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RESEARCH ARTICLE

Themitotic role of adenomatous polyposis coli requires its bilateral
interaction with tubulin and microtubules
Laurence Serre1,‡, Julie Delaroche1, Angélique Vinit1,*, Guy Schoehn2, Eric Denarier1, Anne Fourest-Lieuvin1

and Isabelle ArnalAQ1
¶

1,‡

ABSTRACT
Adenomatous polyposis coli (APC) is a scaffold protein with tumour
suppressor properties. Mutations causing the loss of its C-terminal
domain (APC-C), which bears cytoskeleton-regulating sequences,
correlate with colorectal cancer. The cellular roles of APC in mitosis
are widely studied, but the molecular mechanisms of its interaction
with the cytoskeleton are poorly understood. Here, we investigated
how APC-C regulates microtubule properties, and found that it
promotes both microtubule growth and shrinkage. Strikingly, APC-C
accumulates at shrinking microtubule extremities, a common
characteristic of depolymerases. Cryo-electron microscopy revealed
that APC-C adopts an extended conformation along the protofilament
crest and showed the presence of ring-like tubulin oligomers around
the microtubule wall, which required the presence of two APC-C sub-
domains. A mutant of APC-C that was incapable of decorating
microtubules with ring-like tubulin oligomers exhibited a reduced
effect on microtubule dynamics. Finally, whereas native APC-C
rescued defective chromosome alignment in metaphase cells
silenced for APC, the ring-incompetent mutant failed to correct
mitotic defects. Thus, the bilateral interaction of APC-C with tubulin
and microtubules likely contributes to its mitotic functions.

KEY WORDS: APC, Microtubule, Tubulin, Depolymerase, Mitosis

INTRODUCTION
Adenomatous polyposis coli (APC) is a 340-kDa scaffold protein
with tumour suppressor properties. Mutations in the APC gene
correlate with the development of cancers, mostly colorectal cancers
(Juanes, 2020; Näthke, 2006). The central portion of the APC
gene is particularly sensitive to mutations producing premature
termination of translation, resulting in truncated proteins. These
short forms of APC lack the C-terminal domain, which is mainly
responsible for interactions with the cytoskeleton (Moseley et al.,
2007; Nakamura et al., 2001). Similar mutations have also been
observed within the APC2 gene, the neuronal isoform of APC, and
are associated with cytoskeleton defects such as inadequate

dendritic spine morphology or axon misguidance in neuronal
disorders linked to Sotos syndrome or autism (Almuriekhi et al.,
2015; Mohn et al., 2014; Onouchi et al., 2014).

Several studies have focused on the C-terminal domain of APC,
called APC-C (residues 2131–2843), and highlighted its
importance with regard to microtubule and actin regulation (Deka
et al., 1998; Okada et al., 2010). APC-C was found to contain a
basic domain that interacts with microtubules or actin monomers,
alongside a dimerisation domain essential for actin nucleation
(Okada et al., 2010) that overlaps with the binding site for neuronal
kinesins (Ruane et al., 2016). It also contains distinct binding sites
for other cytoskeleton-related proteins, including end-binding (EB)
proteins (Honnappa et al., 2005; Serre et al., 2019) or the
mitochondrial kinesin-motor complex Miro/Milton (Mills et al.,
2016). The biological functions of the C-terminal domain of APC
must be deciphered if we are to understand its cellular functions.
This knowledge will shed light on the dysfunction of its truncated
forms in cancers and neuronal pathologies, and in particular on how
these mutations affect microtubule architecture and regulation
during cell division (Bahmanyar et al., 2009; Fodde et al., 2001a;
Rusan and Peifer, 2008). Indeed, we have found few molecular
studies into the effects of APC on microtubule organisation and
dynamics. To fill this gap, we combined a set of in vitro
reconstitution and cellular approaches to characterise the
microtubule regulatory properties of the C-terminal domain of
APC. We found that APC-C stimulates both growth and shrinkage
rates at microtubule minus and plus ends. Like other depolymerases
(Brouhard et al., 2008; Tan et al., 2006), APC-C accumulates at
the end of depolymerising microtubules. Using cryo-electron
microscopy and image analysis, we observed APC-C bound to the
surface of microtubules, where it adopted an extended conformation
along protofilaments. Strikingly, APC-C was also seen to organise
soluble tubulin as ring-like oligomers around the microtubule wall.
A mutant incapable of decorating microtubules with these ring-like
structures and exhibiting reduced effects on microtubule dynamics
was unable to rescue chromosome alignment defects in metaphase
cells silenced for APC, whereas complementation with APC-C did
rescue these defects. Taken together, our results allowed us to
develop a molecular model linking the role of APC in regulating
microtubule dynamics and organisation to its function in mitosis.

RESULTS
The C-terminal domain of APC increases growth and
shrinkage rates at microtubule ends
We first characterised the effect of purified APC-C (Fig. 1A) on
microtubule assembly and disassembly using total internal
reflection fluorescence (TIRF) microscopy. In our experimental
conditions, the addition of 50 nM APC-C significantly increased
both polymerisation and depolymerisation rates for microtubules
(Fig. 1B,C; Fig. S1; Table 1; Movie 1). Thus, microtubule plus-ends
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grew twice as fast and depolymerised 30% faster in the presence of
50 nM APC-C. In addition, APC-C increased the rescue frequency
and slightly decreased the catastrophe frequency. Similar effects of

APC-C were observed at microtubule minus ends, with a 50%
increase in both microtubule growth and shrinkage rates (Fig. 1C;
Fig. S1; Table 1). A truncated form of APC-C (APC-ANS1),

Fig. 1. See next page for legend.
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lacking the dimerisation domain (ANS2) and EB-binding sites, but
including the ANS1 domain known to be involved in microtubule
binding (Fig. 1A), had a similar effect on microtubule dynamics
compared to APC-C (Fig. 1B,C; Fig. S1; Table 1). Therefore,
APC-C appears to modulate microtubule dynamics at both ends
through elements in its basic domain, not involving its dimerisation
or EB-binding sites.

The C-terminal domain of APC accumulates at the ends of
depolymerising microtubules
Using a fluorescent form of APC-C (SNAP488–APC-C), we
investigated whether the effects induced by APC-C on microtubule
dynamics were associated with a specific distribution along or at the
ends of growing and shrinking microtubules. Inspection of the
kymographs obtained in the presence of 12 nM SNAP488–APC-C
revealed that APC-C boundAQ3

¶
the whole length of the microtubule

wall and accumulated at the ends of depolymerising microtubules
(Fig. 1D). The fluorescence intensity increased consistently as
the depolymerisation time progressed, becoming more intense close
to the seeds (Fig. 1E). In contrast, in line with our previous
observation (Serre et al., 2019), APC-C did not accumulate at
the ends of polymerising microtubules (Fig. 1D). APC-C can
therefore accumulate autonomously at the ends of depolymerising
microtubules.

The C-terminal domain of APC forms ring-like tubulin
oligomers around microtubules
Having observed APC-C to bind all along the microtubule wall
(Fig. 1D), we next used electron microscopy to investigate the
structure of the APC-C–microtubule complex. Cryo-electron
microscopy images revealed that APC-C bundled microtubules
and could also organise free tubulin, leading to the formation of
tubulin rings with a diameter of 33–38 nm (Fig. S2A,B), similar to
the diameter of the tubulin rings that form spontaneously in solution
(Arnal et al., 2004; Shemesh et al., 2018). Strikingly, in the presence
of both free tubulin and microtubules, APC-C induced an unusual
microtubule decoration consisting of ring-like tubulin oligomers
wrapped around taxol- or GMPCPP-stabilised microtubules
(Fig. 2A; Fig. S2C,D). Ni-NTA gold particles specifically
targeting 6× histidine-labelled APC-C revealed the presence of
APC-C along the microtubules decorated with rings of tubulin
(Fig. S2E). From cryo-electron microscopy images and using
single-particle image analysis methods, we calculated a three-
dimensional (3D) model of a 13-protofilament (13-pf ) microtubule
decorated with ring-like tubulin oligomers, measuring about 45 nm
in diameter (Fig. 2B). The average axial periodicity of the ring-like
tubulin structure was about 10 nm, further suggesting that the ring-
like tubulin decoration did not follow the 8-nm periodicity of the
tubulin heterodimer in microtubules (Fig. 2C).

APC-C binds along the protofilament crest
The loose periodicity of the ring-like tubulin structure made it
impossible to obtain a high-resolution model (Fig. 2B,C) or to
locate the electron density AQ4

¶
of APC-C on the outer ring-like tubulin

structures. Indeed, the ring-like tubulin structures and APC-C
density were poorly resolved compared to the central microtubule.
This poor resolution is most likely due to the flexibility of the ring
structure and the heterogenous binding mode of APC-C.

In contrast, an additional density in the difference map [obtained
either by subtracting the signal from a 15-Å low-pass filtered
synthetic map of a 13-pf microtubule (Cook et al., 2020) from the
original cryo-electron map or by subtracting the signal calculated
from the refined atomic model of the 13-pf microtubule from the
original cryo-electron map] was present on the external surface of
each microtubule protofilament (Fig. 2D,E). This density could
accommodate an extended peptide measuring about 65 Å and
spanning the microtubule surface in the vicinity of the H11 and H12
helices of tubulin (Fig. 2E). However, the resolution of our model
was too low to clearly distinguish between α- and β-tubulin and to
conclude whether APC interacts at the intra- and/or inter-dimer
tubulin interface. The extended extra density that we assigned to
APC-C is reminiscent of that of tau protein, which also binds along
the crest of protofilaments, as shown by the superposition of the

Fig. 1. The C-terminal domain of APC increases the growth and
shrinkage rates of microtubules and accumulates at the ends of
depolymerising microtubules. (A) Schematic representation of the full-
length APC and protein constructs used in this study. The regions marked in
yellow indicate ANS1, a region involved in microtubule interaction, and
ANS2, a dimerisation site – both domains are involved in actin nucleation.
The regions marked in green indicate SxIP EB-binding sites.
(B) Representative kymographs for microtubules grown with 15 µM tubulin
alone (left) or with 50 nM APC-C (centre) or APC-ANS1 (right). (C) Growth
rate, shrinkage rate and catastrophe frequency of the plus and minus ends
of microtubules assembled in the absence or in the presence of APC-C. ns,
not significant; **P<0.01; ****P<0.0001 (Kruskal–Wallis test with Dunn’s
multiple comparisons). Data are represented as mean±s.d. Detailed values
are given in Table 1 and SuperPlot representation of the data in Fig. S1.
(D) Representative kymographs of microtubules grown with 15 µM tubulin
(magenta) and 12 nM SNAP-488–APC-C (green), showing the accumulation
of SNAP-488–APC-C at the extremities of depolymerising microtubules
(yellow arrows). (E) Representative kymograph (top) and the corresponding
intensity plot profile (bottom) of SNAP-488–APC-C measured along the
microtubule depolymerizing end. The dashed blue line indicates SNAP-488–
APC-C intensity along the microtubule end centred on the blue box in the
kymograph. The dashed pink line indicates the background corresponding to
the intensity measured along a line centred on the pink box in the
kymograph. The plain black line indicates SNAP-488–APC-C intensity after
subtraction of the background, allowing the removal of the signal of SNAP-
488–APC-C that binds to the seed. AU, arbitrary units; MT, microtubule.

Table 1. Effects of APC-C and APC-ANS1 on microtubule dynamic parameters AQ24
¶

MTs

Growth
rate±s.d.
(µm/min) n

Time
(min)

Shrinkage
rate±s.d.
(µm/min) n

Time
(min)

Frequency of
catastrophes±s.d.
(event/min) n

Frequency
of rescues
(min−1) n

Plus end
Tubulin 43 0.91±0.16 208 1595 23.93±9.3 164 63 0.12±0.10 180 0.11 7
APC-C 55 1.74±0.31 270 2231 34.09±15.9 197 99 0.10±0.06 203 0.75 75
APC-ANS1 46 1.61±0.31 197 1871 34.54±16.9 123 65 0.07±0.03 124 0.55 36
Minus end
Tubulin 36 0.34±0.10 191 1101 21.77±10.0 163 13.7 0.16±0.05 161 1.10 15
APC-C 25 0.75±0.17 172 1221 41.96±23.0 137 13.6 0.11±0.04 143 7.35 100
APC-ANS1 34 0.62±0.15 200 1548 44.27±23.0 146 14.3 0.10±0.04 172 6.85 98

n, number of events; s.d., standard deviation; MTs, microtubules.
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atomic model of tau’s R2 tubulin binding motif with APC-C C-α
chain (Fig. 2F) (Kellogg et al., 2018). By analogy with the structural
data provided in studies of kinesin-13 and tau (Benoit et al., 2018;

Kellogg et al., 2018), we propose that APC-C interacts with similar
sites on the curved tubulin oligomers constituting the outer ring-like
tubulin structure.

Fig. 2. See next page for legend.
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APC-C exhibits at least two distinct tubulin-binding domains
Decoration of microtubules by ring-like tubulin oligomers requires a
minimum of two distinct tubulin-binding sites: one bound to the
microtubule lattice and the other to the ring-like tubulin structure.
This type of binding could result from APC-C dimerisation or from
the presence of multiple tubulin-binding sites within the APC-C
sequence. To determine which structure was involved, we used the
APC-ANS1 fragment, which behaves like APC-C with respect to
microtubule dynamics (Table 1), but is clearly monomeric in
solution (Fig. S3A,B). Cryo-electron microscopy images revealed
that APC-ANS1 can also decorate microtubules with ring-like
tubulin oligomers (Fig. S3C), displaying a similar pattern to that of
APC-C. Therefore, each APC-ANS1monomer contains a minimum
of two distinct sites interacting with the tubulin heterodimers
present either in the outer ring-like structure or incorporated within
the microtubule wall.
To more precisely define these different APC tubulin-binding

domains, we designed three overlapping peptides (F1, F2 and F3)
within the basic domain of APC-ANS1 (Fig. S3D). Each of these
peptides could bind microtubules and form oligomeric tubulin rings
in solution (Fig. S3E,F). However, apart from a few rare decorations
observed with the F3 fragment, none decorated microtubules with
ring-like tubulin oligomers to the same extent as APC-C (Fig. S3F).
Based on these results, we delimited two non-overlapping regions
required for microtubule interaction: TBS1 (residues 2201–2302)
and TBS2 (residues 2311–2365) (Fig. 3A).
To further investigate the regions required for microtubule

binding, all the arginine and lysine residues present in TBS1 or
TBS2 were mutated to alanine to abolish electrostatic interactions
with the negative surface of tubulin dimers. We then investigated
whether APC-C-TBS1 (i.e. mutated in the TBS2 site) and APC-C-
TBS2 (i.e. mutated in the TBS1 site) could induce the formation of
ring-like structures around microtubules in the presence of soluble
tubulin. As expected, and unlike APC-C, microtubules decorated
with rings were not observed in the presence of either APC-C-TBS1
or APC-C-TBS2 (Fig. 3B). To confirm this result, we also
compared the ability of green-fluorescent mutated and wild-type
forms of APC-ANS1 to bind microtubules and decorate them with
red-fluorescent soluble tubulin. Loss of one of the two TBS sites did
not abolish the interaction of APC-ANS1 with microtubules (Fig. 3C;
Fig. S4A,B) but prevented the recruitment of free tubulin to
microtubules (Fig. 3D) and decreased the effect of APC-ANS1 on
microtubule growth and shrinkage rates (Fig. S1; Table S1).

These results indicate that APC-C contains at least two adjacent
tubulin-binding sites presenting similar properties in terms of
tubulin and microtubule binding (Fig. 3). Both sites are required for
decoration of microtubules with ring-like tubulin oligomers and for
APC-C to regulate microtubule dynamics.

The 3D models of TBS1 and TBS2 predicted by the Robetta/
RosettaFold server (Baek et al., 2021) were superposed on the R2
tubulin-binding domain of tau within the additional density defined
above (Fig. S4C). Interestingly, this modelling highlighted two
superposable clusters of basic amino acids involved in the
interaction with microtubules (Fig. S4D,E), suggesting that these
two structural microtubule-associated-proteins (MAPs) share a
common microtubule-binding mode.

For subsequent cellular studies, we used APC-C-TBS1 (mutated
in the TBS2 site) as mutation of the TBS1-binding site reduced
microtubule binding compared to the wild-type form (Fig. S4B).

APC-C is located on spindle microtubules and in the vicinity
of kinetochores during metaphase
Ring-like structures have been proposed to play a role in coupling
chromosome movement and microtubule dynamics during mitosis
(Cheeseman and Desai, 2008; Davis andWordeman, 2007). Having
observed that APC-C modulates microtubule dynamics and also
induces the formation of ring-like tubulin structures around
microtubules in vitro, we next examined its location during
mitosis in RPE-1 cells expressing APC-C (Fig. 4).

In these experiments, APC-Cmainly localised to the centrosomes
and spindle microtubules (either kinetochore or interpolar
microtubules, which were indistinguishable at the resolution
available) (Fig. 4A,B). APC-C also partially colocalised with
CENP-E, a component of the outer kinetochore involved in
chromosome congression (Kapoor et al., 2006) (Fig. 4C,D). This
colocalisation was greatly reduced following treatment with
nocodazole, which causes complete depolymerisation of spindle
microtubules (Fig. 4C,D), indicating that the positioning of
APC-C at the outer kinetochores is microtubule dependent.
Similar localisation results were obtained with the mutant APC-C-
TBS1 (Fig. 4). Based AQ5

¶
on these observations, APC might be

involved at the kinetochore–microtubule interface, as previously
suggested (Banks and Heald, 2004; Draviam et al., 2006; Fodde
et al., 2001b; Kaplan et al., 2001).

Wild-type but not mutant APC-C partially rescues
chromosome congression defects during metaphase
From its localisation in cells and its in vitro properties, we postulated
that APC-C might link microtubule dynamics to chromosome
movements during metaphase and anaphase. To test this hypothesis,
we depleted RPE-1 and HeLa cells of endogenous APC with a
specific siRNA (Fig. S5). In agreement with previous studies
(Bakhoum et al., 2009; Draviam et al., 2006; Green et al., 2005),
APC knockdown cells displayed a drastic increase in the percentages
of metaphase cells exhibiting misaligned chromosomes and anaphase
cells with lagging chromosomes (Fig. 5A–F). Expression of APC-C,
but not the APC-C-TBS1 mutant, rescued the metaphase
chromosome misalignment in these cells (Fig. 5C,E). Interestingly,
complementation with APC-C poorly rescued chromosome
segregation defects during anaphase (Fig. 5D,F).

We next wondered whether the expression of APC-C could also
complement the function of APC in human colorectal tumour
SW480 cells, which express a truncated form of APC encompassing
the N-terminal third of the protein (up to residue 1338) and lacking
the whole APC-C domain. SW480 cells exhibited a relatively high

Fig. 2. The C-terminal domain of APC forms ring-like tubulin structures
around microtubules. (A) Cryo-electron microscopy image showing
examples of taxol-stabilised microtubules decorated by ring-like tubulin
structures in the presence of APC-C. Scale bar: 50 nm. (B) 3D electron
microscopy reconstruction of one microtubule segment (cyan) decorated
with ring-like tubulin oligomers (pale yellow). Atomic models of the tubulin
heterodimer (green and pink; PDB ID: 6B0C; Benoit et al., 2018) were fitted
inside the cryo-electron microscopy model of the ring-like tubulin structure.
(C) An example of the periodicity of tubulin–APC-C decoration around taxol-
microtubules. AU, arbitrary units. (D) Difference map between a 15-Å low-
pass-filtered synthetic map of a 13-pf microtubule (white mesh) (Cook et al.,
2020) and the original cryo-electron map (cyan). (E) Model of the APC-C
C-α chain (in magenta) fitted to the residual density of the difference map
(white mesh) between the refined atomic model and original cryo-electron
map (cyan). (F) Orthogonal view along the axis of one protofilament. The
APC-C C-α chain is shown in magenta. The atomic model of tau bound to
the microtubule surface (PDB code: 6CVN) fitted within the initial APC cryo-
electron microscopy map is shown in yellow. The C-terminus of tubulin is
marked by a starAQ20

¶
. The tau–tubulin structure was superposed with the refined

atomic model of tubulin (cyan) within the initial APC-C–microtubule map.
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Fig. 3. Decoration of microtubules by tubulin oligomers requires the full basic domain of APC. (A) Location of the TBS1 and TBS2 tubulin-binding
sites within the APC-ANS1 sequence and their amino acid sequences. The basic residues that were mutated to alanine are shown in blue. (B) Negative-
staining electron microscopy images of taxol-stabilised microtubules incubated with free tubulin and APC-C or APC-C mutated for the basic domain (APC-C-
TBS1 and APC-C-TBS2). Scale bar: 50 nm. (C) TIRF images of Atto561-GMPCPP-microtubules (magenta) incubated with 100 nM fluorescent SNAP488–
APC-ANS1, SNAP-488–APC-ANS1-TBS1 or SNAP488–APC-ANS1-TBS2 (grey). (D) TIRF images of Atto561-GMPCPP-microtubules (magenta) incubated
with 5 µM Atto488–tubulin (green) and 100 nM APC-ANS1, APC-ANS1-TBS1 or APC-ANS1-TBS2. Scale bars: 2 µm. Images are representative of xxxxx
experiments. AQ21
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percentage of defects during metaphase and anaphase (Fig. 5G,H).
As above, expression of APC-C reduced the percentage of
metaphase chromosome misalignment (Fig. 5G) but had no
impact on chromosome segregation defects during anaphase
(Fig. 5H). As expected, the APC-C-TBS1 mutant provided no
complementation for either the metaphase or anaphase defects
(Fig. 5G,H).
To further analyse the role played by APC-C in mitosis, we

examined the duration of mitosis using time-lapse experiments
(Fig. 6A). APC depletion in RPE-1 cells resulted in a mitotic delay,
with a lengthening of the duration between nuclear envelope

breakdown (NEB) and metaphase chromosome alignment
(Fig. 6B). In agreement with the results described above (Fig. 5),
this delay was rescued, with the durations returning to close to those
recorded for control cells, upon expression of APC-C. Once again,
expression of APC-C-TBS1 failed to rescue the defects (Fig. 6B).
In contrast, APC depletion had no effect on the duration between
metaphase chromosome alignment and the onset of anaphase
(Fig. 6C).

Overall, these results indicate that APC-C contributes to
regulating chromosome congression during metaphase through
processes involving its multiple tubulin-binding sites.

Fig. 4. APC-C and APC-C-TBS1 mainly localise on centrosomes, spindle microtubules and at the microtubule–kinetochore interface.
(A) Representative Airyscan images (one focal plane) of metaphase RPE-1 cells expressing EGFP–APC-C or EGFP–APC-C-TSB1 (green) and labelled for
tubulin (grey). The fluorescence intensity of EGFP constructs was measured in the delimited ROIs (an example of ROI is shown for one hemi-spindle; ’bck,
background; c, centrosome; sp, spindle microtubules; as, astral microtubules; cy, cytosol). Scale bar: 5 µm. (B) Fluorescence intensity of APC-C and APC-C-
TBS1 on spindle microtubules, astral microtubules and in the cytosol (intensities normalised relative to the signal for the centrosome). MTs, microtubules.
Data are expressed as mean±s.e.m. A total of 25 cells from three independent experiments were quantified. ***P<0.001 (Kruskal–Wallis test with Dunn’s
multiple comparisons). (C) Representative Airyscan images of metaphase RPE-1 cells transfected with EGFP–APC-C (green) and labelled for CENP-E
(magenta) and tubulin (grey), in the absence (upper panels) or presence (lower panels) of nocodazole. Scale bar: 5 µm. The right-most panels
(colocalisation) correspond to binary images showing the overlap of EGFP–APC-C on CENP-E after segmentation in the two channels (see Materials and
Methods). (D) The percentage of colocalisation between EGFP–APC-C or EGP–APC-C-TBS1 and CENP-E in the absence and presence of nocodazole,
compared to mock-transfected cells (CTRL). Data are expressed as mean±s.e.m. The total number of cells analysed (from left to right) were 18, 20, 20, 8, 15
and 16, from two experiments. ns, not significant; *P<0.05; ***P<0.001 (Kruskal–Wallis test with Dunn’s multiple comparisons).
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DISCUSSION
This study aimed to elucidate the intrinsic properties of the
C-terminal domain of APC (APC-C), in which the main
cytoskeleton-interacting sites are located – sites that are absent
from the pathological forms. Our results revealed new properties of
APC with regard to its interaction with microtubules and tubulin,
and to its role during mitosis.
APC is a large scaffold protein and its interaction network

includes partners involved in a wide range of cellular processes
(Nelson and Näthke, 2013; Rusan and Peifer, 2008). APC was
primarily identified as a microtubule stabiliser, and its C-terminal
domain was ascribed a major role in microtubule interaction

(Zumbrunn et al., 2001). In our model derived from cryo-electron
microscopy data, APC-C, the domain that encompasses the
microtubule-binding sites, could adopt an extended conformation
spanning the protofilament crest at the interface between tubulin
monomer and/or dimers. This model is reminiscent of the
interaction described between neuronal tau and microtubules
(Kellogg et al., 2018), and corroborates results of an early study
that highlighted analogies between APC and tau (Deka et al., 1998)
with regard to tubulin assembly and microtubule bundling.
Interestingly, this mode of microtubule binding has also been
described at a low resolution for MAP2 (Al-Bassam et al., 2002),
another structural MAP present in neurons. It could therefore

Fig. 5. APC-C can rescue chromosome misalignment during metaphase. (A) Representative images of RPE-1 cells showing normal metaphase or
abnormal metaphase with misaligned chromosomes (arrowhead). (B) Representative images of RPE-1 cells showing normal anaphase or abnormal
anaphase with lagging chromosomes (arrowhead). Cells were labelled for tubulin (grey) and DNA (magenta). Scale bars: 5 µm. (C–H) Percentages of cells
exhibiting misaligned chromosomes or exhibiting lagging chromosomes. RPE-1 (C,D) and HeLa (E,F) cells were transfected with control siRNA (siRNA
CTRL), siRNA against APC (siRNA), siRNA+APC-C construct and siRNA+APC-C-TBS1 construct. SW480 cells (G,H) were transfected with APC-C or
APC-C-TBS1 constructs. Total number of metaphase cells analysed: RPE-1, n=121–133; HeLa, n=120–122; SW480, n=147–161 (data correspond to the
mean from four independent experiments). Total number of anaphase cells analysed: RPE-1, n=110–144; HeLa, n=142–160; SW480, n=186–197
(data represent the mean from four to six independent experiments). To determine statistical significance, normal and abnormal cells were distributed in
contingency tables and analysed by applying Fisher’s exact test. ns, not significant; *P<0.05; **P<0.01; ***P<0.001. The colour code corresponds to the
different experiment replicates.
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constitute a hallmark of this family of MAPs exhibiting basic
intrinsically disordered microtubule-binding sites. Despite its
analogies with structural MAPs that promote microtubule
assembly, APC exhibits unique properties. Indeed, besides
increasing microtubule assembly, the APC-C domain also
promotes the disassembly of tubulin at both ends of microtubules,
behaving as a depolymerase (Fig. 1B; Table 1). Very few proteins
exhibit this type of antagonistic activity. To our knowledge, only the
plus-end-tracking protein XMAP215, which is mainly described as
an efficient tubulin polymerase, has also been identified as a
microtubule-depolymerising factor under specific conditions
(Brouhard et al., 2008). However, whereas the activity of
XMAP215 seems restricted to the microtubule plus ends, APC-C
promotes microtubule dynamics at both ends (Table 1).
Thus, APC could regulate microtubule dynamics across a large

panel of processes, including assembly of the mitotic spindle
and organisation of acentrosomal microtubule arrays in neurons and
epithelial cells (Akhmanova and Hoogenraad, 2015; Weaver and
Walczak, 2015). The location of APC at the kinetochore–
microtubule interface is consistent with its role in mitosis, during
which it could tune the alternating growing and shortening phases
through its activity at microtubule ends. In dividing cells, during
metaphase, microtubules repeatedly shrink and grow until all the
chromosomes are aligned on the metaphase plate and correctly
attached to spindle microtubules; during anaphase, microtubule-
depolymerising forces predominate to pull the chromosomes
towards the poles of the cell. The hypothesis that APC is involved
in these processes also explains the chromosome misalignment and
mis-segregation observed in APC knockdown cells and in SW480
cancer cells (Fig. 5). Complementation with the C-terminal domain
of APC restores metaphase chromosome alignment and normal
metaphase duration, but does not fully restore the defects relating to

lagging chromosomes in anaphase (Fig. 5). Accordingly, the fact
that APC-C stimulates microtubule dynamics by increasing
microtubule growth and shrinkage rates and by stimulating the
rescue frequency might better correspond to the microtubule
behaviour required during metaphase to achieve chromosome
congression, rather than the behaviour required during anaphase.

In addition to the effects of APC on regulating microtubule
dynamics, our results highlight a novel and intriguing property
related to its tubulin-binding capacity. Using electron microscopy,
we observed that APC fragments containing the microtubule-
binding domain (i.e. APC-C and its shorter form APC-ANS1)
organised ring-like structures composed of tubulin around
microtubules (Fig. 2). Similar tubulin structures around
microtubules have been observed by electron microscopy for the
microtubule-binding domains of kinesin-13 and Ska-1, both of
which are located at the kinetochores during mitosis (Benoit et al.,
2018; Monda et al., 2017). Based on this similarity, we
hypothesised that these peculiar ring-like structures correspond to
functional features shared by kinesin-13, Ska-1 and APC. By
analogy with the Dam-1/DASH complex, an essential component
of the yeast kinetochores that self-organises as rings around
microtubules (Miranda et al., 2005; Westermann et al., 2005;
Ramey et al., 2011 AQ6

¶
), it has been suggested that these rings play a key

role in linking kinetochore movement to microtubule dynamics
during mitosis (Davis andWordeman, 2007; Cheeseman and Desai,
2008). In particular, these rings were proposed to convert the force
generated by microtubule depolymerisation into movement along
the lattice, thus allowing the chromosomes to segregate towards the
poles during anaphase or to oscillate during metaphase. In this
context, the ring-like tubulin structures generated by the
microtubule-binding domain of kinesin-13, Ska-1 and now APC
could reflect the ability of these three proteins to increase

Fig. 6. Time between NEB and metaphase alignment is prolonged in APC-depleted cells but can be restored in the presence of APC-C.
(A) AQ22

¶
Sequence of images of RPE-1 cells at the indicated times (in min:s) relative to NEB. Arrowheads point towards a dividing cell. Scale bar: 10 µm.

(B,C) Plots showing the time from NEB to metaphase alignment (B) and from metaphase alignment to anaphase onset (C) in RPE-1 cells transfected with
control siRNA (siRNA CTRL), siRNA against APC (siRNA), siRNA+APC-C construct and siRNA+APC-C-TBS1 construct. Points represent individual
durations and data are expressed as mean±s.e.m. Total number of mitotic cells analysed: n=56, 64, 51, 55, respectively, from four different movies in each
condition. ns, not significant; **P AQ23

¶
<0.01; ***P<0.001 (Kruskal–Wallis test with Dunn’s multiple comparisons).
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microtubule shrinkage and link microtubule depolymerisation to
chromosome movements during mitosis.
The decoration of microtubules with ring-like tubulin structures

results from the presence of two tubulin-binding sites per APC-C
monomer, which allow APC to simultaneously bind straight tubulin
in the microtubule lattice and bent tubulin in the ring-like
tubulin structures (Fig. 3). Mutation of one of these tubulin-
binding sites is sufficient to prevent the recruitment of tubulin
around the microtubule lattice, and the resulting mutant fails to
restore metaphase alignment and chromosome segregation in APC
knockdown cells or SW480 cancer cells (Fig. 5). The presence of
multiple tubulin-binding sites – required to decorate microtubules
with tubulin oligomers in vitro – is therefore essential for the mitotic
functions of APC. Along this line, molecular models have proposed
that for a majority of proteins that track depolymerising microtubule
ends, multiple tubulin-binding sites composed of disordered and
positively charged sequences, such as the sequence of APC-C, are
required to efficiently link microtubule shrinkage to movement of
the associated cellular cargoes attached to these proteins (Volkov,
2020). Such models are based on the ability of these protein
couplers to remain attached to the microtubule ends as they shorten
through their multiple tubulin-binding domains. We hypothesise
that curved tubulin structures released from depolymerising
microtubules might be pulled by APC-C as it diffuses along
the microtubule wall (Baumann et al., 2020). Such a mechanism
would enhance breaking of the lateral contacts of the protofilament
and explain how APC-C accelerates the microtubule shrinkage
rate. Accordingly, the APC-C mutant incompetent to decorate
microtubules with tubulin oligomers exhibits a reduced
microtubule-depolymerising activity.
Finally, the existence of multiple tubulin-binding sites in APC-C

might favour microtubule bundling, a function previously attributed
to APC both in cells and in cell-free systems (Deka et al., 1998;
Kahn et al., 2018; Mogensen et al., 2002; Zumbrunn et al., 2001). In
a mitotic context, APC could therefore enhance microtubule
bundling at the kinetochore and simultaneously coordinate the
overall dynamics of bundled microtubules. Through this activity, it
could have an impact on the formation of the metaphase plate.
From its presence at the microtubule–kinetochore interface and

the propensity of its microtubule-binding domain to increase
microtubule dynamics, in particular, microtubule shrinkage, to
bind curved tubulin, to accumulate at microtubule depolymerising
ends and to decorate microtubules with tubulin oligomers as
described for other kinetochore proteins, we propose that APC is a
component of the molecular complexes regulating the coupling of
kinetochore movements and microtubule dynamics at least during
metaphase. The data presented here provide new molecular
evidence contributing to our understanding of the mitotic function
of this major regulator of cellular integrity. For more than two
decades, cellular studies have highlighted the major role played by
APC in preventing cancer development and aneuploidy. Our results
confirm a role for APC in normal functions of the mitotic spindle
owing to its regulation of microtubule dynamics. We also present
molecular evidence of the specific role played by the C-terminal
domain of APC, the lack of which is associated with chromosome
instability.

MATERIALS AND METHODS
Plasmids and siRNAs
To construct pEGFP-APC-C and pEGFP-APC-C-TBS1 plasmids, APC-C
and APC-C-TBS1 were PCR amplified from the pET20b (Novagen)
constructs described in Serre et al. (2019) and were inserted into the

pEGFP-C1 plasmid (xx source xx) AQ7
¶

using the In-Fusion HD Cloning kit
(Clontech) and the primers indicated in Table S2. Plasmid DNA for cell
transfection was prepared using a Plasmid Endofree Midi Kit (QIAGEN,
Hilden, Germany). Additional DNA sequences used in this study are listed
in Table S2. siRNAs directed against APC and control siRNA (siRNA
CTRL) (Table S2) were purchased from Eurofins.

Protein preparation
Proteins were purified as described in Serre et al. (2019). Briefly,
xxxxxxxxx. AQ8

¶

In vitro microtubule dynamics assays
To explore how APC-C influences microtubule dynamics by TIRF
microscopy, flow chambers were prepared and perfused with stable
fluorescent (ATTO-561) GMPCPP-microtubule seeds, as described
previously (Ramirez-Rios et al., 2017). Microtubule nucleation was then
induced from seeds by adding the following mixture: 15 µM bovine tubulin
containing 15% fluorescent ATTO-488–tubulin in BRB80 buffer (80 mM
PIPES, 1 mM EGTA, 1 mM MgCl2, pH 6.8), 100 mM KCl, 3% (v/v)
glycerol, 1 mM GTP, 1% (w/v) bovine serum albumin, 0.05% (w/v) methyl
cellulose 4000 cp (xx source xx) AQ9

¶
, 4 mM dithiothreitol, 1 mg/ml glucose,

70 mg/ml catalase (xx source xx) and 580 mg/ml glucose oxidase (xx source
xx). APC-C or APC-ANS1 (50 nM) were added where indicated. Samples
were observed for 45 min (recording one image every 5 s) at 32°C on an
inverted microscope (Nikon) equipped with an iLas2 TIRF system (Roper
Scientific), a cooled charged-coupled EMCCD camera (Photometrics) and a
warm stage controller (Linkam Scientific). The system was controlled using
MetaMorph software (Molecular Devices). The parameters of microtubule
dynamics were determined from kymographs using ImageJ software
(Schneider et al., 2012) and an in-house KymoTool (Ramirez-Rios et al.,
2017). Growth and shrinkage rates were obtained from the slopes of the
microtubule growth and shrinkage phases, respectively. The catastrophe
frequency was calculated by dividing the number of events by the time
spent in growing state per microtubule. Due to large variations between
microtubules, the rescue frequency was calculated by dividing the total
number of events by the total time spent in shrinking state for each
condition. The data presented in Table 1 and Table S1 are from two or three
independent experiments.

Design and mutation of tubulin-binding sites
Based on previous studies that highlighted the contribution of APC
sequences (residues 2244–2312 and 2326–2371) to interactions with
microtubules (Deka et al., 1998; Okada et al., 2010), three overlapping
peptides (F1, F2 and F3) were designed within the basic domain of APC-
ANS1 (Fig. S3D). These peptides were used to more precisely characterise
the role of distinct regions in the decoration of microtubules by ring-like
tubulin oligomers using co-sedimentation assays (Fig. S3E) and negative-
staining electron microscopy (Fig. S3F). From the results obtained, and by
comparing the sequences of the three fragments, two non-overlapping
regions TBS1 (residues 2201–2302) and TBS2 (residues 2311–2365) were
delimited (Fig. S3D). The arginine and lysine residues present in TBS1 or
TBS2 were mutated to alanine (by to a total of 16 and eight mutations in the
TBS1 and TBS2 nucleotide sequences, respectively). The mutations were
confirmed by sequencing. The resulting mutant sequences were inserted
into the APC-C and APC-ANS1 nucleotide sequences to study the effect of
a lack of one of the two tubulin-binding sites on microtubule decoration and
dynamics.

Co-sedimentation assay with taxol-stabilised microtubules
To test the microtubule-binding properties of APC-ANS1, APC-ANS1-
TBS1, APC-ANS1-TBS2 and the F1, F2 and F3 fragments, 1 µM taxol-
stabilised microtubules and 2 µM APC-ANS1, APC-ANS1-TBS1 or
APC-ANS1-TBS2, or the F1, F2 or F3 fragments were added to BRB80
buffer supplemented with 50 mM KCl, and incubated for 10 min at 35°C.
An aliquot (20 µl) of this mixture was then overlaid on a 40-µl cushion of
60% (w/v) sucrose in BRB80 buffer and 50 mM KCl, and centrifuged at
xxxxx g AQ10

¶
(Beckman Coulter rotor TLA-100) for 45 min at 35°C. The protein
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content of the supernatant and pellet were analysed by migration on 4–15%
gels by SDS-PAGE revealed by Coomassie Blue staining. Bands
corresponding to APC-ANS1 and its fragments were quantified using
ImageJ (Schneider et al., 2012).

Negative-staining electron microscopy
2 µM taxol-stabilised microtubules, 5 µM APC-C, 5 µM bovine brain
tubulin in BRB80 buffer and 50 mM KCl were mixed together. An aliquot
of this solution (4 µl) was loaded onto a glow-discharged carbon-coated grid
(xx source xx). After incubation for 30 s, the grid was blotted (Whatman
Paper N°4, xx source xx) and placed upside down in contact with a drop of
1 nM Ni-NTA-Nanogold (5-nm diameter, Nanoprobes), BRB80 buffer and
50 mM KCl for 4 min at room temperature. The grid was then washed with
BRB80 buffer and 50 mMKCl, and stained with 2% (w/v) uranyl acetate for
30 s. APC-Cwith and without 6× histidine tags were tested in parallel. Grids
were observed using an FEI Tecnai F20 200 kV electron microscope
equipped with a 4K×4K FEI Ceta CMOS camera (FEI Company). Images
were taken in low-dose mode.

For other negative-staining microscopy experiments, 4 µl of protein
solution were loaded onto glow-discharged carbon-coated grids. After
incubation for 30 s, grids were blotted and stained with 2% (w/v) uranyl
acetate.

Cryo-electron microscopy
Taxol-stabilised microtubules and GMPCPP microtubules were prepared
from bovine tubulin. Taxol-stabilised microtubules (2 µM) were mixed with
5 µM APC-C or APC-ANS1 and 5 µM tubulin in BRB80 buffer with
50 mM KCl. An aliquot of this mixture (4 µl) was deposited on a glow-
discharged Quantifoil R2/2 300 mesh carbon/copper grid mounted on a grid
plunger (Vitrobot IV, Thermo Fisher Scientific). Grids were blotted for 1 s at
32°C with 100% humidity, flash frozen in liquid ethane and stored in liquid
nitrogen until imaging. Images were acquired at 200 kV on a Glacios
electron microscope (Thermo Fisher Scientific) equipped with a Falcon-II
direct electron detector. Data acquisition was performed using EPU software
(Thermo Fisher Scientific). Images were acquired at 73,000× magnification,
pixel size 1.96 Å at the specimen level, 40 electrons/Å2/movie, 1.5 s
exposure time and 29 frames per movie; the defocus ranged from −3.0 to
−1.5 µm (Fig. S6).

Movie frames (2-28)AQ11
¶

were aligned using MotionCor2 (Zheng et al., 2017)
and the corresponding contrast transfer function (CTF) parameters were
estimated with CTFFIND4.1 (Rohou and Grigorieff, 2015) on the drift-
corrected average. Particles were manually selected using the RELION-3.08
pick start-end coordinates helices option (Scheres, 2015). 320×320 pixel2

helical segments were extracted based on an 82-Å rise. To determine and
select the microtubule symmetry, averaged particles were generated (Cook
et al., 2020) and a 3D-classification was performed by comparison to
reference microtubules (12, 13, 14 and 15 pf). After identification of the
most probable symmetry for each microtubule, 14,170 segments
corresponding to 13-pf microtubules were selected. Particles were aligned
by several steps of auto-refinement (Refine3D, RELION) to determine ψ, θ
and φ angles and xy displacements, as well as the most probable seam
position for each microtubule (Cook et al., 2020). The 13-fold-helical
symmetry was imposed in the last step of refinement with local searches of
the helical twist and rise (twist=−27.68°, rise=9.54 Å). Power spectra
generated from two-dimensional (2D)-classes of the decorated particles
revealed a blurry layer line, around 1/10 nmAQ12

¶
, in addition to the diffraction

layer line at 1/4 nm corresponding to the tubulin monomer. This additional
line suggested that the decoration only loosely follows the periodicity of the
tubulin dimer. Therefore, the microtubule and outer curved tubulin
oligomers were separately refined (Fig. S7). Fig. S6 The local-filtered
map (LAFTER, CCPEM; Ramlaul et al., 2019) was used to construct a
13-pf microtubule from the tubulin heterodimer (PDB ID 6B0C; Benoit
et al., 2018) with Chimera (Pettersen et al., 2004). This model was then
refined with REFMAC5, CCPEM (Nicholls et al., 2018)). A difference map
was calculated by subtracting the signal calculated from the refined atomic
model from the LAFTER cryo-electron map (TEMPy:DifferenceMap,
CCPEM; Joseph et al., 2020). A C-α peptide was manually built inside this
residual density map using COOT (Emsley et al., 2010). Both the TBS1 and

TBS2 sequences were submitted to the Robetta/RosettaFold server (Baek
et al., 2021) and the predicted models fitted inside the residual density map
using Chimera (Pettersen et al., 2004).

To reconstruct the external tubulin ring, we selected particles exhibiting a
regular decoration by a 2D classification and then performed 3D
classification using synthetic references of the external ring built from
PDBmodels (based on the PDB structure 6B0C; Benoit et al., 2018) with an
axial periodicity of 8 nm or 10 nm. We selected the particles leading to the
best map (5928 particles) and aligned them using Refine3D applying the
helical symmetry (twist=−27.676° and rise=9.61 Å). The resolution was
estimated to 5.3 Å for the microtubule and 25 Å for the outer curved tubulin
oligomers (Fourier shell correlation=0.143) (Fig. S6) using a solvent mask.

Cell culture, transfection and treatment
HeLa and SW480 cells were purchased fromCLSCell Lines (Germany) and
hTERT-RPE-1 cells were from LGC-ATCC (France). All cells were free of
mycoplasma and were cultured in Dulbecco’s modified Eagle medium
(DMEM; xx source xx), 4.5 g/l glucose with 10% foetal bovine serum (xx
source xx). Transient transfections were carried out with 100 pmol siRNA
and/or 1 µg of plasmid DNA per 35-mm dish, using the JetPrime reagent
(Ozyme) for HeLa and SW480 cells, or Lipofectamine 3000 reagent
(Thermo Fisher Scientific) for RPE-1 cells. HeLa and RPE-1 cells were first
transfected with siRNA for 8–24 h and then with plasmid DNA for a further
16–24 h. SW480 cells were only transfected with plasmid DNA for 24 h.
To depolymerise spindle microtubules in mitotic cells, cells were treated for
2 h with 20 µM nocodazole (Sigma-Aldrich) at 37°C before fixation.

Immunofluorescence and image acquisition
For immunofluorescence analysis, cells were fixed by incubation in −20°C
methanol for 10 min. The primary antibodies used were: rabbit polyclonal
anti-EGFP (x:xxxx, AQ13

¶
AB3080, Millipore), mouse monoclonal anti-CENP-E

(x:xxxx, ab5093, Abcam), rat monoclonal anti-tyrosinated α-tubulin (x:
xxxx, clone YL1/2, xx cat. no. xx, xx source xx; Wehland and Willingham,
1983) and mouse monoclonal anti-α-tubulin (x:xxxx, α3-a1 AQ14

¶
, xx cat. no. xx,

xx source xx; Peris et al., 2006). Secondary antibodies were coupled to
Alexa Fluor 488, Alexa Fluor 647 or Cyanine3 (Jackson ImmunoResearch
Laboratories). Standard immunofluorescence procedures were applied.
DNA was stained with bisbenzimide Hoechst 33258 (5 µg/ml, Sigma-
Aldrich). Images were acquired on a Zeiss LSM 710 confocal microscope
equipped with a Zeiss Airyscan module, using a 63× oil-immersion NA 1.4
objective and Zen software (Carl Zeiss MicroImaging).

Time-lapse experiments
For time-lapse experiments, cells were grown in medium without Phenol
Red [Fluorobrite-DMEM (Thermo Fisher Scientific) complemented with
10% foetal bovine serum and 1× GlutaMAX (Thermo Fisher Scientific)]
and seeded in ibi-Treat glass-bottomed 35-mm dishes with four-well inserts
(80466, BioValley AQ15

¶
). Each well was transfected according to one condition

(siRNA CTRL, siRNA, siRNA+APC-C and siRNA+APC-C-TBS1) to
allow the four conditions to be filmed in parallel in the same experiment.
Approximately 1–2 h before time-lapse capture, RPE-1 cells were incubated
in medium containing 1× SPY650-DNA (SC501, Spirochrome,
Switzerland) prepared according to the manufacturer’s instructions. Cells
were then imaged using a 20× NA 0.8 objective on a spinning-disc
AxioObserver Z1 microscope (Zeiss/Roper) in a humidified and thermo-
regulated chamber. MetaMorph 7.8.5 software (Molecular Devices) was
used to perform multi-positioning time-lapse capture in the four wells. In
each position, z-series images (6-µm range around focus) were taken every
2.5 min with the CSU642 laser for a total of 6 h.Where applicable, an image
with the CSU488 laser was taken every 10 min to assess GFP transfection.

Quantifications of images
To quantify fluorescence intensity or localisation, cells were processed for
immunofluorescence with antibodies binding to EGFP, tubulin and CENP-
E; 16-bit images were obtained using Airyscan microscopy. To allow
comparisons, the same acquisition settings were used for all images in each
set of experiments.
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To quantify the amount of APC-C or APC-C-TBS1 on spindles, EGFP
fluorescence intensity was measured in metaphase cells using the ImageJ
software (Schneider et al., 2012), in delineated regions of interest (ROIs) on
Airyscan images in one focal plane. ROIs were drawn using the ‘tubulin’
channel: two ROIs in the background (‘bck’), two ROIs on hemi-spindles
(‘sp’), two ROIs on centrosomes (‘c’), two ROIs on astral microtubules
(‘as’) and two ROIs in the cytosol (‘cy’). The mean fluorescence intensity
was measured in ROIs in the ‘EGFP’ channel and the mean background was
subtracted from the mean intensities of each ROI. Fluorescence intensities
were then averaged and normalised with respect to the fluorescence intensity
on centrosomes.

To quantify colocalisation between EGFP (APC-C or APC-C-TBS1) and
CENP-E staining, a macro was created in ImageJ software. First, the mean
and standard deviation (s.d.) were measured in the ‘EGFP’ channel on
images of mock-transfected control cells (‘bck’). Then, images of cells
expressing APC-C or APC-C-TBS1 were processed as follows: the ‘CENP-
E’ channel was bandpass-filtered and the threshold set using RenyEntropy
settings; for the ‘EGFP’ channel, the threshold was set to bck+(4×s.d.). The
surfaces of both segmented images and the overlap between them were
measured. Colocalisation results are expressed as the ratio (percentage) of
the overlap surface to the CENP-E surface.

Statistics
All statistical analyses were performed using Prism 6 (GraphPad software).
The tests performed are specified in the figure legends.

Miscellaneous
Visualisation of molecular models and generation of structural figures were
handled with Chimera (Pettersen et al., 2004). Kymographs were generated by
ImageJ software (Schneider et al., 2012). SuperPlots were generated as
described in Lord et al. (2020). The TBS1 and TBS2 sequences were submitted
for structure prediction to https://robetta.bakerlab.org (Baek et al., 2021).
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