPERIMENTS AND RESULTS

A. Data and preprocessing

The dataset is composed of MEG recordings of 95 epileptic
patients of around 9 minutes each. Recordings were acquired
on a CTF Omega system with 274 sensors. The records of
each patient have been analyzed and annotated by an expert
neurologist who identified interictal spike timings.

As preprocessing steps, recordings were bandpass filtered
(0.5-50Hz) and resampled to 150Hz to ensure that any low-
frequency drift or interference is removed from the signal
and allowing us to focus on the frequency range that is most
pertinent to detect interictal spike. Frames of MEG recordings
of 200ms in length, corresponding to 30 time points, were
created. By using 200ms frames, we can accurately capture
the characteristics of individual spikes, which duration is
approximately 80ms, without losing important information.
Moreover, frames are defined such that they overlap of 60ms
and frames with spikes located on the border of the frame
(<30ms from the border) are considered as spike-free frames.
Over the 95 patients, the number of spike positive frames was
4584 and that of spike negative frames was 360785, which
corresponds to a frame displaying a spike out of ∼80 frames.
Data preprocessing was performed using mne-python [10].

B. Model training

For the model training, we created an artificially balanced
dataset by randomly selecting as many negative frames as
available spike positive frames (around 4600). This allowed
us to significantly reduce the model’s training time.

Five repetitions of 10-folds cross-validation iterations were
employed. For each repetition, folds were split across patients
which ensures that frames from a specific patient are not
spread across folds. Within each cross-validation iteration,
10% of the training patients were assigned to the validation
set.

The training parameters for our model are as follows: weight
initialization using the Xavier method [11], binary cross-
entropy loss function, a maximum number of training epochs
set at 50 with early stopping by monitoring the validation loss.
We used the Adam optimizer [12] with a learning rate of
1e-3 and a batch size of 32. To further prevent overfitting,
dropout layers with a probability of 0.3 were used between
each fully connected layer of the decision block. The model
was implemented using Pytorch [13] and Pytorch Geometric
[14]. Finally, the implementations of the comparison models
were taken from the code made available by Hirano et al.
[4]. For the training of EMS-Net, no sensor subgroups were
used but rather the full list of sensors as no sensor-specific
annotations are available in our data.

C. Results on balanced test data

To test the models on balanced data, we selected as many
negative frames as available spike positive frames within the
test dataset.

TABLE I
CLASSIFICATION PERFORMANCES ON A BALANCED TEST DATASET (%).
METRICS CORRESPOND TO THE AVERAGE AND STANDARD DEVIATION

ACROSS THE 5 REPETITIONS OF 10 FOLDS CROSS-VALIDATION. F1-SCORE,
SPECIFICITY, AND SENSITIVITY ARE FOR THE SPIKE CLASS.

Model Accuracy F1-score Specificity Sensitivity
FAMED 66.8±1.3 66.3±0.7 67.2±5.5 66.4±3.1
EMS-Net 72.9±1.2 69.8±2.0 81.0±1.4 64.8±3.3
Time CNN
(Ours)

76.9±0.7 75.4±1.0 82.0±1.2 71.9±1.7

Time CNN-
GCN(Ours)

77.5±0.6 76.7±0.5 80.0±1.6 75.0±0.8

Table I shows result metrics of our models (Time CNN and
Time CNN-GCN) and state-of-the-art models on a balanced
test dataset. The Time CNN-GCN model outperforms other
models with a classification accuracy of 77.5% and a f1-score
of 76.7% for the spike class, slightly higher than the Time
CNN only (f1-score: 75.4%). The major difference between
our two models is observed on the sensitivity score, which is
higher for the Time CNN-GCN (3.1% difference), indicating
its ability to detect more spikes than the Time CNN only. Our
Time CNN-GCN sensitivity is also higher than the sensitivity
of state-of the art models. This result might be explained by
the fact that the graph edges bring complementary information
allowing to detect more spikes that might be less visible or of
lower amplitude.

For state-of-the-art models, EMS-Net also demonstrates
good performances (accuracy: 72.9%) with a specificity of
81% but lower sensitivity (64.8%), indicating more undetected
spikes. As EMS-Net is deeper than our proposed model,
its training might be less optimal than simpler models. The
FAMED model leads to worse performances (accuracy: 66.8%,
f1-score: 66.3%). This could be explained by the fact that the
FAMED model architecture was initially designed to classify
large frames (∼2 seconds), and might not be optimal for our
problem with smaller frames (200ms). Finally, we observe



lower standard deviation across the 5 repetitions of 10-fold
cross-validation for our models, compared to the state-of-the-
art models, which shows higher stability for our models.

D. Results on imbalanced, realistic test data

Our ultimate goal is to help clinicians by automatically
detecting interictal spikes on minimally preprocessed data and
hence imbalanced data. We evaluated the models trained on
a balanced dataset on imbalanced data. To do so, for each
cross-validation iteration, all frames from the patients from
the test fold are now used to test the model. A threshold
moving strategy is then employed, as done by Zheng et al.
[3], to overcome the differences in data distribution between
the training data (balanced) and testing data (imbalanced).
This method consists in increasing the threshold to binarize
the model probability outputs, which is typically set to 0.5
in a balanced data setting. Thus, the optimal threshold for
each model was found by maximizing the f1-score for the
spike class on all frames of patients from the validation set.
This optimal threshold was then applied to binarize the output
probabilities of the test set.

TABLE II
CLASSIFICATION PERFORMANCES ON AN IMBALANCED TEST DATASET

(%). METRICS CORRESPOND TO THE AVERAGE AND STANDARD
DEVIATION ACROSS THE 5 REPETITIONS OF 10 FOLDS CROSS-VALIDATION.

F1-SCORE, SPECIFICITY, AND SENSITIVITY ARE FOR THE SPIKE CLASS.

Model Accuracy F1-score Specificity Sensitivity
FAMED 96.9±0.4 12.0±1.4 97.9±0.4 16.7 ±1.1
EMS-Net 96.6±0.6 17.1±2.2 97.5±0.7 27.2±2.9
Time
CNN(Ours)

97.9±0.3 25.5±2.3 98.8±0.3 28.5±2.4

Time CNN-
GCN(Ours)

96.9±0.5 20.2±1.4 97.7±0.5 31.5±3.7

Fig. 2. Averaged F1-scores across the 5 repeated 10 folds cross-validation
iterations for different thresholds to binarize model outputs on the imbalanced
dataset.

Table II shows performance metrics obtained with the opti-
mal threshold for each model. Furthermore, Fig. 2 illustrates
the f1-score of each model as a function of the threshold.
For all models, optimal thresholds are above 0.9. We observe
an expected drop of performance compared with the results
on balanced test data (Table I). Among the models, both of

our models outperform state-the-art-models, with the Time
CNN reaching the highest f1-score (25.5%), while EMS-Net
and FAMED reach maximum f1-scores of 17.1% and 12.0%,
respectively.

Second, we observe that, when optimizing the threshold
on the validation data, the Time CNN alone performs better
than when coupled with the GCN, although the opposite was
observed on a balanced test dataset. Indeed, the Time CNN-
GCN tends to detect more spikes also leading to more false
positives, reflected by the lower specificity. Interestingly, Fig.
2 shows that the f1-score of the Time CNN remains low,
around 0.1, and sharply increases for very high thresholds.
This indicates that the Time CNN tends to predict extreme
probabilities (red curve) compared to the Time CNN-GCN,
which produces smoother probability outputs (black curve).
Obtaining such smooth probabilities is potentially more clin-
ically relevant as it could allow better artefact identification.
Finally, the threshold moving technique might not be efficient
and more advanced methods should be considered to handle
the imbalanced nature of the data.

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed novel approaches to analyze
raw MEG data of epileptic patients. First, our Time CNN
demonstrates better results than more complex/deeper models
proposed in the past. Although this finding might be coun-
terintuitive, the superiority of simple models in the context
of medical data analysis has already been demonstrated on
different data type such as chest X-ray images [15] or brain
MRI [8]. Future work investigating the model internal features
should be carried out to understand better this observation.

Then, coupling the Time CNN with a GCN leads to modest
model performance improvements on balanced test data. The
GCN brings complementary information about sensors spatial
localization, which leads to an increased sensitivity. As more
spikes are detected, more false positives are also observed.
Therefore, providing sensors distances as graph edge weights
might not be optimal and other information such as spectral
coherence between sensor data, as done in [7], should be
investigated in future work. Moreover, including more patient
data could improve the Time CNN-GCN model training as it
would bring more diversity in spike spatial localization.

Finally, although our models outperform state-of-the-art
approaches on the imbalanced test data, our results remain
moderate. Using a balanced dataset simplifies model train-
ing but the threshold moving approach does not allow us
to compensate for the high imbalance ratio. Perspective of
improvements include finding a better adapted approach for
model training on the realistic imbalanced dataset with an
adjusted loss function, such as a focal loss [16].

From a clinical perspective, our models demonstrate promis-
ing results for interictal spike detection from electrophysio-
logical recordings. In terms of technical improvements, we
proposed an innovative approach which could be transferred
to other applications for MEG data analysis.
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