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Abstract

Paleogenomic data has informed us about the movements, growth, and relationships of ancient

populations. It has also given us context for medically relevant adaptations that appear in present-

day humans due to introgression from other hominids, and it continues to help us characterize the

evolutionary history of humans. However, ancient DNA (aDNA) presents several practical chal-

lenges as various factors such as deamination, high fragmentation, environmental contamination

of aDNA, and low amounts of recoverable endogenous DNA, make aDNA recovery and analysis

more difficult than modern DNA. Most studies with aDNA leverage only SNP data, and only a few

studies have made inferences on human demographic history based on haplotype data, possibly

because haplotype estimation (or phasing) has not yet been systematically evaluated in the context

of aDNA. Here, we evaluate how the unique challenges of aDNA can impact phasing quality. We

also develop a software tool that simulates aDNA taking into account the features of aDNA as

well as the evolutionary history of the population. We measured phasing error as a function of

aDNA quality and demographic history, and found that low phasing error is achievable even for

very ancient individuals (∼ 400 generations in the past) as long as contamination and read depth

are adequate. Our results show that population splits or bottleneck events occurring between the

reference and phased populations affect phasing quality, with bottlenecks resulting in the highest

average error rates. Finally, we found that using estimated haplotypes, even if not completely

accurate, is superior to using the simulated genotype data when reconstructing changes in popu-

lation structure after population splits between present-day and ancient populations.

Availability: All software used for simulation and analysis is available at

github.com/Jazpy/Paleogenomic-Datasim

Corresponding authors: flora.jay@lri.fr, mavila@liigh.unam.mx, emilia huerta-sanchez@brown.edu
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1 Introduction

Unlike modern DNA, ancient DNA (aDNA) is subject to several factors that make its analysis more

complicated than present-day DNA. Ancient DNA is damaged by the passage of time resulting

in deamination and fragmentation[1], which makes mapping ancient reads to modern references

challenging. It can also be contaminated by environmental DNA belonging to microorganisms, or

modern individuals of the same species[2]. Despite this, technical and analytical advances such as

next-generation sequencing (NGS)[3] and determining which substrates preserve DNA the best[4]

have facilitated paleogenomics–the analysis of genomic information from ancient remains. Up to

now, paleogenomic studies have contributed to 1) the development of evolutionary biology[5][6],

2) the inference of demographic histories [7][8], and 3) research of ancient pathogens [9].

For example, analysis of ancient human genomes from distinct time periods have been used to

infer population movements [10], and these reconstructions are important to explain the genetic

structure of present-day human populations. Specific examples of such studies include the char-

acterization of migratory events in present-day Great Britain before Anglo-Saxon migrations[11],

the effects of Zoroastrian migrations on the populations of Iran and India[12], genomic changes

in European populations following transitions between the Stone, Bronze, and Iron ages[4], and

evidence of barbarian migrations towards Italy during the 4th and 6th centuries[10].

As the availability and coverage of ancient genomes increases[13], the usage of haplotype data

in paleogenomics will become more common. Considering that currently there are no benchmarks

of how well phasing aDNA works as a function of contamination, read depth and temporal drift, it

is important to understand how phasing behaves when performed on aDNA data to guide studies

that leverage statistical phasing[11][12] to infer haplotypes. In general, there are three main

strategies for DNA phasing. Pedigree phasing uses kinship[14] and genotype data for multiple

related individuals, but it is rare to have multiple related individuals and information about how

they were related in ancient data sets. Read-based phasing[15][14] takes advantage of the fact

that alleles belonging to the same read will be in phase with each other. However, the high

fragmentation of aDNA makes read-based phasing difficult or computationally intractable. Finally,

statistical phasing uses haplotype reference panels or cohorts of related individuals to determine

the likeliest phasing of an individual, by reconstructing unphased individuals as a mosaic of other

haplotypes. We can further split statistical phasing into reference panel phasing or population

phasing[14], depending on the availability of reference haplotypes. Statistical phasing may be the

only viable strategy for paleogenomic data.

Reference panel phasing makes use of a known haplotype panel, i.e, a set of high quality hap-

lotypes that describe one or more populations. Based on this panel, the haplotypes of a new

individual can be estimated by reconstructing them as a “mosaic” of the known haplotypes[16].
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Three of the most used reference panels are those from the 1,000 Genomes project[17], the Hap-

lotype Reference Consortium[18], and the TOPMed project[19]. For example, the 1,000 Genomes

project gathered the haplotypes of a total of 2, 504 modern individuals belonging to 26 different

populations. These populations can be divided into five super-categories: Africans, East Asians,

European, South Asian, and admixed populations from the Americas [17]. This reference panel

has been used in several studies in modern populations[20], as well as in ancient data phasing

studies[11][12][4][10]. When no representative reference panels exist, population phasing is an-

other strategy that does not require phased samples. Population phasing attempts to create an

ad hoc reference panel by continuously updating the possible haplotypes of a cohort given only

their genotypes. However, without knowledge of the underlying haplotype structure, population

phasing is more computationally expensive and less accurate.

While a few studies have phased aDNA using the 1,000 Genomes reference panel, the per-

formance of software that implements statistical phasing[21][16] has not been evaluated for use

with aDNA. Factors such as contamination, low read-depth, deamination, and the time elapsed

since the time of the ancient samples needs to be considered as haplotype frequencies change with

time[22][23]. Even in the best-case scenario where the reference panel individuals are direct de-

scendants of the ancient population that is being sampled, the population might have experienced

bottleneck and migration events, that together with temporal genetic drift, could decrease the

reliability of phased ancient genomes.

In this study, we developed a pipeline to simulate ancient DNA reads to benchmark the accuracy

of phasing aDNA. Our simulations account for demographic history, varying levels of contamina-

tion, damage, and coverage. We called variants on the simulated data and tested the accuracy

of the haplotypes estimated by SHAPEIT[16]. We then measured how well population structure

could be reconstructed from these inferred haplotypes. For each demographic scenario, we varied

the age of the samples, and the divergence time between the ancient and present-day samples that

are used as reference populations. Our results show that increased contamination and lower read

depths always lead to elevated phasing error. We found that when the phased individuals belong

to the same population as the reference panel individuals, and the samples have a high coverage

and little contamination, phasing accuracy is high even with very ancient samples, suggesting that

temporal drift is one of the smallest factors affecting phasing accuracy. We found that population

splits and bottlenecks have an effect on phasing accuracy. We found that population phasing

performs worse than reference panel phasing, and is considerably more computationally expen-

sive. Finally, we used PCA plots on SNP matrices and ChromoPainter[24] matrices (which require

phased haplotypes and indicate haplotype sharing) to evaluate whether we observed the expected

structure. In summary, this work provides useful guidelines for the phasing of ancient individuals,

and a tool that can be used for simulating aDNA reads under a user-specified demographic history.
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2 Methods

2.1 Software Pipeline Overview

We developed a pipeline to simulate ancient DNA comprising data simulation, data processing,

phasing, and population structure reconstruction (Figure 1, panel A). This software is available as

an online GitHub repository[25].

This pipeline was developed with the intent of being as close as possible to the real workflow of

a genomicist working with aDNA, specifically phasing and demographic structure reconstructions

using the resulting haplotypes. The pipeline is highly parallelized, and can be easily customized

by the user in different ways: the structure, history, and parameters of the simulated samples,

the processing of the raw generated sequences, and the application of other methods that aren’t

necessarily haplotype phasing.
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Figure 1: A) Data simulation, processing, and analysis workflow. We consider four main stages:
data simulation, processing, phasing, and population structure reconstruction. The steps shown inside
each stage list the tools required for its execution. Each stage’s execution, input, or output can vary
depending on the phasing method chosen (yellow or red). SWE stands for switch error rate.
B) Diagram representation of switch-errors. A switch-error is any “flip” in what the correct maternal
and paternal haplotypes should be. Every switch block corresponds to two switch errors, one for each
flip. A switch-error rate is calculated as the amount of switch-errors divided by the amount of sites
where a switch-error could have occurred. In this example, the phase changes two times across 5
heterozygous sites, resulting in a SWE of 40%.
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2.2 Genomic data simulation

To generate genomic data, we first use the coalescent simulator, msprime[26] with varying de-

mographic models (we consider three models, see Figure 2 and Methods section 2.5). For all

simulations, the mutation and recombination rate were set to a value of 2× 10−8 per base pair per

generation. The length of the sequences was 5 MB. For each simulation, we used the generated

coalescent trees as input for seq-gen[27] to generate FASTA files for the ancient and present-day

individuals. We generated 100 ancient and 502 present-day individuals. Of the 502 present-day

individuals, one was used as the reference genome to map reads against and another one was used

to introduce contamination into the ancient reads. These two individuals are from exactly the

same population as the 500 present-day individuals, but are not part of it. The 500 present-day

individuals served as phased reference panel or unphased reference population for reference phasing

or population phasing, respectively.

To generate ancient reads, we fed the 200 ancient simulated chromosomes into gargammel[28].

This tool introduces damage and fragmentation based on empirical distributions, while also simu-

lating the desired read depth, contamination, and sequencing errors. Table 1 shows the range for

each of these parameters that result in 72 different parameter combinations. Simulated average

read depths ranged from 1× to 10×, and contamination ranged from 0% to 10%. The values for

coverage are illustrative of the data commonly used in aDNA studies. Depth of coverage between

1× and 10× can represent most of the data used in the previously mentioned studies[11][12][4][10],

and is also representative of the actual coverage of most ancient genomes sequenced[3][29]. While

most of these studies did not contain samples with modern contamination higher than 2%, we

also considered values of 5% and 10% to better understand how contamination affects haplotype

estimation. The damage profile of different ancient samples depends greatly on environmental

factors like temperature and humidity, so it is difficult to confidently create damage profiles that

correspond to different sample ages. Because of this, all samples we simulated were damaged with

the same default damage matrix available in gargammel.

Simulated sequencing reads were paired-end trimmed using Trim Galore![30] with default pa-

rameters. We then aligned the simulated reads to the simulated reference using BWA mem[31]

with default parameters. After aligning all reads, we called variants using bcftools mpileup[32]

and created a VCF file for each individual. Variants were filtered to have a minimum genotype

quality score of 20.
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2.3 Phasing of simulated data

Previous studies that perform statistical aDNA phasing approach this task in two ways. For

example, Gnecchi-Ruscone et al. (2022)[33], used a haplotype reference panel built from modern

samples to phase aDNA. On the other hand, some studies use population phasing[34][12] by group-

ing the genotypes of the ancient individuals of interest with a larger number of unphased modern

individuals.

We emulate these two types of phasing approaches with SHAPEIT. For reference panel phasing

we create a phased reference panel directly from the simulated sequence data of the present-day

individuals (1000 chromosomes). In population phasing, the phases of present-day samples are

ignored and inferred jointly with the phases of ancient individuals. It is much more computationally

expensive since all individuals in the merged VCF must be phased.

In both cases, all ancient individuals were phased independently of each other, in other words,

the phasing algorithm only had information for the reference individuals plus one specific ancient

individual.

2.4 Phasing accuracy and switch-error rate

To measure phasing accuracy, we use the inferred haplotypes obtained from SHAPEIT, and com-

pare them to the actual haplotypes obtained from the coalescent simulation. We measure the

switch error rate (SWE) for each individual, which represents the amount of errors in the esti-

mated haplotypes as a percentage (see Figure 1, panel B), specifically, the amount of sites where a

phase change occurs divided by the number of sites where it could occur (heterozygous sites kept

after filtering). We obtain a distribution of SWE for each different quality parameter combination.
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2.5 Demographic events

We tested the accuracy of phasing under three simulated demographic scenarios (Figure 2): a

single population of constant size through time, a single population that undergoes a bottleneck

event 25 generations in the past, and the case where the modern and ancient individuals belong

to two different populations that split at some point in the past s. All simulated parameters are

listed in Table 1.

Figure 2: Simulated demographic histories.
A) No demographic events, we consider a single population P0 that remains constant in size N through
time.
B) Population bottleneck.We consider a single population P0 that underwent a drastic decrease in
population size 25 generations ago.
C) Population split. We consider two populations, P0 and P1, of equal size N that coalesce into a
single population P0 at time s, the size of P0 previous to this time of coalescence is a constant 2N.

Demographic history No events Bottleneck Population split
Population size (N) 10,000 10,000 10,000

Post-bottleneck population size (N1) N/A 1,000 N/A
Time of event (generations ago) N/A 25 50, 100, 200

Table 1: Parameters for different simulated sample histories.

The parameters (time and effective population size change) of the bottleneck event were chosen

to resemble the magnitude of the population collapse that occurred in some Native American

populations due to European colonization 500 years ago[35]. For the population split times, we

selected a range of 50, 100 and 200 generations ago which is roughly 1000, 2500 and 5000 years

ago. We note that for the population split (Figure 2, panel C), the samples of the reference

population are not always descendants of the ancient individuals. We did this to test the effect of

using a reference population that diverged at some time in the past from the ancient individuals

sampled. For each of these demographic histories, we have 72 possible combinations of sample

quality parameters detailed in Table 2, which results in 216 different simulation scenarios. We
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make 100 replicas under each simulation scenario to have a distribution of our results; leading to

a grand total of 72× 3× 100× 2 = 43, 200 phased genomes.

Quality parameter Simulated values
Age (generations) 0 (present-day), 25, 50, 100, 200, 400

Depth 1×, 5×, 10×
Contamination 0%, 2%, 5%, 10%

Table 2: Tested values for each simulation quality parameter.

2.6 Reconstruction of population splits with phased and unphased

data

We employed both Principal Component Analysis (PCA) and ChromoPainter for this analysis.

We generated longer (20 MB) sequences, since ChromoPainter expects sequences that are closer in

length to a full chromosome. We only use the haplotypes inferred through reference panel phasing,

as they had lower SWE and the running time for population phasing was prohibitively long for

the number of replicates needed. We only considered the simulations with an average read depth

of 10× and 5×, since 1× data had too few variants left after applying quality filters.

We tested the demographic scenario of a population split 200 generations in the past. PCA

was applied to 4 different kinds of data: true genotype data (unphased SNPs), true haplotype

data, genotype data called from simulated read data and the corresponding inferred haplotypes.

When using genotype data, the genotype covariance matrix was built directly from the unphased

VCF file using the R package, SNPRelate[36]. When using haplotype data, PCA was applied to

matrices built with ChromoPainter[23] that indicate similarity between samples through lengths of

IBS tracts.The first and second PCs were plotted (Figure 5) and we measured how well the modern

and ancient populations clustered by computing the silhouette coefficient. This metric evaluates

clusterings using information inherent to the dataset, so that clustering can be compared across

different simulated datasets[37]. Measuring cluster distinction is important, since distance metrics

in component space can be thought of as proxies for population split times[38].
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3 Results

3.1 Performance of Population and Reference Phasing

We compared the performance of population versus reference phasing. The lack of phased reference

individuals for population phasing decreases the available information as we only have genotype

information for the 500 modern individuals, this in turn increases the SWE. We simulated in-

dividuals under a bottleneck event 25 generations in the past (Figure 2, panel B), and applied

population and reference panel phasing to the resulting data (Figure 3).

We find that, as expected, increasing the age and contamination or decreasing the coverage of

the simulated samples results in higher SWE. Samples from before the bottleneck event (25 or more

generations of age) show a high SWE (∼ 10%), this can be attributed to the lack of representation

of pre-bottleneck haplotypes in the post-bottleneck reference population. These trends are the

same for both population and reference panel phasing, however, we can see an overall increase of

SWE in the population phasing results compared to the reference panel phasing results.

Another factor to consider is running time as population phasing is more computationally

expensive. SHAPEITv2’s algorithm has a time complexity of O(MJ)[16], where M is the number

of SNPs to phase, and J is the number of haplotypes being conditioned on to build the likeliest

phase reconstruction. Phasing a single sample with a reference panel means that J = 1, while

phasing 501 individuals via population phasing means that J = 501. While execution time for

phasing all data in one of our simulations using reference panels might take a couple of hours,

population phasing on the same data could take upwards of 5 days depending on hardware.

Because of the increase in overall SWE when using population phasing, plus the computational

complexity factors, we decided to focus on reference panel phasing results for the rest of the results.

Figure 3: SWE distributions for phasing of ancient individuals simulated under a bottleneck model 25
generations in the past: A) Population phasing. B) Reference panel phasing.
SWE (y-axis) is presented in 3 facets corresponding to 10×, 5×, and 1× average read depth. Within
these facets are the SWE distributions for 100 simulated individuals for each combination of age (x-axis)
and contamination level (shades of blue).
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3.2 Phasing accuracy as a function of demographic history

Using reference panel phasing, we next consider the effects of demographic history on phasing

accuracy. Under a constant population size, we observe an increase in SWE from ∼ 1.0% —

when the simulated individuals are from the present (0 generations), have high coverage and no

contamination — to ∼ 10.0% when increasing the age to 400 generations (Figure 4, panel A).

Increasing the amount of contamination for the individuals with 0 generations of age and high

coverage results in higher SWE (∼ 8.0%).

Consistently, decreasing the average read depth from 10× to 5× results in higher SWE (∼ 1.0%

to ∼ 6.0% for modern uncontaminated individuals across the board, and the effects of higher ages

and contamination rates are preserved (Figure 4, panel A). Finally, the results for 1× read depth

show an increase in SWE across all ages and contamination rates. Within these 1× simulations,

the age and contamination show little impact. This likely reflects that individuals sequenced at

1× have a small number of variants and some individuals are excluded because no variants pass

all quality filters applied.

To test the effects of a bottleneck, we simulated a population that experienced a 90% reduction

in effective population size (Ne = 10, 000 → 1, 000) 25 generations in the past (Figure 2, panel

B). We find that phasing quality increases for ancient individuals that are more recent than the

time of the bottleneck (0 generations of age, SWE ∼ 0.3%). However, phasing quality for sampled

ancient individuals older than the bottleneck event (25 generations or more) decreases. This is

expected as individuals older than the time of the bottleneck belong to a population with a much

higher diversity that was lost and is not captured by the modern reference individuals. Individuals

with an average read depth of 1× exhibit a much higher SWE compared to results with other

demographic histories (Figures 4, panels A and C), and we observe that contamination does not

have a strong effect for sampled individuals that are older than the time of the bottleneck.

When we evaluate the behavior of phasing individuals of a population undergoing a split 100

generations ago from the population used as the haplotype reference panel (Figure 2, panel C), we

observe that ancient individuals sampled around the time of the split (i.e. 50 to 100 generations

in the past) exhibit the lowest SWE for 10× and 5× coverage values. This is expected, as samples

that are more recent than the time of the split do not belong to the same population of the

reference individuals (Figure 2, panel C). Therefore, both more recent and more ancient samples

have higher genetic drift from the reference population than the individuals at the time of split.

For sequencing coverage of 1×, the phasing quality is lower than with 5× or 10×. In the case

of 1× coverage, the effect of age and contamination are negligible suggesting that coverage is the

biggest factor for phasing accuracy.
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Figure 4: SWE distributions for reference panel phasing with: A) Constant population scenario. B)
Bottleneck event 25 generations in the past. C) Population split 100 generations in the past.
SWE (y-axis) is presented in 3 facets corresponding to 10×, 5×, and 1× average read depth. Within
these facets are the SWE distributions for 100 simulated individuals for each combination of age (x-axis)
and contamination level (shades of blue).
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3.3 Visualizing population structure

We further tested if population structure could be accurately recovered from inferred haplotypes,

and how much of an impact would haplotype estimation error have on these reconstructions. To do

this, we simulated samples under a population split model with a population split 200 generations

ago (Figure 2, panel C), and sequence length of 20 MB. We sampled 100 ancient individuals 25

generations ago and 500 present-day reference individuals. We note that the ancient samples and

reference samples do not belong to the same population in this scenario (Figure 2, panel C). To

test if population structure was visually recoverable, we plotted the first and second Principal

Components (PCs) obtained by running PCA on four different kinds of data resulting from this

simulated demographic history, note that in this context, true refers to the exact outputs of the

coalescent simulations: (1) the true genotypes, (2) the true haplotypes, (3) genotype data called

from the sequencing reads generated with damage, contamination (0-10%) and two read depths

(5×, 10×) and (4) the inferred haplotypes using reference panel phasing on the called genotypes

from (3). We applied PCA to the genotype matrices (1 and 3) or to the matrices obtained from

ChromoPainter[23] based on haplotype data (2 and 4; see Methods section 2.6).

Using either the true genotype data (Figure 5, panel A), or the true haplotype data (Figure

5, panel B), PCA reveals distinct clusters for modern reference and ancient samples, which is

expected given that they belong to two distinct populations. The clusters are more distinct when

recovered from the true haplotype data.

When using genotype data after applying damage, contamination, and missingness to the

simulated data (scenario 3), the first two PCs no longer recover population structure (Figure 5,

panel C). In contrast, the haplotypes recovered after reference panel phasing render a visually

recognizable separation between the clusters (Figure 5, panel D), suggesting that using haplotype

data provides better resolution. From this, we conclude that the current phasing procedure enables

the recovery of population structure from ancient haplotype data, despite the noise present in

aDNA.

Silhouette coefficients offer a way of measuring and comparing the clustering performance for

these four scenarios, independently of the fact that each PCA was done on a different set of data.

These coefficients can range from −1 to 1, with values closer to 1 indicating better clustering

performance. We found that silhouette coefficients for the PCAs on genotype data (scenario

1 coefficient: 0.499, scenario 3 coefficient: −0.131) were substantially lower than those for the

PCAs on haplotype data (scenario 2 coefficient: 0.729, scenario 4 coefficient: 0.920). This shows

that using haplotype data leads to better clustering performance, and using genotype data after

simulating quality problems results in strongly overlapping clusters.
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Figure 5: PCA of modern (pink) and 25-generation-old individuals (blue), with a population split 200
generations in the past. (A) True genotype matrix (scenario 1). (B) True haplotype data (scenario
2). (C) Called genotype data. (scenario 3) (D) Estimated haplotypes from the called genotype data
(scenario 4). Panels C and D show results with 10× (left) and 5× (right) read depth, and 0% to 10%
contamination rates (blue symbols)
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4 Discussion

Using haplotype data can be powerful to infer demographic history. While it is common to use

haplotype data to infer the demographic history of a population using present-day genomes, only a

few studies have phased ancient genomes. In this study, we have developed a pipeline to simulate

ancient read sequencing data to benchmark phasing of aDNA as a function of different param-

eters. Specifically, we show how phasing quality changed as we varied coverage, contamination,

temporal drift and population split times. We also examined how these parameters affected levels

of observable population structure as captured by PCA and ChromoPainter.

We first benchmarked the accuracy of population phasing and reference panel phasing. As our

results show that reference-panel phasing is more accurate (using measures of switch error rate,

SWE) and faster than population phasing (Results section 3.1), most of the benchmarking analyses

performed in this study consider reference panel phasing. When we measured phasing accuracy as

a function of coverage, we find that decreasing the average read depth leads to higher SWE, since

having less SNPs available for the statistical phasing algorithm reduces the certainty at which

phase can be inferred (see Figure 4, panel B), in general, sample coverage has the strongest effect

on phasing accuracy. Also, as contamination increases, the phasing quality decreases regardless of

whether we used reference panel phasing or population phasing(Figures 3 and 4). This makes sense

as introducing new variants via contamination will affect the probability distribution of haplotypes

estimated by SHAPEIT, and contamination levels as high as 10% introduce more false variants

than any other kinds of damage.

To assess the effects of temporal drift, we sampled ancient genomes at different times in the

past. Increasing the age of the simulated ancient individuals directly increases the SWE in the

phased haplotypes. This occurs when we simulate either a constant population size or when we

simulate bottlenecks (Figure 4, panels A and B). We find that low phasing error rates can be

obtained from very ancient individuals if we have good quality samples (Average read depth over

5× and contamination below 5%), and reference panels that are representative of the ancient

individual. This is most apparent when no demographic changes through time are simulated, thus

ensuring more continuity between the reference and phased populations (Figure 4, panel A).

We find that population bottlenecks increase SWE, especially when the sampling time of the

ancient individuals is equal to or greater than the time of the bottleneck. This is probably happen-

ing because bottlenecks result in a loss of genetic and haplotype variation. Therefore, haplotype

inference for ancient individuals older than the time of bottleneck will always result in a low

phasing quality (mean SWE of at least 7.5%), independently of other sample parameters.

Under demographic models with population splits, the behavior of phasing error is different.

The lowest error rates (Figure 4, panel C) occur when the sampling time of the ancient individuals
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is closest to the time of the population split. This implies that older samples do not necessarily

lead to worse phasing accuracy, but rather genetic distance from individuals in the reference

populations. In other words, when we simulated population splits, we found that proximity to the

reference population was the most important factor in terms of sample age. This is expected for

two reasons: individuals with a more recent age than the time of the split belong to a population

that is increasingly divergent from the reference population. Conversely, individuals that are older

than the time of split belong to the ancestral population of the reference individuals, but increasing

the age further results in more temporal drift that leads to a higher SWE (Figure 4).

We also assess the implications of phasing ancient individuals in the context of population

structure. We find that we can recapitulate the population structure with the inferred haplotypes,

and that it is better than using only genotype data (Figure 5, panel D). Parameters such as

contamination and coverage slightly affect clustering, but even in those cases we recover population

structure (Figure 5).

In this work, we provide the first study (to our knowledge) that benchmarks phasing in aDNA

while accounting for various features of the data such as age, contamination, coverage, and de-

mographic history. Although we simulated only a subset of possible data quality parameters and

demographic scenarios, these results are a good starting point for guiding future studies that ne-

cessitate aDNA phasing. While pieces of the pipeline already exist (e.g. sequence[27] and read[28]

simulation), here we provide an easy to install and open source software that streamlines all steps

from simulation under a demographic model to visualization which will be helpful for others to

evaluate how phasing quality might be affected by characteristics specific to other systems or

populations.
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