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To better formalize the notorious inverse-QSAR problem (finding structures of given QSAR-predicted properties) is considered in this paper as a two-step process including (i) finding "seed" descriptor vectors corresponding to user-constrained QSAR model output values and (ii) identifying the chemical structures best matching the "seed" vectors. The main development effort here was focused on the latter stage, proposing a new attentionbased conditional variational autoencoder neural-network architecture based on recent developments in attention-based methods. The obtained results show that this workflow was capable of generating compounds predicted to display desired activity while being completely novel compared to the training database (ChEMBL). Moreover, the generated compounds show acceptable druglikeness and synthetic accessibility. Both pharmacophore and docking studies were carried out as "orthogonal" in silico validation methods, proving that some of de novo structures are, beyond being predicted active by 2D-QSAR models, clearly able to match binding 3D pharmacophores and bind the protein pocket. = θ(structure) and model fitting, activity = μ(D ⃗ ) are clearly 47 separated into successive steps, and hence activity = μ(θ-48 (structure)) = f(structure). Hence, the inverse QSAR problem 49 may be conceptualized as a succession of two formal steps: 8-10 50 1. finding descriptor vectors ("seed vectors") matching the 51 desired activity level: D ⃗ = μ -1 (activity) 52 2. finding the structures that correspond to the D ⃗ above: 53 structure = θ -1 (D ⃗ ) 54 Since : N , searching extremal points of μ(D ⃗ ) is a 55 standard optimization problem, and albeit solving may prove 56 challenging when μ is highly nonlinear or if N is large, this step 57 of inverse QSAR is conceptually an easy one. 58 By contrast, step 2 is both technically and conceptually 59 hard�to the point that, until recently, the typical way to 60 discover molecules with activity values matching a desired 61 activity level is to enumerate candidate structures and apply, to 62 each, the QSAR model until all input candidates were herewith 63 "virtually screened 11,12 " or until enough events f(structure) ≈ 64 desired activity occurred, for example, "virtual hits" were

INTRODUCTION

Predictive quantitative structure-activity/property relations (QSAR/QSPR) 1 are regression or classification models that are able to compute, upon input of a molecular structure, an estimate of the activity/property value the compound is expected to display. One may formulate the above as activity = f(structure), where function f needs first to be calibrated in order to have f(structure) returning accurate approximations of known activity values. If the above holds, then inverse mapping would allow to retrieve the "optimal" chemical structure(s), maximizing the expectancy of having an activity matching the input argument, that is, the desired activity level needed to achieve success in the current research project.

Since the first pioneering linear regression model by Hansch and Leo, 2 procedures to "fit," for example, machine learn f(structure), have progressed to the point of routine calibration of nonlinear models based on a plethora of machine learning methods (support vector machines, partition trees, neural networks�to cite only the most popular 3-7 ).

Typically, the structure argument in f(structure) is the molecular graph with vertices colored by chemical elements and edges colored by bond types. Since f(structure) returns a real number, it is obvious that the information content of the input molecular graph could first be translated in this process into some purely numerical representation�a vector of N real numbers D ⃗ known as the "molecular descriptor vector." In classical QSAR, the two formal steps, descriptor calculation D ⃗ found. Virtual screening (VS), however, is limited by the choice of candidate structures either from public/commercial databases or from user-designed virtual libraries. In contrast to systematic VS, sampling techniques of chemical structures consider molecular structure as evolvable. [START_REF] Hartenfeller | Reaction-Driven de novo Design of Bioactive Compounds[END_REF][START_REF] Mauser | Recent developments in de novo design and scaffold hopping[END_REF][START_REF] Hartenfeller | Concept of Combinatorial De Novo Design of Drug-like Molecules by Particle Swarm Optimization[END_REF] This is de novo design, [START_REF] Sattarov | De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping[END_REF][START_REF] Gómez-Bombarelli | Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules[END_REF][START_REF] Zhou | Optimization of Molecules via Deep Reinforcement Learning[END_REF][START_REF] Segler | Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks[END_REF][START_REF] Olivecrona | Molecular De Novo Design through Deep Reinforcement Learning[END_REF][START_REF] Prykhodko | A de novo molecular generation method using latent vector based generative adversarial network[END_REF][START_REF] Aruś-Pous | SMILES-based deep generative scaffold decorator for de-novo drug design[END_REF][START_REF] Cova | Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns[END_REF] which fundamentally differs from VS by the fact that structures are not a predefined library but are generated and/or modified "on the fly" by some automated molecular structure editor.

The recent advent of deep neural networks (DNNs), able to extract information from arbitrary "brute" data and herewith learn to recognize patterns, had a major impact in the field of QSAR. [START_REF] Gupta | Impact of Artificial Neural Networks in QSAR and Computational Modeling[END_REF][START_REF] Mitchell | Machine learning methods in chemoinformatics[END_REF][START_REF] Fjodorova | Counter propagation artificial neural network categorical models for prediction of carcinogenicity for non-congeneric chemicals[END_REF][START_REF] Ajmani | A Neural Network-Based QSAR Approach for Exploration of Diverse Multi-Tyrosine Kinase Inhibitors and its Comparison with a Fragment-Based Approach[END_REF][START_REF] Myint | Molecular Fingerprint-Based Artificial Neural Networks QSAR for Ligand Biological Activity Predictions[END_REF] The idea of DNNs is mimicking a human brain in which neurons communicate by generating and passing signals.

Along with many applications of DNNs, Rana et al. [START_REF] Rana | Application of Multi Layer (Perceptron) Artificial Neural Network in the Diagnosis System: A Systematic Review[END_REF] reviewed the application of the simplest example of DNN models� multilayer perceptron (MLP)�to disease diagnostics. MLP was also shown as a method to build successive QSAR models. [START_REF] Baskin | Neural Networks in Building QSAR Models[END_REF] Later, parsing a chemical structure given in the form of a SMILES string by DNNs using the natural language processing technique was proposed as a new approach for QSAR model training. [START_REF] Sabando | Using molecular embeddings in QSAR modeling: Does it make a difference?[END_REF] This success was not the end, and soon graph convolutional networks were proposed as a replacement of recurrent neural networks (RNNs) in QSAR modeling. [START_REF] Muratov | QSAR without borders[END_REF] As the research domain is in full effervescence, an exhaustive overview of already envisaged DNN architectures is beyond the scope of this article. The reader is encouraged to access the most recent reviews. [START_REF] Sousa | Generative Deep Learning for Targeted Compound Design[END_REF] Some DNN architectures, namely, autoencoders, relate input structure (simply rendered as SMILES [START_REF] Weininger | Algorithm for generation of unique SMILES notation[END_REF] ) to activity within a unique computational framework, apparently bypassing the need for molecular descriptors in QSAR. De facto, SMILES string encoder architectures first translate structure to a "latent" real vector L ⃗ , which the associated decoder would use to regenerate the SMILES. Thus, L ⃗ is nothing but a machine-generated molecular descriptor vector. Therefore, the decoder is a deep-learning-based model based on latent space descriptors L ⃗ implicitly allowing for a solution to the inverse problem.

So far, the majority of QSAR models are still based on classical, human expert-designed descriptors. This is first due to historical reasons, latent space descriptors L ⃗ being very new. However, expert-designed descriptors D ⃗ may still have a key advantage over the former (such as atom order invariance, which may be an issue in L ⃗ spaces�and their support of relatively small training sets in contrast to "big data"-dependent DNN approaches). So far, only a few attempts to convert arbitrary descriptor space D ⃗ back to structure have been described. One work [START_REF] Kotsias | Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks[END_REF] reports two distinct RNN-driven approaches labeled PCB (physchem-based) and FPB (fingerprint-based). The former inputs a vector of predicted physicochemical properties (including a QSAR-predicted bioactivity value) to generate SMILES strings of compounds matching these properties. The latter uses Morgan fingerprints for input. Similarly, a transformer architecture has been implied to "translate" various classical chemoinformatics fingerprints back to structure. [START_REF] Ucak | Reconstruction of lossless molecular representations, SMILES and SELFIES, from fingerprints[END_REF] Both works can be considered as examples of "hard" inverse QSAR approaches and were successfully used to generate structures in the neighborhood of known actives. However, they stopped short of coupling "easy" and "hard" QSAR problems in order to investigate how their approaches would cope with input vectors corresponding to optima of the QSAR landscape, not to already known molecules. The proposed architecture of the ACoVAE transformer was 197 inspired by the one proposed by Lin et al. [START_REF] Lin | Variational Transformers for Diverse Response Generation[END_REF] In a similar way, a 198 random latent vector is fed as a START token. However, 199 substantial changes were introduced which helped us to 200 achieve better performance. In our architecture, a random 201 latent vector is encoded directly using a GRU, while Lin et al. 202 used a trick with a priori undefined random distribution parameterized by a separate network. Additionally, a hyperspherical uniform distribution was preferred to a standard Gaussian one because during the tuning stage, the former performed better. A von Mises-Fisher distribution is commonly used for sampling from hyperspherical uniform distribution [START_REF] Davidson | Hyperspherical variational auto-encoders[END_REF] with the reparameterization trick. However, we found that the power spherical distribution [START_REF] De Cao | The Power Spherical Distribution[END_REF] used instead of von Mises-Fisher one allows a speeding up of the learning process without loss of the performance. Application of a GLT transformation layer [START_REF] Mehta | Deep and Light-weight Transformer[END_REF] better translates the descriptor vector into the internal representation used by the decoder network than MLP. Finally, inspired by the GELU approximation, [START_REF] Hendrycks | Gaussian Error Linear Units (GELUs)[END_REF] new activation function FTSwishG resulted from some modifications of the previously reported FTSwish 51 was used throughout the ACoVAE network

METHODS

x x FTSwishG RELU( ) sigmoid(1.702 ) 0.2 = × (1) 
According to our tests, it gives better results compared to the ReLU, GeLU, and FTSwish activation functions. In such a way, our ACoVAE transformer architecture is a novel one, having only a few in common with the one proposed by Lin et al. [START_REF] Lin | Variational Transformers for Diverse Response Generation[END_REF] The designed architecture is implemented using the TensorFlow framework and can be readily retrained for other descriptor types. It is available on our GitHub storage https:// github.com/Laboratoire-de-Chemoinformatique/ACoVAE.

SVR Models.

A series of ligands for ABL tyrosine kinase (CHEMBL1862) from the ChEMBL v.23 database was standardized using a protocol reported by Sidorov et al. [START_REF] Sidorov | Mappability of drug-like space: Towards a polypharmacologically competent map of drug-relevant compounds[END_REF] SVR models for thermodynamic instability constants of proteinligand complexes (pK i ) were generated using the evolutionary libsvm model tuner, [START_REF] Chieng | Flatten-t 1074 swish: A thresholded relu-swish-like activation function for deep 1075 learning[END_REF] Computation of the "optimal" seed vectors has been confided to an evolutionary heuristic browsing through the D ⃗ space in search of vectors maximizing computed pK i values.

The "chromosome" of the approach is a 20-dimensional integer vector in which loci may contain either zero or a number denoting a training set compound. The vector encoded by such a chromosome is taken as the mean ⟨D ⃗ ⟩ of descriptor vectors of the training set compounds mentioned in the chromosome (a compound may be mentioned several times in different loci, which amounts to increasing its weight in the computed average). The fitness score of the chromosome is nothing but the corresponding pK i = SVR(⟨D ⃗ ⟩) to be maximized. Hence, the evolutionary algorithm is bound to find, by applying cross-over and mutation operators, chromosomes enumerating optimal sets of training set compounds, with the property that the centroid of the descriptor vector of the set is predicted to correspond to high affinity values. The procedure was applied for each SVR model for 150,000 generations. Sampled "high-affinity" ⟨D ⃗ ⟩ values were used as the condition vector for the ACoVAE decoder. Details about evolutionary model building can be found in our publication, [START_REF] Chieng | Flatten-t 1074 swish: A thresholded relu-swish-like activation function for deep 1075 learning[END_REF] which also provides instruction on how to obtain and download that tool. Here, it was used with default setup, meaning 12-fold-repeated three-fold cross-validation (with steadily reshuffled cross-validation tiers at every iteration). The model fitness score was the mean cross-validated determination coefficient ⟨Q 2 ⟩ penalized by 1 standard deviation, fitness = ⟨Q 2 ⟩σ(Q 2 ).

GTM Landscape-Driven Models.

GTM is a dimensionality reduction technique developed by Bishop et al. 53,[START_REF] Bishop | The 1080 Generative Topographic Mapping[END_REF] The method performs a nonlinear projection of an Ndimensional space onto a 2D latent space. The former corresponds to the descriptor space, where each molecule is defined by an N-dimensional molecular descriptor vector. The 2D latent space corresponds to a manifold which is defined by a set of radial basis functions and evaluated on sample points called "nodes." Simply put, the manifold can be seen as a rubber band that can be folded in N-dimensions during training to fit the data distribution in a way maximizing its coverage of the space zones populated by relevant items (the "frame set"). Any compound can subsequently be projected on the manifold. For visualization purposes, the manifold is "unfolded" into a 2D plane, organizing the nodes into a square grid. GTM is a probabilistic method, meaning that compounds are fuzzily projected on all nodes of the manifold. As such, an item is associated with ("resident in") each node with different probabilities. The sum of the probabilities�technically named responsibilities�over all nodes of the manifold equals 1. In practice, this means that one compound will be defined by a responsibility "pattern" potentially involving several nodes instead of being confined to one node only. When projecting compounds of experimentally known properties, neighborhood behavior [START_REF] Dragos | Predicting the 1083 Predictability: A Unified Approach to the Applicability Domain 1084 Problem of QSAR Models[END_REF] (NB) compliance implies that residents of the same node should have related property values, so that the node may be seen to "represent" that local average property, and "colored" accordingly. Resulting property "landscapes" are nothing but NB-driven QSAR models: the property of any external item can be predicted from the "local color" of the landscape zone onto which it is projected. In this work, the fuzzy class landscapes (monitoring the likelihood to classify as "active" with respect to a target) were employed. They were based on the previously published [START_REF] Horvath | Neighborhood behavior of in silico 1086 structural spaces with respect to in vitro activity spaces�A novel 1087 understanding of the molecular similarity principle in the context of 1088 multiple receptor binding profiles[END_REF] universal map #1 (UM1)�the first of a series of GTMs parameterized (using ChEMBL data), such as to maximize their "polypharmacological competence," that is, their ability to host a large battery of highly predictive fuzzy class landscapes associated with diverse biological targets. Note that landscape-based QSAR models are parameter-free (the landscapes are built by projection of existing structure-activity data on the given manifold in an unsupervised manner). Therefore, landscapebased QSAR models are implicitly available as soon as the supporting structure-activity data are available.

The structure-activity data set associated with the CHEMBL1862 target was projected on the manifold of the first universal map UM1 [START_REF] Horvath | Neighborhood behavior of in silico 1086 structural spaces with respect to in vitro activity spaces�A novel 1087 understanding of the molecular similarity principle in the context of 1088 multiple receptor binding profiles[END_REF] and was seen to "spontaneously" segregate into zones populated predominantly by "actives" and "inactives," respectively. This map was built based on ISIDA [START_REF] Ruggiu | ISIDA Property-labelled fragment descriptors[END_REF] atom sequence counts with a length of two to three atoms labeled by CVFF force field types and formal charge status (IA-FF-2-3-FC). Recall that construction of activity landscapes on a given GTM manifold is not supervised but a purely deterministic procedure. The separation proficiency of the (2) A coherence between the ISIDA descriptor vector recalculated for the generated SMILES string and the input vector at the source of that SMILES was assessed using the Tanimoto similarity score.

Filtering of Nonvalid SMILES Strings.

During the sampling procedure, output SMILES were parsed and standardized using CGRtools. Then, they were transformed into Kekuléform followed by verification of valences. If no error detected, the SMILES strings were rearomatized and then written to the output. Failure of any step in this workflow leads to discarding the given text string as invalid SMILES.

RESULTS AND DISCUSSION

3.1. Finding Candidate Descriptor Vectors Associated with High Affinity. For the SVR model, the evolutionary sampler of the ISIDA descriptor space outlined in Section 2.2 is very fast to visit "high-affinity" ⟨D ⃗ ⟩ values. Points in the ISIDA descriptor space corresponding to predicted pK i values close to the ones of the most active compounds included in the training set can be discovered in matter of tens of minutes on Linux workstations with the following specification: Intel Xeon Silver 4214 2.20 GHz, 48 cores, 64 GB RAM, Ubuntu 18.04.6 LTS. However, the discovery of points with activities predicted to be better than the one of the best training compounds was never achieved despite of the total run times of the order of 48 h, resulting in >150 K visited ⟨D ⃗ ⟩ values. On the one hand, it is not clear whether such points may actually exist�SVR may suffer (in particular when based on the Gaussian kernel) from the "regression towards the mean" effect, consisting of systematic underestimation of high and overestimation of low property values. Moreover, it is even less likely that points where the SVR model nevertheless predicts a value beyond the largest observed pK i would actually be located within the "fragment control bounding box" defining the applicability domain [START_REF] Bishop | The 1080 Generative Topographic Mapping[END_REF] (AD) of the model. Given the fact that herein visited ⟨D ⃗ ⟩ values are generated as means of descriptor vectors of randomly selected subsets of compounds, these points are guaranteed within the bonding box AD (each vector element D i will be larger or equal than the minimal and, respectively, smaller or equal than the maximal D i value ever encountered within the training set). Third, the top affinities for all these targets are already within the 0.1 nM range�discovery of significantly more potent molecules is extremely unlikely in this context. Therefore, the five visited ⟨D ⃗ ⟩ values corresponding to the highest predicted pK i scores (comparable but not better than the affinity of the most active compound) were f2 used to tackle the inverse QSAR problem (see Figure 2).

As a complementary study to the inverse-SVR descriptor selection, the most active ChEMBL compound shown in Table 2 (compound A) was selected as a seed to show the difference between the generation from optimized vectors and a real active molecule.

For the GTM-based activity class predictors, two nodes that were most highly enriched in "active" residents were selected, f3 as represented in Figure 3. Candidate descriptor vectors were obtained by augmenting the D space coordinates of these nodes with Gaussian noise as described in the Methods section 463 ChemAxon procedure (heterocycles like pyridone are not 464 aromatized), (ii) dealkalization, (iii) conversion to canonical 465 SMILES, (iv) removal of salts and mixtures, (v) neutralization 466 of all species, except nitrogen(IV), and (vi) generation of the 467 major tautomer with ChemAxon. This resulted in 1,540,615 468 unique, stereochemistry-depleted SMILES strings used for 469 training (stereochemical information was removed because the 470 herein used molecular descriptors do not capture it).

471

Model training was done for 100 epochs and lasted for about 472 30 h on a QUADRO RTX 6000 graphic card. The loss 473 function tends to stabilize early during training as shown in f4 474 Figure 4; however, the model continues to learn as character-475 specific reconstruction rates and pure reconstruction rates 476 continue to grow. Arguably, the model could be trained for 477 somewhat longer since the reconstruction rate (val_rec_rate) 478 has seemingly not reached a plateau at 100 epochs. However, 479 we believed that the achieved accuracy�some 50% 480 reconstruction rate and 98% character-specific reconstruction 481 rate, was sufficient for the model acceptance. Notice that 482 variational autoencoders have a tendency for lower recon-483 struction rates than their deterministic counterparts because of 484 the element of randomness introduced by sampling latent 485 vectors from a given distribution instead of having 486 deterministic latent vectors. A descriptor vector marking a position in the chemical space may or may not translate to a chemically meaningful structure, knowing that the initial vector is typically not a slightly perturbed position vector of a real molecule but merely a chemical space point associated with high predicted activity according to a machine-learned, action mechanism-agnostic model. However, the ACoVAE decoder process injecting randomized latent vectors (see Section 2.1) may produce an arbitrary number of SMILES strings based on a given chemical space point. For each of the five considered chemical space points of high predicted affinity, chemically meaningful molecules were obtained (at a low success rate of 1.34%� but this is merely an order of magnitude of the likelihood to draw a random latent vector i.e., "compatible" with the current chemical space position). The complexity of the molecule that the model is trying to generate is implicitly affecting the chance to retrieve a valid structure. Since the model generates SMILES GTM landscapes identify zones enriched in actives, nevertheless containing some inactives. The sampling is performed using an ensemble of seeds generated from a given GTM node. These seeds can occasionally be located in the vicinity of inactives. In contrast, sampling from the most active compound generates structures similar to this seed. This explains the difference in the proportion active/inactive for different seeds in Table 1. Generated compounds were filtered to remove both chemically inconsistent species (by CGRtools) and duplicates and were compared to the initial training database (ChEMBL) to compute the "novelty" rate which corresponds to the percentage of valid unique generated compounds not appearing in the training set of the model. Table 1 shows that all generated compounds are novel. The trained SVR model was used to estimate the pK i values of the generated compounds, which were then classified as actives or inactives by using a threshold 7. As such, about half of the generated compounds were predicted to be active. a "Predicted active" implies predicted pK i > 7 by the SVR model. This latter is more stringent than GTM landscape-based predictions, which positions a vast majority of inverse-GTM compounds close to their "source" nodes and herewith classifies them as "actives." f5 552 5A show that most compounds are very similar (T c > 0.85/ 553 0.90) to their "seed," meaning the model was able to 554 understand the information contained in the descriptor vector 555 and translate it in terms of SMILES. Given that the value 556 contained in the vectors may not be integers or that some of 557 the descriptor values may be incompatible, an average of T c = 558 0.9 is a sign that the model was able to extract hidden 559 knowledge from the ISIDA descriptor and adapt it to a 560 chemically feasible structure. Some generated compounds 561 approach the activity values of the GA-optimized vectors as 562 shown in Figure 5B, although all active compounds have lower 563 pK i . Figure 5C shows the difference in predicted pK i between 564 the generated compounds (based on their actual D ⃗ vectors) 565 and the "source" GA-optimized vectors D
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, plotted against the 566 Tanimoto coefficient T D D ( , ) c

. Unsurprisingly, the SVR 567 QSAR models are neighborhood-behavior compliant: the 568 closer the source vector ⟨D ⃗ ⟩ remains to the actual compound 569 descriptor, the higher the likelihood to have the latter 570 predicted at high affinity levels�(virtual) activity cliffs 571 notwithstanding (pK i shifts of 2 orders of magnitude may 572 occasionally happen for 90% similar descriptor vector pairs).

The three most active compounds from ChEMBL, the three inverse-SVR and three inverse-lead molecules predicted that the most active were extracted and compared in terms of structural similarity and pK i values. The most active inverse-SVR and inverse-lead compounds are structurally very similar in terms of substructure counts but not necessarily in terms of overall topology to the most active ChEMBL compounds, as t2 shown in Table 2. Similar substructures or features like quinoline, cyclopropane, peptide bonds, and fluoride atoms appear in both ChEMBL and generated compounds�but they may be interconnected in a different way. Sampling the neighborhood of a given compound is likely to witness the neural network return typical "building blocks" seen in those compounds, all while recombining them and placing them in original contexts.

"Inverse-GTM" Compounds.

Inverse-GTM sampling, in this case, gives better results in terms of validity and uniqueness than inverse-SVR compounds.

Compounds generated from a GTM node vector consistently tend to be projected into the same area they were sampled from. This is not true of all compounds, a minority In inverse-GTM, random noise is also used to perturb the 597 input descriptor (GTM node vector), whereas inverse-SVR 598 compounds were strictly sampled on hand of the five 599 optimized descriptor vectors. Accordingly, the resulting 600 compounds are more diverse but less prone to score very 601 high predicted pK i values as shown in Table 2. Rather than 602 focusing on recombination of fragments maximally contribu-603 ting to SVR-predicted pK i values, the model incorporates 604 fragments of all training compounds occupying the vicinity of 605 the chosen "seed" vector.

"Inverse-SVR" and "Inverse-Lead" Versus "Inverse-

GTM". Sampling with inverse-SVR and inverse-lead has a chance to return molecules predicted highly active, which is not the case for compounds generated with inverse-GTM. This can be explained by the fact that inverse-SVR (inverse-lead) vectors served as the generation seed correspond to high activity values, which is not the case for the GTM node vectors. Inverse-GTM molecules have lower SVR-predicted pK i values comparatively because "active" GTM landscape areas were defined to harbor "actives" of pK i ≥ 7, and the categorical nature of the landscape makes no further distinction between submicromolars and subnanomolars. The two methods produce active compounds, but molecules 619 generated from inverse-SVR tend to be more focused on 620 specific chemical space zones predicted to stand for very high 621 affinity. Therefore, they reproduce structural features typical to 622 the few top actives�the "originality" mostly consisting in the 623 way in which these features (scaffolds, linkers) are reorganized 624 in the final structures. Inverse-GTM seeds tend by contrast to 625 stem from structurally less specific neighborhoods, generating a 626 more diverse set. 661 Ligand-based pharmacophores should reflect consensus 662 features in highly active binders. Therefore, a threshold of 663 pK i ≥ 9 was considered here to define "actives," in contrast to 664 the default pK i ≥ 7 defining "actives" in other contexts of this 665 work (GTM landscape, docking studies�vide inf ra). In 666 addition, only the inverse-SVR and inverse-lead compounds 667 with predicted pK i ≥ 9 were screened. This subset of the initial 668 generated compounds contains 39 inverse-SVR molecules and 669 8 inverse-lead compounds which makes 47 generated 670 compounds in total.

671

For ligand-based pharmacophores, conformations for the 672 training set compounds were calculated using the pre-loaded 673 FAST parameters of the software. These settings returned a Table 3. Hits Found with Pharmacophore Models and Their Validation with Docking for Inverse-SVM (I-III) and Inverse-Lead (IV) Compounds 3.3.4.1. Ligand-Based Pharmacophore. The screening of 47 inverse-SVR and inverse-lead molecules "hidden" in a set of 328 inactive decoys selected from the training set inactives allowed to understand if the two ligand-based pharmacophore models were selective enough to primarily focus on putative actives. If the considered pharmacophore models were observed to be as likely to match inactive decoys, it may be inferred that "matching" the pharmacophore model is no reliable indicator of putative activity against CHEMBL1862 but merely that the ligand-based pharmacophore models are too generic (easily matched by random compounds).

Model 1 and model 2 returned, respectively, three and one hits. The hits align well with the pharmacophore model, and most features match as shown in [START_REF] Ruggiu | ISIDA Property-labelled fragment descriptors[END_REF] Figures S4 andS5 in the Supporting Information. Table 3 shows that the four hits have relatively high ranking among the most actives, one of them being the third predicted most active inverse-SVR compound and another the second most active inverse-lead compound.

3.3.4.2. Structure-Based Pharmacophore Screening. The shared pharmacophore model computed for two PDB structures (2HZI and 2GQG) is mostly based on hydrophobic interactions with one hydrogen bond donor and one hydrogen f bond acceptor as shown in Figure 9B. The ligands contained in the PDB crystal structures are typically larger than inverse-SVR molecules. However, Figure 9A shows that crystalized ligands may include specific moieties not directly involved in binding. VS with the shared pharmacophore returned eight hits (see Table S2 in Supporting Information), four of which correspond to those found with ligand-based pharmacophores (Table 3). Notice that inverse-SVR compounds nicely match the pharmacophore, all while being smaller than the PDB ligands (see Figure 9C). These results show that the generated compounds are not only predicted active by the SVR models because they were optimized to do so but also fit the activity criteria of external validation methods like pharmacophore models. The fact that these three compounds were found by both methods and predicted highly active by the SVR model indicates that these compounds may be good candidates for further testing.

Validation of Inverse-SVR Compounds Using

Ligand-To-Protein Docking. In the docking challenge, both LeadIT and S4MPLE were able to predict the correct binding geometry of the native ligand of 2E2B (in protein-rigid redocking mode), and both were seen to significantly prioritize "actives" (pK i > 7), for LeadIT, the area under the ROC curve obtained after redocking the 821 training set compounds (out of which only 816 could be docked) was of 0.77. S4MPLE also found by both pharmacophore and docking methods as well as predicted highly active by the SVR model indicates that these compounds may be good candidates for further testing. We do not exclude that application of a docking score correlating with studied activity (e.g., that reported by Ahmed et al. [START_REF] Krenn | Self-referencing embedded strings (SELFIES): A 100% robust 1113 molecular string representation[END_REF] ) may better validate generated molecules.

CONCLUSIONS AND PERSPECTIVES

This article introduced a new type of architecture based on state-of-the-art deep learning method which is capable, given a descriptor type and successful training, to generate compounds possessing wanted activity and structural features from "seed" descriptor vectors�where the descriptor vectors are not "latent" vectors themselves produced by some encoder architecture but standard, state-of-the-art descriptors typically used in QSAR (here, ISIDA fragment counts). This provides an elegant solution for the inverse QSAR problem�the inference of novel molecular structures matching modelpredicted high activity zones of the descriptor space. Finding descriptor "seeds" corresponding to aforementioned interesting zones has been herein addressed in two model-specific ways: evolutionary search for D vectors corresponding to high predicted affinity values (pK i ) according to SVR models or D vectors within the immediate neighborhood of GTM nodes preferentially populated by active compounds. Additionally, the descriptor vector generated for the highest affinity ligand from the training set was also used as a seed. Selecting only descriptor vectors associated with very high predicted affinity values (pK i ) equal or close to the best ever values reported in ChEMBL lead to inverse-SVR and inverse-lead molecules being structurally related to already existing top-active ChEMBL compounds�in the sense that they share significant common substructures, all while preserving their global originality. An external pharmacophore study performed on inverse-SVR compounds shows that several molecules with high predicted activity show good matches with existing active molecules in terms of pharmacophores. Selecting the vectors based on generative topographic mapping is focused on a binary, class-based definition of activity, and inverse-GTM molecules appear more diverse, all while predicted to have remarkable pK i values by the SVR models (better than 100 nM, but not yet close to the top-active ChEMBL compounds). Original compounds of acceptable synthetic feasibility index could be readily obtained. Therefore, the inverse QSAR problem�fast discovery of original feasible compounds specifically selected for being predicted active by a given QSAR model�can be considered as conveniently solved, at least for the (rather widely used) class of fragment-based molecular descriptor-based QSAR models. Of course, the ultimate promise of prospective discovery of experimentally validated actives may only be kept if the "inversed" model lives up to its promises in terms of prediction�but this is an altogether different problem, which is not covered by the present, purely methodological work. It is clearly not expected to necessarily see inverse-QSAR de novo compounds automatically score well in docking if docking scores are decorrelated from the QSAR-predicted affinity estimator. In particular, fragment-count-based QSARs may overrate the importance of given molecular fragments if the latter happen to appear by chance only within the structures of actives, thus establishing the mechanistically wrong shortcut "presence of key fragments → activity" simply because inactive counterexamples containing the same fragments in a different mutual configuration 
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  For the above reasons, the current contribution wishes to 129 explore the feasibility of a genuine solution for the inverse 130 QSAR problem for models based on classical, expert-defined 131 molecular descriptors. The core of this work consists in the 132 development of an attention-based conditional variational 133 autoencoder (ACoVAE) based on transformer architecture. 134 Given the seed vectors of ISIDA fragment descriptors, the 135 ACoVAE generates corresponding molecules. 136 We have used two types of in-house generated QSAR 137 models of ABL tyrosine kinase 1 (CHEMBL1862) activity: 138 1. Support vector regression (SVR) models for the 139 inhibition constant (pK i ) using D ⃗ = ISIDA 37,38 circular 140 fragment counts. Seed vectors prepared with the help of 141 a genetic algorithm used to sample D ⃗ space with 142 predicted pK i value as fitness. 143 Additionally, the descriptor vector of the molecule 144 possessing the highest affinity ("lead molecule" LM) from 145 the CHEMBL1862 set was also used as a seed vector. 146 2. Generative topographic mapping (GTM)-based predic-147 tive activity class landscapes using the "universal" map 39 148 based on D ⃗ = force field-type colored 40 ISIDA atom 149 sequence counts. Sampling of D ⃗ was performed around 150 the coordinates of active-enriched nodes of the land-151 scape. 152 The inverse QSAR problem is considered solved if (i) the 153 obtained structures are valid and chemically feasible and (ii) 154 the obtained structures are submitted to classical forward 155 QSAR model prediction and return conveniently high activity 156 values. 157 Here, the ultimate goal was to obtain de novo structures that 158 are perceived by a QSAR model to be highly active�whether 159 they really are active or not is a question of underlying model 160 quality, not of the quality of the inverse QSAR approach. 161 Nevertheless, an alternative orthogonal in silico validation of 162 these structures as ligands of the considered targets has been 163 performed by pharmacophore analysis with the LigandScout 41 164 program and by docking using both LeadIT 42 and S4MPLE 43 165 approaches.

  ACoVAE. The proposed ACoVAE transformer model 167 f1 is shown in Figure 1. It consists of three main parts: 168 (1) During the training procedure, a GRU-based encoder 169 parametrizes a random latent vector distribution based 170 on the training set SMILES. Hyperspherical distribution 171 with zero mean and variance equal to 1 is used as target 172 latent vector distribution; 173 (2) A condition vector encoder uses a grouped linear 174 transformation (GLT) layer 44 to transform initial 175 descriptor vectors to a conditional latent vector; 176 (3) A standard autoregressive multihead attention decoder 45 177 translates from condition and random latent vectors to 178 SMILES. A more detailed architecture of the network is 179 given in Supporting Information, Figures S1 (training

  180 stage) and S2 (inference stage). During the training, a 181 SMILES strings and their corresponding descriptor 182 vectors are used to train the ACoVAE. A reparamete-183 rization trick for latent vector sampling is used to train 184 the network end-to-end. In the inference stage, the latent 185 vector is sampled from a prior (0, 1) hyperspherical 186 distribution, and a desired descriptor vector is used as condition. Based on the random and condition vector, 188 the decoder generates a wanted SMILES. Notice, that 189 alternative SMILES for a given condition descriptor 190 vector can be generated both (i) by running inference 191 stage with different random vectors sampled from a prior 192 distribution and (ii) by sampling different text strings 193 using categorical sampling from token probabilities 194 predicted by the transformer for a given random and 195 condition vector. 196

  schemes were defined together with the SVR-specific parameters (kernel type, cost, γ, etc.) optimizing model quality. The models were built on a training set containing 739 molecules and validated on a test set of 82 molecules. The test set data were collected from recent publications posterior to model training. The best model relies on IIRAB-1-3 ISIDA fragment count descriptors (7372 atom-centered fragments with a radius of 1 to 3 atoms with restricted fragmentation) and the Gaussian kernel option. It displayed a reasonable performance in cross-validation (R 2 = 0.79 and RMSE = 0.70) and on the test set (R 2 = 0.80 and RMSE = 0.67).

Figure 1 .

 1 Figure 1. General scheme of the ACoVAE architecture used in this study. The GRU-based encoder (top left) parametrizes SMILES into latent vectors following a hyperspherical distribution, which is used upon inference for random sampling. The descriptor vector which is used as a condition in the generation is embedded by a GLT layer (top right). Autoregressive transformer is used to decode random latent vectors and combined conditions into SMILES strings. A detailed representation of all three networks is given in the Supporting Information.

  328 considered manifold was obtained by repeated leave-1/3-out 329 cross-validation, in which iteratively two-third of the items are 330 projected on the map in order to "color" the activity class 331 landscape, whereas the remaining one-third of compounds a 332 posteriori projected onto that landscape and have their activity 333 classes assigned on basis of their residential zones in the 334 landscape. Cross-validated balanced accuracy was 0.78, 335 significantly above the randomness threshold of 0.5. The 336 structure-activity dataset is herewith proven to be robust and 337 modelable by both machine-learning (SVR) and neighborhood 338 analysis-based mapping. 339 Activity class landscape for CHEMBL1862 was used to 340 identify zones in the chemical space in which "active" 341 compounds tend to cluster preferentially. Note that the label 342 "active" was assigned to compounds with the ∼25% highest 343 affinity values according to the initial automated data curation 344 procedure used for universal map fitting. The GTM nodes n in 345 which active compounds were seen to preferentially reside 346 were identified as key points if

448(

  see 2.3). Projection of these seed vectors on the landscapes 449 below unsurprisingly assigns quasi-unitary responsibility values 450 to their "source" nodes, implicitly qualifying them as "Calibration Results. Two distinct ACo-453 VAEs were trained�one for each relevant ISIDA descriptor 454 space: 40 IIRAB-1-3 for the inverse-SVR problem and IA-FF-2-455 3-FC for the inverse-GTM challenge. Each training set 456 contained the same 1,540,615 compounds from ChEMBL-457 23, standardized using ChemAxon 60 standardizer, following 458 the procedure implemented on the VS server of the Laboratory 459 of Chemoinformatics in the University of Strasbourg (http:// 460 infochim.u-strasbg.fr/webserv/VSEngine.html). The following 461 standardization steps were applied: (i) dearomatization and 462 final aromatization according to the "basic" setup of the

Figure 2 .

 2 Figure 2. Distribution of pK i for the compounds used to train the model. The dotted line renders the distribution of predicted pK i for the vectors of the final population emerging from the evolutionary sampling approach.

Figure 3 .

 3 Figure 3. Selected nodes for target ChEMBL1862 on the fuzzy activity class landscape where color encodes the relative populations of actives (class 2, red when pure) vs inactives (class 1, blue when pure). Intermediate color design nodes with residents of both classes in various proportions. Numbers of the node are represented.

4873. 3 .

 3 QUADRO RTX 6000 GPU. Comparing lead molecule sampling to inverse-SVR sampling shows that both perform similarly in terms of unique valid compounds and activity prediction, although lead molecule sampling scores a bit lower on the latter metric.

  strings, it must conform to a very specific grammar which is intolerant to errors. Any misplaced character in the SMILES sequence can render it incorrect and bring up an error�a wellknown problem in chemoinformatics. Without extensive understanding of the chemical meaning behind a SMILES string, it can be very difficult to correctly open and close multiple rings to recreate valid structures with correct aromaticity and stable behavior. This, in part, explains why the model may be very successful in some parts of chemical space and struggle more in other parts. A possible solution to that problem would be the use of DeepSMILES 61,62 or SELFIES 63 which use a simpler syntax eliminating the risks of incorrect ring closures and parenthesis errors.

  Compounds predicted as inactives by the model were filtered out. Generated compounds were compared to the GA-f5 optimized vectors used as input to the model. Results in Figure

Figure 4 .

 4 Figure 4. Training metrics for the ACoVAE transformer model based on ISIDA descriptors. "Loss" is the loss function of the model. "Masked accuracy" corresponds to the character-specific reconstruction rate. "Reconstruction rate" corresponds to the full SMILES string reconstruction rate.

Figure 5 .

 5 Figure 5. (A) Distribution of Tanimoto similarity calculated between sampled compounds and the ISIDA descriptors used for their sampling (obtained via SVR GA and lead molecule). (B) Distribution of predicted activities for inverse-SVR compounds, lead molecule sampled compounds, training compounds, and vectors optimized by GA.(C) Scatter plot with the x-axis being the Tanimoto similarity between the sampled compound and the GA vector and the y-axis, the difference in (calculated) pK i between the inverse-SVR compounds and the original GA vector. The different colors correspond to the five different "seed" vectors used for the sampling procedure.

  f6 594 being projected in different areas of chemical space�in f6 595 inactive-dominated zones (see Figure6).

  596

Table 2 .

 2 Most Active ChEMBL-Reported Compounds (A, B, C) against the ChEMBL1862 Target as Well as the Most Potent Structures Generated from the Different Seed Vectors a a The numbers correspond to experimentally measured (for ChEMBL compounds) or predicted with SVR models pK i values. b Compounds generated for the descriptor vector generated for molecule A, which is the highest affinity molecule (inverse-LEAD) with pK i = 10.73.

f7 627 Figure 7

 6277 Figure 7 confirms this trend as we see that the distribution of 628 activities of inverse-SVR and inverse-lead compounds has a tail

  3.3.4. Validation of Inverse-SVR and Inverse-LeadCompounds Using Pharmacophore Modeling. Pharmacophore models were trained using LigandScout 41 (4.4) to check whether the generated compounds would also comply to the ligand-and structure-based hypothetic binding patterns that can be inferred on hand of current structure-activity data. Both structure-based and ligand-based approaches were applied in an effort to be as comprehensive as possible. The compounds present in the training set of the SVR model (821 compounds) were used for ligand-based model training.

Figure 6 .

 6 Figure 6. Projection of the 100 most active compounds predicted by the SVR models, generated in different fashions. See caption of Figure 3 for landscape color coding. (A) Compounds were generated from "node" vectors obtained from node 1623. (B) Compounds were generated from "node" vectors obtained from node 1542. (C) Inverse-SVR compounds. (D) Inverse-lead compounds.

Figure 7 .

 7 Figure 7. Comparison between the distribution of (SVR-predicted) activities between inverse-SVR, inverse-lead, and inverse-GTM compounds.

  maximum of 25 conformations by compound. Ligand-based pharmacophores were built and clustered by LigandScout. 41 Pharmacophore models were calculated for two clusters containing 78 and 5% (163 and 9 molecules, respectively) of all training set actives (model 1 and model 2, respectively).Different pharmacophore models were generated for each cluster using sets of 5 to 10 molecules.Structure-based pharmacophores were built based on PDB crystal structures of human proto-oncogene tyrosine-protein kinase ABL1. 2HZI and 2CQG crystal structures were used to generate the shared pharmacophore model which was screened against the 47 generated compounds for which pK i > 9 was predicted.

Figure 8 .

 8 Figure 8. (A) Synthetic accessibility score for the four datasets calculated. (B) Quantitative estimate druglikeness index distribution for the three different datasets.

  Figure 10) than within the random subset of ZINC random

Figure 10 .

 10 Figure 10. Percentages within the collection of inverse-GTM and inverse-SVR leads (blue) and the set or random ZINC decoys (orange) achieving LeadIt docking scores typical of experimentally validated actives of pK i > 7.

  820 were not found at the training stage. ACoVAE-based 821 approaches may, as seen in this work, readily suggest structures 822 issued by recombining such key fragments�guaranteed to 823 achieve high ratings by the parent QSAR model but not sure to 824 still feature a global pharmacophore compatible with the target. 825 The goal of this work was to present genuine solutions for the 826 QSAR inversion problem based on "classical" fragment 827 descriptors rather than on DNN-specific latent space vectors. 828 Technically, this was a success, but it also clearly reveals that 829 QSAR inversion alone is too risky a path to take in drug design: 830 the actual pursuit of the synthesis efforts of sometimes 831 challenging (but�granted�novel) structures may or may not 832 pay, given the intrinsically incomplete and error-prone nature 833 of QSAR models. However, if inverse QSAR is coupled with 834 orthogonal activity prediction techniques, as done here, it can 835 be observed that many of compounds alleged to be active by 836 the initial QSAR models fail to pass the additional, 837 independent activity assessment tests (pharmacophore match-838 ing, docking). This is no surprise because the consensus rate of 839 chemoinformatics predictors based on premises as radically 840 different as 2D-QSAR, pharmacophore screening and docking 841 are typically very low. Nevertheless, we were successful in 842 discovering some de novo structures which did pass the latter 843 tests. This shows that the exploration of the initial inverse-844 QSAR-relevant chemical space is sufficient to visit areas in 845 which not only the original QSAR model but also the 846 alternative approaches indicate that biological activity is likely,

Table 1 .

 1 Performance of the ACoVAE Transformer Model for the CHEMBL1862 Target When Sampling from Seed Descriptor Vectors from Different Sources

		number	number	novelty	
	seed vector	(percentage) of valid	(percentage) of unique	compared to ChEMBL	predicted active a
	source	compounds	compounds	(%)	(%)
	SVR	12,432 (2.43%) 6,899 (55.49%)	100	48.6
	GTM	70,684 (13.8%) 61,342	99.98	6.9
			(86.78%)		
	lead	23,559 (4.60%) 7,600 (32.26%)	99.95	41.6
	molecule