
HAL Id: hal-04244254
https://hal.science/hal-04244254v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correction for LST directionality impact on the
estimation of surface upwelling longwave radiation over

vegetated surfaces at the satellite scale
Tian Hu, Jean-Louis Roujean, Biao Cao, Kaniska Mallick, Gilles Boulet, Hua

Li, Zhihong Xu, Yongming Du, Qinhuo Liu

To cite this version:
Tian Hu, Jean-Louis Roujean, Biao Cao, Kaniska Mallick, Gilles Boulet, et al.. Correction for LST di-
rectionality impact on the estimation of surface upwelling longwave radiation over vegetated surfaces at
the satellite scale. Remote Sensing of Environment, 2023, 295, pp.113649. �10.1016/j.rse.2023.113649�.
�hal-04244254�

https://hal.science/hal-04244254v1
https://hal.archives-ouvertes.fr


Remote Sensing of Environment 295 (2023) 113649

Available online 7 June 2023
0034-4257/© 2023 Elsevier Inc. All rights reserved.

Correction for LST directionality impact on the estimation of surface 
upwelling longwave radiation over vegetated surfaces at the satellite scale 

Tian Hu a,*, Jean-Louis Roujean c, Biao Cao d, Kaniska Mallick a,e, Gilles Boulet c, Hua Li d, 
Zhihong Xu b, Yongming Du d, Qinhuo Liu d 

a Department of Environment Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux 4362, Luxembourg 
b Environmental Futures Research Institute, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia 
c Centre d’Etudes Spatiales de la Biosphère, CNES, CNRS, INRA, IRD, UPS, Toulouse 31401, France 
d State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China 
e Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, United States   

A R T I C L E  I N F O   

Edited by Jing M. Chen  

Keywords: 
LST 
Thermal directionality 
Parametric model 
MODIS 
SULR 

A B S T R A C T   

Surface upwelling longwave radiation (SULR) is a major component of the Earth’s radiation budget and directly 
influences the retrieval of evapotranspiration (ET) in the terrestrial ecosystems. Land surface temperature (LST) 
is an Essential Climate Variable (ECV) for direct estimation of SULR. However, accurate retrieval of SULR from 
satellite observations may be severely hindered by the anisotropic properties of land surface targets since most of 
them show marked angular variations in LST. This study aims at investigating the magnitude and impact factors 
of the directional effects of LST on SULR estimation over vegetated surfaces given that angular variation in 
emissivity has a limited impact on SULR estimation over most land surface types. It follows an attempt to correct 
for such effects in SULR estimation. We further explore the possibility to find a viewing direction at which SULR 
estimated from the directional LST can surrogate the hemispherical integration. To do so, a parametric model 
mimicking LST anisotropy with the hot spot is incorporated into the physical temperature-emissivity method. 
Two widely used Moderate Resolution Imaging Spectroradiometer (MODIS) LST products (i.e., MYD11_L2 and 
MYD21_L2) are analyzed. SULR estimates before and after correcting for LST directionality are compared with in- 
situ measurements acquired at 15 sites from the FLUXNET and SURFRAD networks in different regions. Our 
analysis reveals that LST directional effects on SULR estimation exhibit diurnal and seasonal variations, which 
are substantial in spring and summer for the daytime. The effects are negligible (<5 W m− 2) in autumn and 
winter for the daytime except for in arid and semiarid regions. For the night-time, the effects are insignificant 
over all the biomes. Using MYD21 LST, after correction, the average root-mean-square error (RMSE) and bias of 
SULR estimates for all sites decrease by 8 and 8.34 W m− 2 in spring, and by 8.9 and 12.13 W m− 2 in summer. 
Using MYD11 LST, after correction, the average RMSE is between 10 and 15 W m− 2 and the average bias is close 
to zero in all seasons. The RMSE and absolute bias of SULR estimates for sites with low to moderate vegetation 
(LAI <3) is lowered substantially (7–14 W m− 2) after correction. Interestingly, SULR estimates from LST viewed 
at 54◦ backward and hemispherically integrated are close, with differences <3 W m− 2 at most of the sites. These 
findings support a strategy for SULR estimation in ET retrieval over vegetated surfaces from directional LST.   

1. Introduction 

Surface upwelling longwave radiation (SULR) is defined as the sum 
of thermal radiation emitted by the land surface and the first-order re
flected component of downward longwave radiation (DLR) from the 
atmosphere in the wavelength range of 4–100 μm (Cheng and Liang, 
2016; Hu et al., 2017; Hu et al., 2016; Jiao et al., 2015; Wang and Liang, 

2009). SULR represents the total upward thermal radiation flux at the 
Earth’s land surface. It is influenced by multiple factors, notably 
incoming solar radiation, land cover type, soil moisture and topography, 
among others (Jiao et al., 2015; Liang et al., 2010; Wang and Liang, 
2009, 2010). As a key component of surface radiation budget, SULR 
plays an important role in surface energy balance and directly influences 
the retrieval accuracy of evapotranspiration (ET) in the terrestrial 
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ecosystems (Cheng and Liang, 2016; Hu et al., 2019b). It is found useful 
for a wide range of applications such as energy flux partitioning 
(Anderson et al., 2007; Mallick et al., 2018; Mallick et al., 2016; Trebs 
et al., 2021), agriculture water use (Hoffmann et al., 2016), drought 
monitoring (Hu et al., 2020a; Hu et al., 2020b), and global climate 
simulation (Trenberth and Fasullo, 2009). 

Ground-based measurements of longwave radiation provide tempo
rally continuous SULR data but with a very limited spatial coverage 
(Wang et al., 2012). Remote sensing observation is a reliable mean to 
obtain regional and global SULR mapping due to its large geographic 
coverage and public availability (Jiao et al., 2015; Wang et al., 2012). 
Several global SULR datasets are available, including the Global Energy 
and Water cycle Experiment-Surface Radiation Budget (GEWEX-SRB), 
the International Satellite Cloud Climatology Project-Flux Data (ISCCP- 
FD) and the Clouds and the Earth’s Radiant Energy System-Gridded 
Radiative Fluxes and Clouds (CERES-FSW). Given the designed pur
pose for application in large-scale climate models, these SULR products 
generally have coarse spatial resolutions (100–280 km), and their ac
curacy at monthly timescale ranges between 21 and 34 W m− 2 (Cheng 
and Liang, 2016). However, considering the acceptable accuracy of 
surface radiation retrievals for meteorological and other related uses (<
20 W m− 2 for instantaneous estimates and < 10 W m− 2 for monthly 
estimates (Ellingson, 1995; Gupta et al., 2004)), these SULR products do 
not meet the requirements and can generate large uncertainties in the 
subsequent applications (Cheng and Liang, 2016; Jiao et al., 2015; Wang 
et al., 2012). In addition, the coarse spatial resolutions will impede their 
usability in high spatial resolution (1–5 km) weather forecast, mesoscale 
land surface and atmospheric models due to the pronounced spatial 
heterogeneity of the land surface (Jiao et al., 2015; Wang and Liang, 
2009). Thus, accurate SULR estimates at fine spatial resolution are 
highly desirable. 

Various methods to estimate high-resolution SULR have been pro
posed. They can broadly be divided into two categories: physical 
temperature-emissivity method and empirical hybrid method (Cheng 
and Liang, 2016; Liang et al., 2019; Wang and Liang, 2009). The 
temperature-emissivity method takes advantage of land surface tem
perature (LST) and land surface emissivity (LSE) estimates based on 
satellite observations with moderate spatial resolutions such as Moder
ate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared 
Imaging Radiometer Suite (VIIRS) (Duan et al., 2019; Li et al., 2014; Li 
et al., 2019). SULR is estimated based on the Stefan-Boltzmann law. The 
hybrid method is based on an empirical relationship between SULR and 
the top-of-atmosphere (TOA) radiances issued from multivariate linear/ 
nonlinear regression or artificial neural network (ANN). Separation of 
temperature and emissivity is bypassed by using TOA radiances directly. 
Wang and Liang (2009) evaluated the physical and empirical methods 
over the contiguous U.S. using the in-situ SULR measurement from the 
Surface Radiation Budget Network (SURFRAD, https://gml.noaa. 
gov/grad/surfrad/). It was reported that the clear-sky instantaneous 
SULR estimates using the temperature-emissivity method achieved an 
average root-mean-square error (RMSE) of 20.58 W m− 2 and an average 
bias of − 17.25 W m− 2. The multivariate linear regression method had an 
average RMSE of 17.63 W m− 2 and an average bias of − 10.46 W m− 2. 
The ANN method showed the highest accuracy, with RMSE of 15.23 W 
m− 2 and bias of − 7.94 W m− 2. At the opposite, Wu et al. (2012) 
compared the temperature-emissivity method and the linear regression 
method using a collection of ground-based measurements worldwide, 
and found that the physically-based temperature-emissivity method 
outperformed the linear method. Cheng and Liang (2016) developed the 
hybrid framework for estimating SULR over the globe by implicitly 
incorporating LST and air temperature difference after geographical 
division. The land surface was divided into low-, mid- and high-latitude 
regions based on LST and air temperature difference derived from the 
Atmospheric Infrared Sounder (AIRS) atmospheric profiles. They eval
uated the linear and ANN methods under the proposed hybrid frame
work using in-situ SULR measurements from different observation 

networks and suggested that the linear regression method was more 
accurate than the ANN method, with a bias of − 0.31 W m− 2 and a RMSE 
of 19.92 W m− 2. Based on this proposed method, the Global Land Sur
face Satellite (GLASS, http://www.glass.umd.edu/Overview.html) 
longwave radiation product was generated and freely open to the public 
since 2018 (Liang et al., 2021; Cheng and Liang, 2016; Cheng et al., 
2017), which provides the first high spatial resolution SULR dataset over 
the globe. The GLASS SULR product was reported to have a bias of 
− 4.33 W m− 2 and RMSE of 18.15 W m− 2 (Zeng et al., 2020). Qin et al. 
(2020) comprehensively evaluated six different methods from both 
categories and found that the temperature-emissivity method using the 
MYD21 LST achieved the highest accuracy, with an RMSE of 14.0 W m− 2 

and a bias of − 0.2 W m− 2, respectively, based on the estimates at the 
SURFRAD sites between 2017 and 2018. The accuracy was approxi
mately 3 W m− 2 higher as compared to those using the hybrid methods 
based on TOA radiances. 

All the aforementioned methods may roughly satisfy the accuracy 
requirement for instantaneous clear-sky SULR. It remains that the 
thermal infrared (TIR) directional signature has been disregarded so far 
although the thermal directionality effects of the heterogeneous land 
surfaces can impact the estimation of longwave radiation emitted by the 
Earth’s surface (Bian et al., 2020; Cao et al., 2019b). Several factors 
contribute to directional effects on a satellite TIR image. They are soil 
properties, vegetation structure, topography, mixed attributes (Cao 
et al., 2019b; Hu et al., 2019a; Yan et al., 2020). Thermal radiation 
directionality entails two components: the angular variation of LST and 
the emissivity directionality. The angular variation in satellite LST can 
reach ~9 K or more, depending on surface types and climate conditions 
(Coll et al., 2019; Hu et al., 2019a; Rasmussen et al., 2011; Rasmussen 
et al., 2010). Emissivity directionality varies with wavelength, with the 
most pronounced LSE difference between nadir and off-nadir (~0.03) 
around 8.55 μm over barren surfaces. It shows less significant angular 
variation in the two split-window channels centred around 11 and 12 μm 
(Hu et al., 2019b). Consequently, the angular variation of broadband 
emissivity is not pronounced because of the small linear weight (~0.3) 
for Band 29 in the calculation of broadband emissivity. Therefore, 
ignoring emissivity anisotropy does not impact the SULR estimation to a 
large extent (Hu et al., 2019b). Moreover, Cheng and Liang (2014) 
analyzed the influence of emissivity anisotropy (difference between 
directional and hemispherical broadband emissivities) on surface long
wave radiation budget based on simulated and measured emissivity 
spectra. They reported that the maximum influence of emissivity 
angular variation was below 5.5 W− 2 in all cases except for water and 
bare ice. In this case, considering LST directionality over vegetated 
surfaces is the major study focus here, which appears necessary for ac
curate retrieval of SULR and subsequent ET in the terrestrial ecosystems. 
Otterman et al. (1995) analyzed the relationship that exists between 
directional and hemispherical longwave radiations for a sparse canopy 
represented as thin, vertical cylindrical stalks laying over horizontal 
facets. Results of the simulation analysis revealed that looking at a view 
zenith angle of 50◦ is appropriate for estimating the hemispherical 
longwave emission. However, variations in the longwave emissions due 
to the viewing azimuth angle were not addressed although a strong 
azimuthal dependence exists due to the occurrence of the hot spot 
phenomenon. More investigation is needed to confirm the existence of 
equivalent viewing direction for SULR estimation, which can rely on in- 
situ or satellite measurements. 

SULR estimation methods considering thermal directionality were 
recently implemented (e.g., Hu et al., 2017; Hu et al., 2016). These 
methods were based on TIR kernel-driven model (KDM) Ross-Li with a 
best fit of the coefficients by the time airborne multi-angular observa
tions were collected. In thermal spectrum, KDM coefficients may not 
only vary with the biophysical properties but also with factors 
describing the meteorological environment of the canopy (e.g., wind 
speed, humidity). Thus, they are not valid at another time. Moreover, as 
opposed to optical data, TIR date cannot be accumulated over time to 
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obtain a better calibration of KDM coefficients, even over very short 
periods of time. Thus, choosing a KDM with temporally quasi-invariant 
coefficients is essential for a broader applicable extent. In these pro
posed methods (Hu et al., 2017; Hu et al., 2016), angular variation in 
both emissivity and LST is considered via different means. Recently, it 
was shown that the anisotropy of emissivity has an insignificant influ
ence on SULR estimation (Hu et al., 2019b). Therefore, LST direction
ality effects on SULR are of interest here. In the past two decades, three 
major KDM depicting directional LST have been extensively used under 
the assumption of temporally quasi-invariant model coefficients, i.e., the 
Roujean-Lagouarde (RL) model (Lagouarde and Irvine, 2008), the Vin
nikov model (Vinnikov et al., 2012), and the Hotspot-Kernel model 
(Ermida et al., 2018b). The core for the temporal invariance assumption 
is the introduction of the nadir-viewing temperature, as opposed to the 
simple utilization of directional temperature in the Ross-Li model. Under 
this modeling scheme, the temporal variation of surface directional 
temperature is expressed in the nadir-viewing temperature, sun zenith 
angle and daily TOA radiation instead of the model coefficients. The 
TOA radiation introduces seasonal variability in LST directionality, and 
nadir-viewing temperature and sun zenith angle introduce the diurnal 
variation. Ermida et al. (2018a) calibrated these parametric models over 
the entire SEVIRI disk by combining the concurrent LST retrievals from 
the MODIS polar-orbiting and Spinning Enhanced Visible and Infrared 
Imager (SEVIRI) geostationary observations and extended the regressed 
model coefficients globally based on the 15 classified surface clusters. 
This provided an opportunity to incorporate the KDM into SULR esti
mation using satellite observations. 

Herein, the objective is to evaluate the influence of LST directionality 
on SULR over vegetated surfaces at the satellite scale through the 
incorporation of a KDM mimicking LST anisotropy into the physically 
based temperature-emissivity method. Two MODIS LST products, i.e., 
MYD11_L2 and MYD21_L2, are considered. The SULR estimates are 
evaluated using in-situ measurements collected in different regions. The 
objectives of this study are twofold: (1) to investigate the magnitude and 
impact factors of LST directional effects on SULR estimation, and how to 
correct for these effects; (2) to identify a viewing direction at which 
SULR estimate is equivalent to its hemispherical integration. Overall, the 
study will serve as a support for improving the accuracy of SULR esti
mation and subsequent ET retrieval in the terrestrial ecosystems. 

2. Data 

2.1. MODIS data 

Two widely used MODIS LST products, i.e., MYD11_L2 and 
MYD21_L2 for Collection 6, were processed to estimate SULR separately 
for the two years of 2010 and 2011. Considering the possible crosstalk 
effect in Band 29 of the sensor onboard Terra, only data from Aqua were 
used in this study. The MYD11 LST data are obtained using the Gener
alized Split-Window (GSW) algorithm based on the different atmo
spheric absorptions in the two thermal bands centered around 11 and 
12 μm (Wan, 2014; Wan and Dozier, 1996). The emissivities for the two 
split-window bands are estimated using a classification-based algorithm 
developed by Snyder et al. (1998). The MYD21 product is obtained using 
the Temperature Emissivity Separation (TES) algorithm that estimates 
LST and LSE simultaneously (Gillespie et al., 1998; Hulley et al., 2016). 
TOA brightness temperatures in three thermal bands centered 8.55, 11 
and 12 μm are used in the TES algorithm. LSEs in these three bands are 
provided in the MYD21 product. The MYD03 products were used to 
provide the geospatial information for other MODIS products. All the 
MODIS products used here have a spatial resolution of 1 km and two 
revisits (day and night) per day. 

2.2. Model coefficients 

By using the collocated LST retrievals from MODIS (onboard both 

Aqua and Terra, Collection 5) and SEVIRI covering the full year of 2011, 
Ermida et al. (2018a) calibrated the KDM models under the assumption 
that their coefficients remain temporally invariant (at least within one 
season or a year). After spatial and temporal collocation, systematic 
differences between MODIS and SEVIRI LST products were removed by a 
linear adjustment of MODIS LST. The collocated night-time LST data 
were used to calculate a model coefficient first while the other co
efficients were estimated using the collocated daytime LST. From their 
knowledge over Europe, Africa and part of South America, an extrapo
lation scheme over the globe was further applied after clustering land
scape units based on the following criteria: surface elevation, land cover 
type, fraction of vegetation cover (FVC). The calibrated KDM models 
were evaluated using both the calibration database over the SEVIRI disk 
and an independent database composed of matchups between MODIS 
and various geostationary satellite LST products in different regions over 
the globe. Results showed that the difference between MODIS and 
geostationary satellite LST decreased by 1.1 K on average after angular 
correction using the calibrated KDM models and changes were as high as 
5.5 K. Moreover, the decrease was consistent over the globe. More de
tails can be found in the study by Ermida et al. (2017). Here, KDM co
efficients for the globe were obtained directly from Sofia L. Ermida and 
Isabel F. Trigo (pers. comm., 2019), with a spatial resolution of 0.05◦ ×

0.05◦. 

2.3. Ground measurements 

In-situ radiation measurements were collected in different regions. In 
total, 15 sites were selected from different measurement networks 
(Table 1), covering six land surface types including evergreen needleleaf 

Table 1 
Validation sites used in this study.  

Site 
No. 

Site 
ID* 

Latitude Longitude Elevation 
(m) 

Land cover type 

1 NR1a 40.0329◦

N 
105.5464◦

W 
3050 Evergreen 

needleleaf forests 
2 SRMa 31.8214◦

N 
110.8661◦

W 
1120 Woody savannas 

3 UMBa 45.5598◦

N 
84.7138◦ W 234 Deciduous 

broadleaf forests 
4 Wkga 31.7365◦

N 
109.9419◦

W 
1531 Grassland 

5 Sesa 34.3349◦

N 
106.7442◦

W 
1604 Open shrubland 

6 Ne3a 41.1797◦

N 
96.4397◦ W 363 Cropland 

7 SRC a 31.9083◦

N 
110.8395◦

W 
950 Open shrubland 

8 BNDb 40.0519◦

N 
88.3731◦ W 230 Cropland 

9 TBLb 40.1250◦

N 
105.2368◦

W 
1689 Grassland 

10 DRAb 36.6237◦

N 
116.0195◦

W 
1007 Open shrubland 

11 FPKb 48.3078◦

N 
105.1017◦

W 
634 Grassland 

12 Lnfc 51.3282◦

N 
10.3678◦ E 451 Deciduous 

broadleaf forests 
13 Lkbc 49.0996◦

N 
13.3047◦ E 1308 Evergreen 

needleleaf forests 
14 Dasd 14.1592◦

S 
131.3881◦

E 
110 Woody savannas 

15 ASMd 22.2828◦

S 
133.2493◦

E 
606 Woody savannas 

aAmeriFlux sites; bSURFRAD sites; cEFDC sites; dOzFlux sites. 
* NR1: Niwot Ridge Forest, SRM: Santa Rita Mesquite, UMB: Univ. of Mich. 

Biological Station, Wkg: Walnut Gulch Kendall Grasslands, Ses: Sevilleta 
shrubland, Ne3: Nebraska Mead - Rainfed Maize-soybean Rotation Site, SRC: 
Santa Rita Creosote, BND: Bondville, TBL: Table Mountain, DRA: Desert Rock, 
FPK: Fort Peck, Lnf: Leinefelde, Lkb: Lackenberg, Das: Daly River Uncleared, 
ASM: Alice Springs Mulga. 
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forests, woody savannas, deciduous broadleaf forests, cropland, grass
land, open shrubland. The spatial distribution of the 15 sites is shown in 
Fig. 1, encompassing four sites from the Surface Radiation Budget 
(SURFRAD) network, seven sites from the AmeriFlux network, two sites 
from the European Fluxes Database Cluster (EFDC) network, and two 
sites from the OzFlux network. The temporal frequencies of acquisition 
for the SURFRAD and AmeriFlux/EFDC/OzFlux data sets are 1 and 30 
min(s), respectively. These sites were selected due to the homogeneity of 
surrounding landscapes and their various land surface types (Cheng and 
Liang, 2016; Guillevic et al., 2018; Wang et al., 2008; Duan et al., 2019). 

3. Methodology 

3.1. Parametric model for LST angular variation 

Worth recalling that three parametric models are retained: RL model, 
Vinnikov model and Kernel-Hotspot model. The coefficients of these 
models were calibrated at the satellite scale in the full year of 2011, 
during which they were assumed invariant (Ermida et al., 2018a). 

RL model proposed by Lagouarde and Irvine (2008) was obtained via 
substituting reflectance for LST in the optical hot spot model developed 
by Roujean (2000). However, RL model cannot be used to estimate 
directional LST during the night-time as it is designed to consider LST 
directionality caused by solar illumination and viewing geometry. It also 
showed poor performances over surfaces with low tree coverage 
(Ermida et al., 2018a; Ermida et al., 2018b). 

Vinnikov model proposed by Vinnikov et al. (2012) includes an 
isotropic term, an emissivity kernel and a solar kernel. Duffour et al. 
(2016) evaluated the Vinnikov model using a simulation dataset. The 
Vinnikov model was reported to underperform the RL model overall, 
especially at directions close to the hot spot where the Vinnikov model 
failed. This was also confirmed by Cao et al. (2019a). 

By combining the assets of the RL model and the Vinnikov model, 
Ermida et al. (2018b) proposed the Kernel-Hotspot model, expressed as 

Ts(θ, θi,φ) = T0 +AT0Φ(θ)+BRadTOAsin(2θi)
e− kd − e− ktanθi

1 − e− ktanθi
(1)  

where θ, θi and φ are viewing zenith angle, solar zenith angle and 
relative azimuth angle, respectively, Ts is the directional LST, T0 is the 
LST viewed from the nadir direction, Φ(θ) is the same emissivity kernel 
as in the Vinnikov model 1 − cos(θ), the second term at the right side is 
the Hotspot kernel modified based on the RL model, RadTOA is the daily 
TOA radiation normalized by the daily solar constant (Meeus, 1991), A, 
B and k are model coefficients, d is the angular distance between the sun 
and viewing positions defined as: 

d =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tan2θi + tan2θ − 2tanθitanθcosφ

√
. (2) 

The Kernel-Hotspot model was demonstrated to outperform both the 
RL model and Vinnikov model, with improved performance during 
night-time and for low tree densities (Ermida et al., 2018b). Cao et al. 
(2021) reported that the Kernel-Hotspot model showed an RMSE of 
~0.2 K in the evaluation using both model simulation (4SAIL and DART) 
and airborne multi-angular data over continuous and discrete canopies 
by comparing the evaluation data and the simulations from the Kernel- 
Hotspot model at different viewing geometries. Moreover, due to the 
introduction of T0 in the Kernel-Hotspot model, the temporal dynamics 
in model coefficients are removed. Therefore, it was decided to consider 
the Kernel-Hotspot model to describe LST directionality in this study. 
Note that the Hotspot kernel is irrelevant for the night-time and that the 
corresponding kernel coefficient (B) is set to zero. Since the model co
efficients were a priori known thanks to their global calibration (Section 
2.2), the only unknown variable, i.e., T0, was calculated from MODIS 
LST Ts(θ, θi,φ) and the parametric models. This served to derive the 

Fig. 1. Spatial distribution of the validation sites. The background is the land surface classification from the MCD12C1 product of 2010.  
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directional LST at any viewing angle from the parametric model. 

3.2. SULR estimation incorporating LST angular variation 

When LST angular variation is incorporated, SULR can be expressed 
as 

SULR = ε
∫2π

0

∫π/2

0

∫λ2

λ1

Bλ(Ts(θ, θi,φ) )dλcos(θ)sin(θ)dθdφ+(1 − ε)DLR (3)  

where ε is the surface broadband emissivity (BBE), Bλ is the Planck 
function, λ1 and λ2 are the spectral range for SULR estimation (4–100 
μm), Ts(θ, θi,φ) is the land surface directional effective temperature, and 
DLR is the downwelling longwave radiation. Based on the Stefan- 
Boltzmann law specifying that the total energy radiated per unit sur
face area of a black body in unit time is proportional to the fourth power 
of the black body’s temperature, Eq. (3) can be transformed to 

SULR =
εσ
π

∫2π

0

∫π/2

0

Ts
4(θ, θi,φ)cos(θ)sin(θ)dθdφ+(1 − ε)DLR (4)  

where σ is the Stefan-Boltzmann constant (5.67 × 10− 8 W m− 2 K− 4). 
In this case, BBE, DLR and directional temperature are the required 

input parameters. Here, BBE was calculated using the band-effective 
emissivities in MODIS bands 29 (~8.55 μm), 31 (~11 μm) and 32 
(~12 μm) from the MYD21 product as follows (Wang et al., 2005): 

εbb = 0.2493ε29 + 0.4447ε31 + 0.3088ε32 (5)  

where εbb is the BBE, ε29, ε31 and ε32 are the emissivities in MODIS Bands 
29, 31 and 32, respectively. DLR was directly obtained from the in-situ 
measurements considering that the goal here is to focus on LST and its 
angular variation and that considering ground-truth DLR better supports 
the analysis. Moreover, the influence of uncertainties in DLR on SULR 
estimation is insignificant considering the reflectance (1 - ε) is below 
0.05 for most surfaces and the uncertainties in DLR are normally within 
30 W m− 2 (Yu et al., 2022). We estimate the directional temperatures 
over the upper hemisphere with a bin of 1◦ for the zenith and azimuth 
angles from the instantaneous MODIS LST (either the MYD11 or MYD21 
LST data) based on the Kernel-Hotspot model. Then, SULR is calculated 
using the BBE, DLR and the directional temperatures in different di
rections over the upper hemisphere based on Eq. (3). The integral 
calculation is conducted using the trapezoid rule to approximate the 
analytical solution. 

3.3. Evaluation method 

SULR estimates with and without correcting for LST directional ef
fects were evaluated using the in-situ measurements. The two MODIS 
LST products, namely MYD11 and MYD21, were considered separately. 
Also, the estimates in the four seasons and for daytime and night-time 
were distinguished in this evaluation. 

In the evaluation, the “3σ-Hampel identifier” outlier removal method 
proposed by Davies and Gather (1993) was adopted to remove the 
outliers in the SULR estimates caused by undetected cloud contamina
tion in LST retrieval (Duan et al., 2019; Göttsche et al., 2013). In this 
method, the standard deviation is estimated as. 

S = 1.4826 ×median(|xi − xm|) (6)  

where S is the standard deviation, xm is the median of the data sequence 
[xi]. Here, [xi] is the difference between the estimated SULR and in-situ 
measurements. The samples with SULR differences < xm-3S or > xm + 3S 
were regarded as outliers and excluded for further analysis. 

Three statistical indicators, i.e., RMSE, bias, and relative RMSE 
(RRMSE), were used to quantify the accuracy of SULR estimates before 

and after correcting for LST directionality. These indicators were 
calculated as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

SULRsat,i − SULRinsitu,i
)2

N

√

(7)  

bias = mean
(
SULRsat,i − SULRinsitu,i

)
(8)  

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (
SULRsat,i − SULRinsitu,i

)2

∑
SULRsat,i

2

√

(9)  

where SULRsat,i and SULRinsitu,i are the SULR estimates from the MODIS 
data and in-situ measurements, respectively. 

In this study, the accuracy of the SURFRAD measurements (5 W m− 2, 
https://gml.noaa.gov/grad/surfrad/overview.html) was used as a cri
terion to determine whether the improvement after correcting for LST 
directionality is significant or not. The improvement was regarded as 
negligible if the improvement is below 5 W m− 2 considering the diffi
culty to distinguish the improvement from the measurement 
uncertainty. 

3.4. Searching for an equivalent viewing angle 

The equivalent viewing angle is defined here as the observation ge
ometry at which SULR calculated using the directional LST can surro
gate the hemispherical integration without introducing significant 
uncertainties. To assess the quality of the equivalence between the 
directional estimate and the hemispherical estimate, the Kling-Gupta 
efficiency (KGE) is adopted. As a measure of the goodness-of-fit, KGE 
provides a quantitative and objective assessment of the agreement be
tween observed and simulated data (Gupta et al., 2009). It is calculated 
as 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
σs

σ0
− 1

)2

+

(
us

u0
− 1

)2
√

(10)  

where r is the Pearson correlation coefficient, σ0 and σs are the standard 
deviations of observations and simulated values, respectively, and u0 
and us are the averages of observations and simulated values, respec
tively. Herein, the hemispherical and directional estimates are regarded 
as the reference and proxy values, respectively. The optimization 
problem can then be expressed as a problem of finding the right viewing 
angle where the KGE peaks, viz.: 

Ω = argmax[KGE(Ω) ] (11)  

where Ω is the viewing geometry. 

4. Results and analysis 

4.1. Simulation analysis 

A simulation was performed first to analyze how the seasonal and 
diurnal changes of LST directionality yield an impact on SULR estimates. 
We selected three sites (i.e., Ses, BND, and UMB) from Table 1 with 
different land cover types encompassing desert grassland, cropland, and 
broadleaf forest. These three sites represent barren, intermediately 
vegetated, and densely vegetated surfaces, respectively, which cover a 
gradient of vegetation coverage. Then, we simulated the directional LST 
over the upper hemisphere in different seasons and for daytime and 
night-time using the calibrated Kernel-Hotspot model and the MYD21 
LST data (8 estimates, in four seasons and for both day and night). 
Differences between SULR estimates using directional satellite LST es
timate and via hemispherical integration of LST based on Eq. 4 were 
calculated. Results are exemplified in Figs. 2 and 3. 

The angular variation for the daytime is much more pronounced in 
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spring and summer than in autumn and winter, with the strongest 
directionality occurring in summer. The SULR estimate from directional 
LST is significantly larger than the hemispherical estimate when the 
observation angle is close to the sun illumination angle (~20 W m− 2 at 
Ses in summer), and remarkably lower than the hemispheric estimate 
when viewing zenith angle (VZA) approaches 60◦ in the forward scat
tering direction (~40 W m− 2 at Ses in summer). The SULR estimated 
using the directional LST at a VZA angle between 40◦ and 60◦ in the 
back-scattering direction in the principal plane is close to the hemi
spherical estimate, which is obvious in spring and summer. For the 

night-time, the angular variation is minor. In this case, thermal direc
tionality is depicted only by the emissivity kernel. 

Among the three land cover types, the Ses site covered by mixed- 
species desert grassland shows the most pronounced angular variation. 
While the BND site (cropland) reveals the intermediate thermal direc
tionality, the UMB site (densely vegetated forest) exhibits the weakest 
directionality, which is typical for a homogeneous landscape. 

Fig. 2. Difference between SULR estimates using directional LST and via hemispherical integration of LST at (a) Ses, (b) BND and (c) UMB for the daytime. The 
MYD21 LST data were used to adjust the Kernel-Hotspot model. The magnitude and phase angle represent VZA and relative azimuth angle (RAA), respectively. SZA 
indicates the illumination condition at the MODIS overpass time. 
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4.2. Evaluation of the results using in-situ measurements 

The results of evaluation for different seasons and daytime are shown 
in Figs. 4 and 5. The cases with sample numbers below 20 are discarded 
from the analysis. It comes out that the RMSE and absolute biases in 
spring and summer are significantly greater than in autumn and winter. 
The average RMSE among all the sites in spring and summer is around 
20 W m− 2. Whereas the average RMSE in autumn and winter is ~10 W 
m− 2. The pattern is the same over both the Northern and Southern 
Hemispheres. This is attributed to the existence of higher temperatures 
and more thermal heterogeneity in the pixels in spring and summer. 
Since the path of the sun is enhanced, more thermal gradients are 

observed, which means more pronounced thermal directionality. 
Compared with the SULR estimates issued from standard MYD21 LST 

(referred to as MYD21 in Figs. 4 and 5), SULR derived with a correction 
for LST directionality using the Kernel-Hotspot model (MYD21_KH) 
shows a pronounced decrease in RMSE and absolute bias in spring and 
summer, which are on average 8 and 8.34 W m− 2 for RMSE and bias, 
respectively, in spring (see Table 2). These statistics become 8.9 and 
12.13 W m− 2 in summer (see Table 3). The improvement of SULR esti
mates after correcting LST directionality in autumn and winter is mar
ginal (<5 W m− 2) due to the relatively low temperature and reduced 
shadowing effect except for over woody savannas and open shrubland. 
In these arid and semiarid regions, the emissivity kernel in the LST 

Fig. 3. Id. Fig. 2 for nighttime.  
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directionality model plays an important role due to the substantial 
proportion of bare soil in the landscape although the shadowing effect is 
less significant in autumn and winter. The temperature in autumn and 
winter is also relatively higher as compared to those over other biomes. 

Also, an improvement is obtained for the SULR estimates using the 
MYD11 LST after directional correction on LST (MYD11_KH) in spring 
and summer for most sites while being negligible in autumn and winter. 
SULR estimates after correction is similar for the two LST MODIS 
products (MYD21_KH and MYD11_KH). The MYD11_KH estimates have 
the lowest absolute bias at most sites among the four cases (i.e., 
MYD11_KH, MYD11, MYD21_KH, MYD21). The average RMSE of 
MYD11_KH is generally below 15 W m− 2, and the average bias is around 
zero in all seasons. However, at the site DRA, the RMSE and absolute 
bias of SULR estimates using the MYD11 LST are increased in all seasons 
after correcting LST directionality, being the largest among the four 
cases. Compared with the MYD21 LST, the MYD11 LST seems to be less 
impacted by LST directionality, which is exemplified by the smaller 
discrepancy between SULR estimates from MYD11 LST before and after 
correcting LST directionality in spring and summer. More investigations 
are needed to understand the different performances of the MYD21 and 
MYD11 LST data in SULR estimation considering LST directionality. 

The improvement in spring and summer is more pronounced when 
the landscape is sparsely or moderately vegetated. For example, at the 
semiarid site Wkg (Ses) covered by sparse desert grassland (Fig. 6), the 
RMSE and absolute bias using the MYD21 LST decrease by 8.75 (10.09) 

and 7.53 (8.58) W m− 2 in spring, and by 11.49 (12.44) and 10.68 
(13.89) W m− 2 in summer. Those using the MYD11 LST at the site Wkg 
(Ses) decrease by 9.00 (4.51) and 7.51 (1.56) W m− 2 in spring, respec
tively, and by 11.20 (4.78) and 10.54 (6.89) in summer, respectively. 
This is very likely due to the anisotropy of the emissivity of bare soil, 
which propagates to LST retrievals for sparse canopies (Trigo et al., 
2021). Comparison between an open evergreen needleleaf forest (site 
NR1) and a closed deciduous broadleaf forest (site UMB) for summer
time (Fig. 6) reveals that more improvement is obtained for NR1 than for 
UMB, with a decrease of RMSE and bias of ~10 W m− 2. This could be 
attributed to the shadowing effect and contrasting heating for different 
endmembers within a pixel at the NR1 site. Moreover, the improvement 
at UMB (~6 W m− 2 decrease in RMSE) is greater in spring than in 
summer (~2 W m− 2 decrease in RMSE), likely because the canopy of the 
deciduous forest in spring is not closed yet and contrasting temperatures 
of trees and the ground increase the thermal directionality. 

For the night-time (Figs. 7 and 8), the RMSE and absolute bias are 
much lower than for the daytime, with an average RMSE and absolute 
bias <10 W m− 2 in all seasons. Also, the seasonal variation in RMSE and 
bias for the night-time is negligible as compared to that for the daytime. 
The improvement of the SULR estimates after incorporating LST direc
tionality correction is not conspicuous at all sites. The RMSE and abso
lute bias are slightly increased at most sites. This could be attributed to 
the substantially weaker angular variation of LST during the night-time 
than during the daytime and more frequent thermal equilibrium in the 

Fig. 4. RMSE of the SULR estimates in (a) spring, (b) summer, (c) autumn and (d) winter for the daytime. MYD11_KH and MYD11 represent the SULR estimate 
obtained from the MYD11 LST data after correcting for LST directionality based on the Kernel-Hotspot model and that obtained directly using the MYD11 LST 
retrieval, respectively. MYD21_KH and MYD21 represent the SULR estimate obtained from the MYD21 LST data after correcting for LST directionality based on the 
Kernel-Hotspot model and that obtained directly using the MYD21 LST retrieval, respectively. 
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lack of solar illumination. There is also a possibility of overfitting when 
the parametric model is used to correct the thermal directionally in this 
case even though the hotspot kernel is deactivated for the night-time. 

At night and DRA site, the SULR estimates using the MYD21 LST 
show markedly lower RMSE and absolute bias values than those using 
the MYD11 LST. At other sites, statistical results are rather equivalent for 
MYD21 and MYD11 LST. Overall, a higher accuracy of SULR estimates is 
obtained using the MYD21 LST for the night-time. 

To quantify the magnitude of thermal directionality, we propose to 

use the standard deviation of directional temperature in the principal 
plane. To get the threshold of the standard deviation that decides 
whether a correction for LST directionality is needed, we analyzed the 
conditions at all the sites. The standard deviation was calculated by 
sampling in the principal plane between − 90◦ and 90◦ with a bin of 10◦. 
As shown in Fig. A1, the threshold of 2.5 K could be used to determine 
whether the directionality correction is needed. During the daytime, 
most of the LST standard deviations are above 2.5 K in spring. In sum
mer, almost all of the standard deviations are above 2.5 K. In autumn 

Fig. 5. Biases of the SULR estimates in (a) spring, (b) summer, (c) autumn and (d) winter for the daytime.  

Table 2 
Evaluation results of the four methods at different sites in spring for the daytime. The SULR estimates used in the evaluation were obtained by retaining the common 
ones retrieved from the four estimation methods after outlier removal.  

Site Sample Number MYD11_KH MYD11 MYD21_KH MYD21 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

SRM 23 13.73 14.97 18.63 22.37 21.78 22.39 26.75 29.55 
UMB 24 1.83 14.63 8.08 18.94 9.37 16.39 15.72 23.03 
Wkg 108 16.65 19.65 24.16 28.65 20.45 22.67 27.98 31.42 
Ses 79 − 3.42 7.19 4.98 11.70 10.57 11.84 19.15 21.93 
SRC 22 − 3.65 5.71 7.10 8.83 7.24 9.38 18.21 19.25 
BND 27 − 5.42 21.53 1.49 22.71 5.67 23.04 12.70 26.76 
TBL 23 − 3.48 10.83 6.03 13.43 0.40 9.94 9.98 15.44 
DRA 32 − 18.88 19.69 − 12.41 16.25 0.18 6.90 6.87 11.90 
Das 24 9.18 13.22 20.14 23.98 31.15 35.30 42.45 46.58 
ASM 36 6.74 10.25 16.98 20.76 11.65 14.49 22.03 26.44 
Mean – 1.33 13.77 9.52 18.76 11.85 17.23 20.19 25.23  
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and winter, few of the standard deviations are above 2.5 K. During the 
night-time, the standard deviations are below 1.5 K in all the seasons. 
Thus, we propose that the correction for LST directionality is needed 
when the standard deviation of directional LST in the principal plane is 
above 2.5 K. 

To account for the different magnitudes of SULR estimates for the 
daytime and night-time, the RRMSEs for different methods were calcu
lated for summer when LST directionality is the strongest (Table 4). 
Consistent with the previous statistics, the improvement after correcting 
for LST directionality is negligible at night for both the MYD11 and 
MYD21 LST data as compared to that in the day. For the daytime, the 
improvement after correcting for LST directionality is much more 
notable for the MYD21 LST (1.6%) than for the MYD11 LST (0.5%), 
which is also in good agreement with the conclusion drawn based on 
RMSE and bias. 

Overall, the proposed SULR estimation method in this study achieves 

good accuracy (Table 5). The RMSEs of SULR estimates using the 
MYD11 and MYD21 LST are both around 10 W m− 2, with the RMSE 
using MYD21 slightly lower. The absolute biases are within 5 W m− 2 and 
the bias using the MYD21 LST is close to 0. 

4.3. Spatial distributions of SULR estimates 

SULR over the Iberian Peninsula and north Africa in summer was 
mapped to exemplify its spatial distribution and the correction effect of 
the proposed method (Fig. 9). Over the semiarid Iberian Peninsula, there 
is a large spatial variation in SULR, ranging from 400 to 650 W m− 2. 
After correcting for LST directionality, SULR was lowered in most re
gions due to the overestimation of SULR using the directional LST (c.f. 
Fig. 5(b)). Most of the SULR differences (Fig. 9(c)) are between 10 and 
20 W m− 2, which is consistent with the accuracy improvement at the 
sites in semiarid regions in Figs. 4 and 5. The difference is larger (~20 W 

Table 3 
Same as Table 2 except the season is summer.  

Site Sample Number MYD11_KH MYD11 MYD21_KH MYD21 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

NR1 24 17.21 18.68 27.86 29.23 17.94 19.03 28.61 29.68 
UMB 40 − 10.22 14.24 − 2.73 10.22 0.16 10.05 7.79 12.59 
Wkg 36 13.87 19.18 24.41 30.38 23.69 27.16 34.37 38.65 
Ses 84 − 3.28 10.59 10.17 15.37 20.69 26.67 34.58 39.11 
Ne3 48 0.48 21.21 14.17 23.43 16.27 28.78 30.32 37.17 
BND 29 − 11.32 19.36 1.56 16.98 4.09 15.23 17.32 24.08 
TBL 45 − 11.26 18.32 4.00 20.92 − 3.78 14.93 11.68 24.44 
FPK 50 − 5.67 11.92 5.65 13.70 2.38 11.03 13.83 18.35 
Mean – − 1.27 16.69 10.64 20.03 10.18 19.11 22.31 28.01  

Fig. 6. High resolution images for the two forest sites and two desert grassland sites from Google Earth.  
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m− 2) in the sparsely vegetated regions (eastern part of Iberian Penin
sula). In contrast, the difference is below 10 W m− 2 in the relatively 
more densely vegetated regions (western part). In these semiarid re
gions, both the hotspot kernel and emissivity kernel have significant 
effects on LST directionality due to the substantial shadowing effects 
over savannas and large proportions of soil over the land surface. Over 
the arid north Africa, the differences are generally higher, which are 
between 20 and 30 W m− 2, which is associated with the anisotropic 
effects of emissivity considering the relatively flat landscape in these 
regions. Overall, the difference between SULR estimates before and after 
correcting LST directionality is marked and consistent with the previous 
analyses at the ground sites. This confirms that significance of ac
counting for LST directionality in SULR estimation. 

4.4. Equivalent viewing direction for SULR estimation 

Results of KGE for all sites at different values of VZA in the back- 
scattering direction are shown in Fig. 10 considering the existence of 
such a surrogating angle in the back-scattering direction in the simula
tion (Figs. 2 and 3). Note that the dependence of KGE on VZA is very 
similar for estimates using either MYD11 or MYD21 LST, with a convex 
curve between 50◦ and 60◦. In spring, KGE reaches a peak for VZA 
slightly above 54◦. In summer, KGE also peaks at 54◦, thus reaching the 
same value as in spring despite of different Sun paths. Thus, we advise to 
retain 54◦ at the back-scattering direction for the equivalent VZA. 

The comparison between SULR estimates from hemispherical inte
gration and from the directional LST estimated at the equivalent VZA 
angle in summer is shown in Figs. 11. The SULR estimates using the LST 
at 54◦ is quite consistent with those after correcting for LST direction
ality. The differences of bias and RMSE are generally within 3 W m− 2 at 
most sites. 

It is worth mentioning that the equivalent viewing angle for esti
mating SULR in this study is a local optimum angle for estimating SULR 
that approaches the hemispherical estimation rather than a global op
timum angle. Detailed mathematical deductions are needed to investi
gate the possibility to find a global surrogating angle, which is out of the 
scope of this study. 

5. Discussion 

5.1. Influence of vegetation density on SULR estimates 

Diurnal cycle and seasonal trend have a strong influence on LST 
directionality and therefore SULR estimates, which is modulated by 
different features of the land unit. To explore the impact of vegetation 
density, time series of leaf area index (LAI) and RMSE before and after 
correcting for LST directionality using the MYD21 LST at different sites 
are shown in Fig. 12. At the sites SRM, Ses, Wkg, SRC, DRA, Das, and 
ASM in the semiarid regions, LAI is almost constant throughout the year 
and remains around 0.1, which indicates a very sparse vegetation. 

Fig. 7. RMSE of the SULR estimates in (a) spring, (b) summer, (c) autumn and (d) winter for the night-time.  
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Remarkable improvements in SULR estimates are obtained after cor
recting LST directionality at these sparsely vegetated sites. This could be 
explained by the fact that the angular variation of narrow-band emis
sivity is significant over barren or sparsely vegetated surfaces (Hu et al., 
2019b). This will enhance the angular effects in the LST retrieval process 
although surface heterogeneity is insignificant at these sites. Moreover, 
the impact of emissivity directionality on LST angular variation tends to 
be amplified at high temperatures (Trigo et al., 2021). For the other 

vegetated sites, LAI shows substantial seasonal variations. During sum
mer, LAI at these vegetated sites (except at UMB) corresponds to me
dium vegetation coverage with significant shadowing effects. This is 
consistent with the significant improvement of SULR after correcting 
LST directionality. At the site UMB in summer, LAI value is beyond 4, 
which indicates a relatively dense canopy and therefore weak thermal 

Fig. 8. Biases of the SULR estimates in (a) spring, (b) summer, (c) autumn and (d) winter for the night-time.  

Table 4 
RRMSE results of the four methods at different sites in summer. The cases with 
sample numbers below 20 are excluded.  

Site MYD11_KH MYD11 MYD21_KH MYD21 

Day Night Day Night Day Night Day Night 

NR1 4.3% 1.4% 6.6% 1.4% 4.4% 1.4% 6.7% 1.3% 
SRM – 2.0% – 1.8% – 1.1% – 1.2% 
UMB 3.3% 2.5% 2.3% 2.3% 2.2% 1.8% 2.8% 1.7% 
Wkg 3.2% 4.0% 4.9% 3.7% 4.4% 3.0% 6.1% 2.9% 
Ses 1.7% 2.2% 2.5% 1.8% 4.2% 1.9% 6.0% 2.2% 
Ne3 4.4% 1.3% 4.7% 1.7% 5.8% 2.0% 7.3% 2.4% 
SRC – 1.9% – 1.1% – 1.6% – 2.0% 
BND 4.1% 0.9% 3.5% 0.9% 3.1% 1.5% 4.8% 1.9% 
TBL 3.4% 2.3% 3.8% 2.2% 2.7% 1.6% 4.3% 1.6% 
DRA – 6.2% – 5.4% – 2.8% – 2.0% 
FPK 2.4% 1.2% 2.6% 1.2% 2.1% 1.1% 3.5% 1.3% 
Lnf – 3.3% – 3.2% – 2.9% – 2.9% 
ASM – 1.9% – 1.4% – 2.0% – 2.7% 
Mean 3.4% 2.4% 3.9% 2.2% 3.6% 1.9% 5.2% 2.0%  

Table 5 
Overall evaluation results using the proposed method. The SULR estimates were 
obtained by retaining the common ones retrieved from the four estimation 
methods after outlier removal.  

Site MYD11_KH MYD21_KH 

Bias RMSE Bias RMSE 

NR1 − 1.44 7.16 − 0.94 6.90 
SRM − 4.99 8.21 − 1.12 7.36 
UMB − 7.94 12.32 − 2.22 9.68 
Wkg − 0.43 15.68 3.18 16.74 
Ses − 4.51 6.54 6.00 8.94 
Ne3 0.78 6.58 3.87 7.58 
SRC − 5.39 6.88 1.20 5.53 
BND − 3.81 8.55 1.26 7.42 
TBL − 7.42 9.63 − 3.59 6.93 
DRA − 20.37 20.94 − 8.06 9.33 
FPK − 3.95 7.06 − 0.81 6.38 
Lnf − 7.21 11.95 − 3.49 11.88 
Lkb 1.05 10.71 2.84 9.72 
Das − 3.56 13.63 7.25 17.12 
ASM 0.76 5.37 2.67 6.36 
Mean − 4.56 10.08 0.53 9.19  
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directionality. This agrees with the negligible change of SULR after 
correcting LST directionality at the site UMB in summer. 

5.2. Influence of LST accuracy on SULR estimates 

MYD11 and MYD21 LST data show contrasting performances in 
SULR estimation at the site DRA. For the daytime, the accuracy of SULR 
estimates using the MYD11 LST was obviously degraded after correcting 
LST directionality whereas that using the MYD21 LST was improved 
after correcting LST directionality. For the night-time, the SULR esti
mates using the MYD11 LST had much larger RMSEs and absolute biases 
than those using the MYD21 LST at DRA whereas the estimates using 
these two LST data were similar at the other sites. At Ses and Das, the 
accuracy of SULR estimates using the MYD11 LST was substantially 
higher than that using the MYD21 LST. At the other sites, the perfor
mances of these two LSTs were similar. 

To investigate the difference between these two MODIS LST data, an 
evaluation was carried out based on the in-situ measurements (Fig. 13). 
Only the LST data with good quality as indicated in the quality flag were 
used. The outliers were removed using the same approach than in Sec
tion 3.3. The in-situ LST was estimated by inverting the Stefan- 

Boltzmann’s law as follows: 

Ts =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Rup − (1 − εBB)Rdown

εBBσ
4

√

(12)  

where Rup and Rdown are the measured upward and downward longwave 
radiations, respectively, εBB is the broadband emissivity calculated using 
Eq. 5 and σ is the Stefan-Boltzmann constant. 

For the sparsely vegetated site DRA, MYD21 LST shows a smaller 
RMSE and absolute bias (~2 K) compared to MYD11 LST, which is 
consistent with the higher accuracy of SULR estimates using the MYD21 
LST compared to that using the MYD11 LST at DRA. An explanation 
could be that MYD21 LST uses a physical emissivity, which is more 
accurate than the classification-based emissivity used for MYD11 LST at 
the site DRA (Hu et al., 2019a; Li et al., 2021). The large underestima
tion of MYD11 LST tends to propagate to the entire upper hemisphere 
when the directional LST is calculated using the KDM. Therefore, the 
accuracy of SULR estimates after correcting LST directionality using the 
MYD11 LST at DRA is degraded, with a large negative bias between − 15 
and − 20 W m− 2. 

At Ses and Das, the absolute bias and RMSE of the MYD 11 LST is ~1 

Fig. 9. SULR mapping over the Iberian Peninsula and north Africa on July 13, 2010. The overpass time (UTC) was 13:15. The LST and emissivity from the MYD21 
swath data were used. DLR was obtained from the ERA5 data after bilinear interpolation. (a) and (b) are SULR estimates after and before correcting LST direc
tionality, (c) is the difference ((b) minus (a)) between these two. 

Fig. 10. KGE of SULR calculated using the directional LST at different VZA values for the daytime in (a) spring and (b) summer. The SULR obtained from hemi
spherical integral is regarded as the reference. Estimates at all sites are put together in the KGE calculation. 
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K smaller than those of the MYD21 LST. This agrees well with the higher 
accuracy of SULR estimates using the MYD 11 LST as compared to that 
using the MYD21 LST at the two sites. For the other sites, the accuracies 
of the two LST products are similar and consistent with their similar 
performances in SULR estimation. 

5.3. Influence of temporal variations in model coefficients on SULR 
estimates 

LST directionality is expected to have marked seasonal variation due 
to the variation in vegetation coverage and sun illumination throughout 
the year. Ermida et al. (2018b) analyzed the impact of such seasonality 
on the parametric models. It was reported that monthly calibration and 
annual calibration of the model coefficients did not impact the accuracy 
of the KDMs significantly (ΔRMSE <0.1 K) despite of the high variation 
in model parameters. This is because the temporal variability of LST 
directionality is to some extent incorporated in the KDM through nadir- 
viewing temperature, sun zenith angle and daily TOA radiation (Ermida 
et al., 2018b). Thus, the annually calibrated Kernel-Hotspot model is 
used in this study to allow for more samples with a wider range of 
illumination angles. Nevertheless, the emissivity kernel does not depend 
on the solar angle. Thus, the emissivity kernel does not suffer the sam
pling problem and a seasonal fit would be possible for the emissivity 
kernel in the future. This is expected to further improve the model 
performance over surfaces with substantial seasonal variations in 

vegetation coverage, thereby reducing uncertainties in SULR estimates. 
The model coefficients calibrated in 2011 were used for both 2010 

and 2011. To investigate the influence of inter-annual variation in 
retrieved model coefficients on SULR estimates, the accuracy of SULR 
was calculated separately for each year (Table 6). The decreases of 
average RMSE and absolute biases after correcting LST directionality are 
almost the same for each year, with the average RMSE and absolute bias 
approximately 5 and 6 W m− 2 lower after correcting LST directionality. 
Therefore, we conclude that the extrapolation of model coefficients to 
2010 does not significantly impact the performance of the Kernel- 
Hotspot model in SULR estimation. However, for years with a large 
gap from the calibration year, a recalibration of the model coefficients 
may be needed to guarantee the model accuracy. 

5.4. SULR estimated from nadir viewing LST 

For the sake of normalizing LST products, directional LST is normally 
corrected from oblique to nadir viewing (Ermida et al., 2018a). A 
comparison between the SULR estimated from a hemispherical inte
gration and from nadir view of LST is performed. Since the impact of LST 
directionality on SULR estimation is weak in autumn and winter for the 
daytime and in all seasons for the night-time, only the results in spring 
and summer for the daytime are shown (Figs. 14 and 15). It is found that 
SULR estimates using nadir viewing LST have larger RMSE and absolute 
biases than those after correcting LST directionality in most cases. 

Fig. 11. Scatterplots of SULR estimates after correcting for LST directionality (MYD11_KH, MYD21_KH) and those using the 54◦ LST (MYD11_54deg, MYD21_54deg) 
in summer for the daytime. The cases with sample numbers <20 are excluded. 
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Fig. 12. Time series of LAI at different sites. The 8-day composited MYD15A2H LAI data in 2010 and 2011 were used. The LAI in a window of 2 × 2 containing each 
site were averaged to match the 1-km spatial resolution of LST data. The data for the same day-of-year (DOY) in the two years were averaged to represent the 
corresponding DOY. Only LAI of good quality was used. The RMSE of SULR was for the daytime and calculated using the MYD21 LST. 
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Fig. 13. Comparison of the MYD11 and MYD21 LST products with in-situ measurements for the period between 2010 and 2011.  
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Especially at the desert grassland sites (Wkg and Ses), the RMSEs when 
using the nadir LST are >25 W m− 2 in spring and > 40 W m− 2 in 
summer, increased by ~15 W m− 2 in spring and ~ 20 W m− 2 in summer 
as compared to those after correcting for LST directionality. At the 
sparsely vegetated sites SRC, Das, and ASM, the RMSE and bias of SULR 
using the nadir LST in spring are similarly increased substantially (~15 
W m− 2). At the NR1 site, the accuracy of SULR estimates using the nadir 
viewing LST in summer is also remarkably degraded, with RMSE and 
absolute bias increased by >10 W m− 2 in summer. For the other sites, 
the discrepancies are generally within 10 W m− 2 in most cases. This is 
consistent with the conclusion by Otterman et al. (1995) that the 
hemispheric longwave radiation using a nadir measurement can pro
duce large errors (~10%). In contrast, the accuracy of SULR estimates at 
DRA using the MYD11 LST is degraded in spring after correcting for LST 
directionality as compared to that using the nadir viewing LST (see 
Fig. 14h). This is consistent with the lower accuracy obtained after 
correcting LST directionality using the MYD11 LST at DRA in Figs. 4 and 
5. 

5.5. Site spatial representativeness 

The 15 sites over different land surface types were selected carefully 
based on previous studies to ensure the spatial representativeness of the 
in-situ measurements at the MODIS pixel scale. To quantify the spatial 
homogeneity of the sites, we calculated the standard deviation of LST at 
each site using the high spatial resolution Landsat LST data (Fig. 16). 
Except for TBL, the medians of standard deviation at all the sites are 
below 1 K. The maximum standard deviations are below 1.5 K at all the 
sites except for BND, TBL, and Lkb. The good spatial homogeneity of the 
sites overall confirms the validity of the conclusions in this study. 

5.6. Uncertainties and limitations 

In the calculation of SULR, DLR was directly obtained from the in- 
situ measurements rather than from external datasets. This is to avoid 
the influence of uncertainties in DLR estimates on the analysis of LST 
directionality impacts although the influence is negligible due to the 
scaling factor 1 - ε. 

Uncertainty may be introduced into the estimated directional LST 
from the Kernel-Hotspot model, thus impacting the SULR calculation. 
Cao et al. (2021) evaluated eight state-of-the-art KDMs using both 
simulation and airborne measured multi-angular data. The 4-stream 
radiative transfer model based on the Scattering by Arbitrarily In
clined Leaves (4SAIL) and the Discrete Anisotropic Radiative Transfer 
(DART) model were used to mimic the continuous canopy and discrete 

forest scene, respectively. For the airborne multi-angular data, two 
different datasets were used: one over continuous maize canopy 
collected in the northwestern China during the Watershed Allied 
Telemetry Experimental Research (WATER) experiment campaign and 
the other one over discrete pine canopy in Bordeaux, France. The 
evaluation results revealed that the RMSE values of the Kernel-Hotspot 
model were below 0.2 K in all cases using the simulation data. For the 
evaluation using the airborne dataset, the RMSE values of the Kernel- 
Hotspot model are ~0.2 K for both continuous and discrete scenes. 
Assuming the condition with a temperature of 300 K and a broadband 
emissivity of 0.96, the uncertainty caused in SULR by the modeling error 
of 0.2 K is approximately 1 W m− 2. Thus, the uncertainty introduced by 
the Kernel-Hotspot model into SULR estimation is negligible. 

The Kernel-Hotspot model has a simple yet effective emissivity 
kernel, which dominates the LST directionality over areas where the 
shadowing/sunlit effects are minor and surface spatial heterogeneity is 
low (e.g., barren or sparsely vegetated surfaces). In the evaluation 
conducted by Ermida et al. (2018b), the RMSE of the KDM was between 
0.1 and 0.2 K when the percentage of tree cover (PTC) was below 20% 
that indicates a sparsely vegetated surface. Especially at night when the 
emissivity directionality is the only factor contributing to LST direc
tionality, the RMSEs of the KDM were below 0.2 K for all PTC cases. The 
good accuracy of the emissivity kernel was further confirmed by Cao 
et al. (2021). In their evaluation using simulations based on the 4SAIL 
and DART models, the RMSEs for the KDM were below 0.2 K for both 
scenarios (i.e., over continuous and discrete canopies) when LAI was set 
to 1. Further improvement of the emissivity kernel can be made possibly 
by considering the Hapke soil model for the simulation of soil emissivity 
directionality (Ermida et al., 2018b). 

In the calibration of the KDM model coefficients, the SEVIRI LST and 
MODIS LST were used conjointly. The systematic differences between 
the two LST products were removed using a linear regression method 
based on MODIS LST (Ermida et al., 2017; Ermida et al., 2018a). Dis
crepancies may still occur after this exercise due to difference in foot
print, not fully corrected from resampling, in surface orography, also in 
emissivity. The retrieved model coefficients could be in error, thereby 
impacting the SULR estimates. Moreover, the KDM model coefficients 
are in grids of 0.05◦ to coordinate the different pixel scales of SEVIRI (3 
km), MODIS (1 km) LST and the other ancillary datasets used for 
extrapolating the model coefficients. Uncertainties can be introduced 
into SULR estimates when the model is applied to the MODIS 1 km LST 
product over heterogeneous surfaces. Despite of the aforementioned 
potential uncertainties in the KDM model calibration, the accuracy of 
SULR estimates after correction for LST directionality is still improved 
consistently at the selected sites. Thus, we conclude that the calibrated 

Table 6 
Comparison between results obtained using the MYD21_KH method at the SURFRAD sites in 2010 and 2011 for the daytime.  

Site Sample Number MYD21_KH MYD21 Sample Number MYD21_KH MYD21 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

2010 2011 

NR1 29 16.49 17.96 20.98 22.30 19 16.57 17.47 26.26 27.43 
SRM 63 13.71 15.62 17.34 20.55 65 14.89 20.13 19.40 25.38 
UMB 56 3.08 9.76 8.06 13.39 41 2.77 9.99 7.21 11.77 
Wkg 134 17.60 19.16 23.24 26.27 136 17.21 20.03 23.30 27.45 
Ses 142 11.69 15.52 17.81 22.52 151 10.74 13.60 19.06 22.85 
Ne3 60 5.20 27.91 13.06 31.09 66 5.99 13.83 13.00 21.64 
SRC 64 5.11 7.67 11.32 13.55 56 6.49 8.57 13.15 15.63 
BND 67 9.56 23.01 16.62 27.97 50 1.76 13.69 6.75 15.26 
TBL 67 − 1.68 9.91 5.57 15.38 71 − 2.60 9.44 6.12 15.42 
DRA 45 0.49 7.05 5.78 10.25 61 − 1.71 5.88 4.15 9.02 
FPK 68 1.74 10.25 7.11 13.51 75 1.70 11.49 8.02 14.79 
Lnf 16 4.73 9.69 6.40 7.80 35 7.45 10.87 9.03 11.42 
Lkb 11 0.01 11.36 2.88 12.49 23 − 0.10 12.32 3.47 17.04 
Das 60 30.68 32.95 38.80 41.57 81 14.25 17.36 21.55 25.27 
ASM 22 13.50 16.23 24.29 26.40 91 5.37 7.47 12.12 15.11 
Mean – 8.79 15.60 14.62 20.34 – 6.72 12.81 12.84 18.37  
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Kernel-Hotspot model is effective in correcting for LST directionality in 
SULR estimation. 

Since slope effects are not considered in the Kernel-Hotspot model, 
the proposed framework is probably not applicable over rugged sur
faces. More information regarding the correction of thermal direction
ality in SULR estimation over high-relief terrain can be found in the 
studies by (Yan et al., 2020; Yan et al., 2016). 

In the procedure of evaluation, the overfitting problem noticed in 
autumn and winter over most of the selected sites is due to the weak 
directional variation of LST. The consequence is a degradation of SULR 

accuracy after LST directionality correction. Therefore, we suggest that 
LST angular variation does not need to be considered in the SULR esti
mation when thermal directionality is minor, i.e., during autumn and 
winter for the daytime (except for in arid and semiarid regions) and in 
all seasons for the night-time. 

6. Concluding remarks and perspectives 

The angular variation in LST influences SULR estimation considering 
the significant thermal directionality of the land surface at the pixel 

Fig. 14. Scatterplots of SULR estimates after correcting LST directionality and those using the nadir viewing LST in spring. The cases with sample numbers <20 
are excluded. 
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scale. By incorporating a parametric model of LST directionality in the 
physical temperature-emissivity method, the present study analyzes the 
influence of LST directionality on SULR estimation using the MYD11 and 
MYD21 LST products. Evaluating the SULR estimates with respect to in- 
situ measurements from 15 different sites in different regions leads to 
the following conclusions. 

LST directionality effects on SULR estimation exhibit diurnal and 
seasonal variations, which is conspicuous during spring and summer for 
the daytime. The effects are insignificant in autumn and winter for the 
daytime except for in arid and semiarid regions. For the night-time, the 
effects are insignificant over all the biomes. This behavior is consistent 
with the temporal variation of surface thermal directionality over 
different biomes. 

Apart from the impacts of diurnal cycle and seasonal variation 
caused by solar illumination, the land unit is also associated with LST 
directionality effects on SULR estimation. This is reflected in the LST 
directionality model through the combination of the hotspot kernel 
depicting the shadowing effect and the emissivity kernel describing the 
emissivity directionality effect on LST. 

The nadir viewing LST produces highly overestimated SULR and is 
therefore not the advised option for SULR estimation. The directional 
LST with VZA of 54◦ at the backward scattering direction can be 
regarded as a local optimum candidate for SULR estimation. 

Despite the present analysis is conducted based on the MODIS LST 

Fig. 15. Scatterplots of SULR estimates after correcting LST directionality and those using the nadir viewing LST in summer. The cases with sample numbers <20 
are excluded. 

Fig. 16. Standard deviation of Landsat-8 LST in a window of 1 km × 1 km 
centred at each site. All the cloud-free Landsat images between 2015 and 2016 
were used in the statistics. 
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products and the Kernel-Hotspot LST anisotropy model, it is likely that 
this study could be extended to other LST products and models. 
Considering the simplicity and effectiveness demonstrated at the 
selected sites in different biomes, the developed SULR estimation model 
is promising to be integrated into surface energy balance models to 
improve the accuracy of ET retrieval over vegetated surfaces. This will 
facilitate the future thermal missions with respect to monitoring water 
use and water stress in the terrestrial ecosystems. 

Future work will focus on generating SULR products using the 
developed model at large spatial scales for a long time series and eval
uating the model performance extensively using in-situ measurements in 
various regions over the globe to further demonstrate the generality of 
the conclusions drawn from the selected 15 sites. 
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Appendix A

Fig. A1. Histograms of standard deviation of directional LST in the principal plane combining all the sites in (a) spring, (b) summer, (c) autumn, and (d) winter for 
the daytime 
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