
HAL Id: hal-04244007
https://hal.science/hal-04244007

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational Approaches to the Rational Design of
Tubulin-Targeting Agents

Helena Pérez-Peña, Anne-Catherine Abel, Maxim Shevelev, Andrea Prota,
Stefano Pieraccini, Dragos Horvath

To cite this version:
Helena Pérez-Peña, Anne-Catherine Abel, Maxim Shevelev, Andrea Prota, Stefano Pieraccini, et al..
Computational Approaches to the Rational Design of Tubulin-Targeting Agents. Biomolecules, 2023,
13 (2), pp.285. �10.3390/biom13020285�. �hal-04244007�

https://hal.science/hal-04244007
https://hal.archives-ouvertes.fr


 

 
 

 

 
Biomolecules 2023, 13, 285. https://doi.org/10.3390/biom13020285 www.mdpi.com/journal/biomolecules 

Review 

Computational Approaches to the Rational Design of  

Tubulin-Targeting Agents 

Helena Pérez-Peña 1,2,†, Anne-Catherine Abel 1,3,†, Maxim Shevelev 2,4,†, Andrea E. Prota 3, Stefano Pieraccini 1  

and Dragos Horvath 2,* 

1 Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy 
2 Laboratory of Chemoinformatics, Faculty of Chemistry, University of Strasbourg, 4, Rue Blaise Pascal,  

67081 Strasbourg, France 
3 Laboratory of Biomolecular Research, Paul Scherrer Institute, Forschungsstrasse 111,  

5232 Villigen, Switzerland 
4 Department of Biochemistry and Molecular Biology, Universitat de Barcelona,  

Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain 

* Correspondence: dhorvath@unistra.fr 

† These authors contributed equally to this work. 

Abstract: Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential 

role in numerous cellular processes such as cell proliferation and intracellular transport, making 

them an attractive target for cancer and neurodegeneration research. To date, a large number of 

known tubulin binders were derived from natural products, while only one was developed by ra-

tional structure-based drug design. Several of these tubulin binders show promising in vitro profiles 

while presenting unacceptable off-target effects when tested in patients. Therefore, there is a con-

tinuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin 

structural data is readily available, the employment of computer-aided design techniques can be a 

key element to focus on the relevant chemical space and guide the design process. Due to the high 

diversity and quantity of structural data available, we compiled here a guide to the accessible tubu-

lin-ligand structures. Furthermore, we review different ligand and structure-based methods re-

cently used for the successful selection and design of new tubulin-targeting agents. 

Keywords: computer-aided drug design; microtubules; microtubule targeting agents; virtual 

screening; molecular docking; molecular dynamics simulations; pharmacophore screening; QSAR 

 

1. Introduction 

Microtubules (MTs) are an essential part of the eukaryotic cytoskeleton and are im-

plicated in various diseases. They are highly dynamic polymers composed of α,β-tubulin 

dimers in which each monomer is able to bind GTP. GTP hydrolysis is limited to the -

monomer (E-site), providing energy for conformational changes required for MT for-

mation. Within the - monomer GTP is always retained (N-site). Together, these proteins 

form hollow, cylindrical structures, in cells mostly containing 13 protofilaments. Within 

the cell, they are involved in numerous cellular processes such as cell signaling, morphol-

ogy, motility, growth, and long-distance trafficking regulation [1]. 

Naturally, any perturbation of the MT network severely affects cell survival, thus 

making MTs attractive targets for cancer therapy. Presently, several MT targeting agents 

(MTAs) such as vinca alkaloids and taxanes are used to treat different types of cancer. By 

altering the MT homeostasis, they promote apoptosis of cancer cells via several independ-

ent mechanisms [2]. Moreover, there is an increasing interest in MTs as a target for the 

treatment of diabetes [3]. Furthermore, abnormal dynamics of MTs in neuronal cells is 
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implicated to play an important role in several neurodegenerative diseases (reviewed in 

[4]). 

Almost 40 years after the first mechanism was proposed [5], the details of MT for-

mation still remain an ongoing topic of discussion; the main steps as understood today 

are outlined below: Nucleation of MTs occurs in cells at MT organizing centers (MTOCs) 

such as the -TuRC complex (reviewed in [6–8]). Based on this template structure, MTs 

grow by addition of a dimer carrying GTP in both nucleotide binding sites in a head–to-

tail fashion, always adding -tubulin onto exposed -tubulin. Thus, the MT is formed as 

a polar structure and exposes -tubulin at the growing end (MT plus end). Incorporation 

of tubulin dimers into the MT lattice is accompanied by a conformational change of the 

dimer from a curved towards a more rigid, straight structure (curved-to-straight transi-

tion), which is then followed by GTP hydrolysis in the -monomer [9]. Only at the plus 

end of the MT a so-called “GTP-cap” consisting of dimers that contain GTP in both sites 

is sustained, which is thought to stabilize the end against depolymerization [10]. 

Within cells, the MT cytoskeleton is maintained in what is termed the “dynamic equi-

librium”, alternating between phases of growth and shrinkage of individual MTs, which 

allows them to perform their various physiological activities (Figure 1). MT associated 

proteins, post-translational modifications, as well as small molecules MT targeting agents 

(MTAs), modulate the dynamics of the MT network. MTAs at high concentrations exert 

different mechanisms of actions, which are used to categorize them into two classes: MT 

stabilizing agents (MSAs) that lead to an increased stability of the present MT by promot-

ing assembly or stabilization of the lattice structure, and MT destabilizing agents (MDAs) 

which prevent the assembly of dimers into MTs.  

 

Figure 1. Microtubule dynamic equilibrium. MTs are constantly alternating between growth and 

shrinkage phases, while the −end of the MT is displaying some dynamics the overall stability is 

governed by quicker processes at the MT +end. Growth of an MT is facilitated by incorporation of 

two GTP containing tubulin dimers onto the +tip, followed by lattice incorporation, which leads to 

subsequent GTP hydrolysis. On the top of the growing MT a “GTP-cap” consisting of GTP-dimers 

stabilizes the structure. Exchange of this capping dimers against GDP tubulin leads to depolymeri-

zation. Adapted from “Microtubule (polymerizing and depolymerizing)” by BioRender.com 

(2022). 
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MTAs have been widely studied and characterized due to their long-standing use as 

anti-cancer drugs. Routinely, MTAs are probed on their cytotoxicity and their ability to 

influence MT polymerization. Further, to understand their mode of action a lot of effort 

has been dedicated to solving high-resolution MT and ligand–tubulin complex structures. 

Up to 2021, seven distinct binding sites for small molecules had been thoroughly charac-

terized by X-ray crystallography. In 2021, a combination of crystallographic fragment-

based screening and molecular dynamics (MD) simulations evidenced 10 binding sites 

occupied by 56 chemically diverse fragments, of which six sites were completely novel 

[11]. A selection of these fragments was subsequently used in a straight-forward fashion 

to develop a lead-like molecule from non-cytotoxic building blocks. It was named todalam 

and occupies the 8th binding site on tubulin located at the inter-dimer interface [12]. To-

gether, the large amount of biochemical data and ever-growing amount of structural data 

available lay a solid foundation for the computer-aided development of novel tubulin-

targeting agents. 

Computer-aided molecular design methods, such as ligand-based and structure-

based approaches, open new possibilities to further exploit current knowledge on MTs, 

tubulin and MTAs. These two in silico strategies have been considered essential for accel-

erating the research of MTAs assisting in the identification, design, and selection of new 

compounds. Both are used to discover molecules with desired biological activity, but dif-

fer in terms of the initial information exploited to generate their predictions. Ligand-based 

methods “learn” from previously discovered ligands of a target, and their measured af-

finities. They are agnostic in terms of ligand-target interaction mechanisms, but rely on 

interpolation and extrapolation of predicted affinity of a new candidate based on the near-

est known examples of ligands. On the contrary, structure-based approaches base their 

predictions on explicit modeling of presumed interactions between ligands and given bi-

ological targets. 

The aim of this review is to summarize recent applications of state-of-the-art methods 

of both computational ligand and structure-based approaches to successful design of new 

MTAs. Note, however, that using in silico methodology to “discover” putatively active 

compounds makes no sense unless those compounds are actually synthesized and tested. 

Publishing in silico predictions without further validation should, in our opinion, be 

strongly discouraged, because the likelihood of experimentalist readers embarking on the 

difficult task of synthesis and testing of someone else’s predictions is very low (actually 

null, as far as we can tell). Therefore, this work will only cite computer-aided design work 

which is either (a) methodologically innovative, (b) reporting tool benchmarking studies 

or (c) backed up by experimental validation. 

2. Ligand-Based Approaches 

Ligand-based strategies may be employed if rich and balanced structure-activity in-

formation (at least ~100 known tested small molecules, including binders and non-binders 

to the target) is available. They are of course the only option if no structure of the target 

protein has been solved, but are irrespectively useful in the early stages of a virtual screen-

ing (VS) campaign, as they are typically much faster than structure-based algorithms. 

These methods algorithmically analyze molecules encoded by molecular descriptors or 

ensembles of calculated conformations and extract chemical knowledge to predict a given 

compound’s property. Such screening usually highlights structural patterns deemed im-

portant for exhibiting a desired property. 

Historically, these methods were the first to be applied to the problem of discovering 

novel modulators of tubulin polymerization. This was mostly due to the low quality of 

tubulin-related structural data at that time (reviewed in [13]). However, despite consider-

able progress in tubulin crystallography and prevalence of structure-based methods in 

modern tubulin research, ligand-based approaches are still useful and yield promising 

results. This section highlights recent examples of successful application of such compu-

tational methods in tubulin-related drug design. 
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2.1. Similarity Search 

A similarity search is used to filter a set of molecules, in search of those that display 

similar features to a query molecule. This method assumes that similar molecules ex-

hibit—statistically speaking—similar properties [14]. There is no absolute best way to en-

code molecular similarity, typically rendered by the metric (distance) of the two points 

representing molecules in “descriptor space”. Fragment-based fingerprints (monitoring 

the presence of specific substructures in each molecule) are common molecular de-

scriptors for this task; however, other features such as descriptors of molecular shape, 

topological pharmacophores can be used. Any function that measures distance between 

two points in a metric space is applicable to characterize “molecular dissimilarity”. The 

best combination of descriptors and metric function is the one that guarantees the best 

“Neighborhood Behavior Compliance”, e.g., by minimizing the occurrence of “property 

cliffs”—pairs of compounds perceived as highly similar in spite of using widely different 

property values [15]. 

A similarity search is often used as a first step in VS. For example, Aoyub et al. [16] 

and Guo et al. [17] performed 2D similarity searches in large compound databases as ini-

tial phases of drug design cycles that resulted in development of novel MTAs binding to 

the taxane and colchicine site, respectively. Several novel colchicine-site targeting agents 

were also discovered by Mangiatordi et al., who based their design on a 3D shape simi-

larity screening [18]. Another two colchicine-site targeting hits were found by Federico et 

al., who used not only 3D shape, but also electrostatic potential similarity in their VS cam-

paign [19]. 

Coupling known active compound structures with information on their targets can 

make the similarity search useful for establishing targets of novel compounds. This was 

demonstrated by Lo et al., who developed chemical similarity networks based on two and 

three-dimensional compound similarity (CSNAP2D and CSNAP3D, respectively). By cal-

culating similarities of molecules with cytotoxic action of unknown mechanism to mole-

cules within the network, the authors correctly predicted tubulin as a target for 37 novel 

compounds targeting the colchicine and taxane binding sites [20,21]. 

In Table A1 (Appendix A) we have summarized the implementations of the tech-

nique used in mentioned references. 

2.2. QSAR Modeling 

Quantitative structure-activity relationship (QSAR) modeling finds a mathematical 

function that relates chemical structure to values of some desired property, e.g. biological 

activity. The process of fitting such a function is called model training. Typically, two- or 

three-dimensional molecular structures are digitally encoded by various descriptors, 

which are then input to machine learning algorithms along with corresponding target 

property values, available from biological assays. These values can be continuous (pIC50 

values, binding affinity) or discrete (active/inactive classification), corresponding to either 

regression or classification problems. Afterwards, a trained model can be used to predict 

target values for new molecules, not included in the training set. The predictive power of 

a QSAR model depends on careful curation of input data, rigorous validation, and ade-

quate assessment of its applicability domain. State-of-the-art approaches in these topics 

are described in more detail in [22–24]. 

This method is particularly useful for rational drug design as it provides insight into 

which molecular features correlate the most with changes of desired property values. For 

example, Gaikwad et al. used two-dimensional QSAR modeling to establish structural 

patterns that significantly correlate with cytotoxicity of colchicine site-targeting phenylin-

doles against cancer cells [25]. High utility of QSAR modeling in VS was demonstrated in 

works by Guo et al. [26] and Stefanski et al. [27], who used consensus QSAR modeling in 

VS campaigns that yielded a total of three novel colchicine site targeting tubulin polymer-

ization inhibitors. 
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3D QSAR was shown to be a convenient way to rationalize ligand optimization in 

works by Quan et al. [28] and Pandit et al. [29]. Both works used CoMFA and CoMSIA 

methods to rationalize structure-activity data for limited datasets of similar scaffold-based 

compounds, suggesting possible structure optimization patterns, which, in case of the lat-

ter work, yielded a new class of cytotoxic in vitro tubulysin derivatives targeting the vinca 

binding site. A summary of the experimental conditions for the above-mentioned QSAR 

works is provided in Table A2. 

It is worth noting that the use of machine learning in this field has been limited due 

to the scarcity of publicly available data. The lack of large, diverse tubulin-related struc-

ture-activity datasets makes it difficult to train adequate machine learning models that 

can be used in a large-scale virtual screening context. For example, querying the ChEMBL 

database (v.26) for “Tubulin” returns more than 8000 raw structure-activity records, but 

these are a heterogeneous collection of results from widely different assays at diverse ex-

perimental setups, using the MTs or tubulin of widely different species (from Arabidopsis 

to Homo Sapiens). Or, machine learning requires homogeneous, comparable experimental 

activity entries to serve for calibration of empirical functions trying to approximate them 

upon input of a molecular structure. Thus, only entries sourcing from a same experimental 

setup (listed under a same ChEMBL Assay ID) can be safely compared. Deceivingly, there 

is only one such assay (CHEMBL817769; Inhibition of tubulin polymerization interacting 

at the colchicine binding site of Sus Scrofa) featuring more than 100 entries (103, pre-

cisely)—a rule-of-thumb minimal threshold of training set size to start envisaging ma-

chine learning. Size is necessary, but far from sufficient—a balanced presence of active 

and inactive compounds is of paramount importance, whereas the chemical diversity of 

the compounds sets the limit for the applicability domain of the model. Machine learning 

is likely to play a more prominent role in this regard if more relevant data becomes pub-

licly available. 

2.3. Pharmacophore Screening 

A pharmacophore is an abstract description of the set of local steric or electronic 

properties (hydrophobicity, H-bond acceptor/donor features, charged groups) that a mol-

ecule should contain in order to interact with a particular biological target at a specific 

site. A set of such properties, with defined positions in space relative to each other is called 

a pharmacophore model. For a given ligand, it is mostly related to fragments of chemical 

structure and is binding site-specific. It is assumed that molecules that follow the same 

pharmacophore pattern may have similar biological activity (even though they may differ 

in other, less relevant structural aspects). This makes pharmacophore-based VS useful for 

searching and designing new drugs, escaping the rather narrow domain accessible by 

strict similarity-driven searching. 

In particular, experimental structure-activity data can be used to automatically con-

struct ligand-based pharmacophore models. A detailed explanation of pharmacophore 

model generation steps is given by Giordano et al. [30]. In short, models are obtained by 

computing and aligning 3D conformations of selected molecules, with pharmacophore 

features assigned to overlapping structural fragments. Several models may be built for 

different alignments. A fitness function estimates how well the molecules fit into a given 

model, leading to selection of the best model. 

Screening with such models can be used to filter compounds in a large library, leav-

ing only those that match the required model in at least one of several conformations. 

Models always need to be validated before use in VS. A model is considered valid if it can 

discriminate known active molecules from decoys—structurally similar compounds not 

showing the desired activity [31]. 

Ligand-based pharmacophore screening is often used in combinations with other 

computational methods to lower the number of candidates that need to be tested by sub-

sequent approaches. For example, Zhang et al. used a pharmacophore model based on 

taxane-site ligands to reduce the number of compounds processed by structure-based 
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pharmacophore model and protein-ligand docking, eventually leading to a discovery of 

two novel tubulin-targeting cytotoxic agents targeting this site [32]. In a similar manner, 

a ligand-based pharmacophore model developed by Lone et al. was shown to be useful 

for vinca-site targeting agents design [33]. Moreover, Niu et al. successfully applied a lig-

and-based pharmacophore model to discover two novel colchicine-site targeting modula-

tors of tubulin polymerization [34]. Stefanski et al. used a ligand-based pharmacophore 

model in a VS campaign that discovered two potent in vitro cytotoxic colchicine-site tar-

geting agents [27]. 

As can be seen, despite ligand-based pharmacophore screening not being featured in 

many recent tubulin-related computational studies (structure-based pharmacophores or 

docking being preferable, as soon as experimental protein structures are available), it is 

still a viable method that is used to design and screen for novel modulators of tubulin 

polymerization. Table A3 provides an overview of recent works that used this approach. 

3. Structure-Based Approaches 

Contrarily to ligand-based methods, structure-based approaches exploit the 3D 

structure of a macromolecular biological target to estimate a given molecule’s affinity to 

a targeted binding site. The main sources of information for these methods are either ex-

perimental data generated by X-ray crystallography, NMR spectroscopy, cryo-electron 

microscopy or computationally predicted data. Analyzing bound ligand poses helps to 

determine the key residues defining the binding site, as well as pinpoint to the key frag-

ments of molecular structure that contribute to interaction with the target protein. Success 

in high-resolution determination of biological macromolecule structures drove the usage 

of these structure-based techniques in modern drug discovery pipelines, and tubulin-re-

lated research is no exception. In this section, we review recent examples of structure-

based methods application in search and design for novel modulators of tubulin polymer-

ization [35,36]. 

3.1. Structural Data on Tubulin 

3.1.1. Tools to Study Tubulin 3D Structures 

Possibly, the most important decision in carrying out a structure-based drug design 

project on tubulin is the selection of the correct tubulin model. While the sheer abundance 

of accessible information is a huge benefit for any of such projects, the numbers and di-

versity of available structures can be overwhelming. In order to select the best possible 

model for one’s purpose, it is important to consider the method and system in which the 

structure was obtained. Therefore, we will give a brief overview of the available structures 

and setups that were used to determine them, as well as highlight a few key points to 

consider when selecting the structure. 

By comparing the different structures obtained of tubulin and MTs, it was observed 

that tubulin dimers are able to adopt two prominent tubulin conformations that are re-

lated to its assembly state: a “straight” conformation is present in assembled MTs and a 

“curved” conformation is observed in soluble tubulin. The conformational transition from 

curved-to-straight is needed to establish lateral tubulin contacts between protofilaments 

in MTs. This curved-to-straight transition requires rearrangements of the tubulin mono-

mers, in which the intermediate domain of the tubulin monomer moves with respect to a 

larger ensemble comprising both the N- and C-terminal domains. Due to this reposition-

ing within the straight MT lattice, the  monomers are almost perfectly aligned with the 

 monomers, thus it is possible to superpose  onto  simply by translation (Figure 2A). 

Whereas, within the soluble dimer there is an intrinsic curvature of one monomer against 

the other, thus translation alone is not sufficient to superpose one monomer onto another 

(Figure 2B). The degree of this curvature varies; it can range from 9–18 degrees depending 

on the binding partners present [37]. 
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Figure 2. The “curved” and “straight” tubulin conformations. (A) A straight protofilament, as pre-

sent in the MT lattice, is shown in ribbon presentation in light gray (PDB ID 7SJ7). A protofilament 

constituted of tubulin in a curved conformation is shown in blue (from PDB ID 5LXT). (B) The 

intrinsic curvature and structural differences on a single dimer are shown: A heterodimer in the 

straight conformation is depicted in light gray and the curved conformation in light blue. The 

main differences in the structures are within the intermediate domain (residues 206–384), high-

lighted in darker blue, which upon curved-to-straight transition moves relative to the other do-

mains. This is also indicated in the schematic drawing of both straight and curved dimers. The 

angle corresponds to the relative curvature of one monomer to the other. (C) The structural ele-

ments of the intermediate domain are shown in more detail, the changes necessary for “straighten-

ing” are mainly translation of the shown H7 as well as rotation of the neighboring structural ele-

ments H6-10 and B7-10. 

This conformational state is one of the main differences observed between all availa-

ble crystal structures and the CryoEM data on MTs: All crystal structures depict the solu-

ble and “curved” conformation of tubulin and all MT structures show the "straight” con-

formation. Thus, it is important to consider on which “state” of the tubulin structure is 

used, as basis for the computational work. Despite these major differences, the crystal 

structures are remarkably well suited for the design and optimization of drugs. Up to 

now, five different systems have been described for the crystallization of tubulin. All rely 

on proteins stabilizing the tubulin in its dimeric or tetrameric form, as the uncoordinated, 

soluble tubulin is polymerizing rather than forming nicely diffracting crystals. This is 
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highlighted by the fact that the first high-resolution crystal structure has only been re-

ported after the tubulin–stathmin interaction had been discovered and exploited [38,39]. 

The very first structural information on tubulin was obtained in 1998 by Nogales et 

al. using electron crystallography on taxol stabilized zinc-induced protofilaments. This 

allowed the determination of a first model of the structure of tubulins, the assignment of 

domains and identified the taxol binding site on -tubulin [40]. However, the arrangement 

of the protofilaments in this crystal system is antiparallel and does not reflect the protofil-

ament-assembly found in MTs. Accordingly, this system was not further used for X-ray 

crystallographic studies. 

Soon afterwards, the tubulin stathmin-like domain SLD (T2R) system was the begin-

ning of tubulin complex crystallization with the first crystal structure in 2000 [41], fol-

lowed by the first tubulin-small molecule complex in 2004 [42], which revealed the posi-

tion of the colchicine site. Later, it was noted that cleavage of the C-terminal tubulin tails 

increases the resolution of the T2R system significantly. Furthermore, this system evolved 

to be the most commonly used T2R-tubulin tyrosine ligase setup (T2R-TTL, Figure 3A) 

[43,44], which was used to solve most tubulin-small molecule structures. In both com-

plexes, two tubulin dimers are coordinated by a stathmin-like protein RB3 that prevents 

tubulin polymerization by its N-terminal -hairpin cap bound to 1 tubulin. In the T2R-

TTL system, the TTL protein is bound at the same end of the tetramer on 1 tubulin. The 

overall tubulin structure does not differ significantly between the two setups. 

Since the SLDs and TTL used in these crystallization systems may prevent binding 

of proteins to tubulin, alternatives have been developed. The tubulin Designed Ankryin 

Repeat Protein DARPin crystallization system (Figure 3B) [45] is the second most fre-

quently used one. This system allows to achieve even higher resolution compared to the 

T2R-TTL one, with the best resolved structure ranking at 1.5 Å resolution (PDB ID 6S8K, 

[46]). In this system, only one tubulin dimer is coordinated by the selected DARPin, re-

sulting in a much more densely packed and smaller unit cell. 

 

Figure 3. The crystallization systems (A) T2R(-TTL) (PDIB ID: 4I55, [44]), (B) TD1 (PDB ID 4DRX, 

[45], (C) Tubulin-TOG1 (PDB ID: 4FFB, [47]) and (D) Tubulin-Rep (PDB ID: 6GWC, [37]) are de-

picted. The proteins are shown in ribbon representation, - and -tubulin are colored dark and 

light grey, respectively. The SLD/RB3 protein is colored orange, the TTL in blue, DARPin in green, 

TOG1 in yellow and alpha-Rep in brownish color. Nucleotides are shown in sticks representation 

and colored red. The structure of the SLD tubulin complex, T2R crystallization system corresponds 

to the T2R-TTL structure without the bound TTL and thus was not shown separately. 

Up to now, the described systems T2R, T2R-TTL and TD1 are the only ones that have 

been used to elucidate the structures of tubulin-small molecule complexes. Nevertheless, 
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the following two crystallization systems for the study of protein-protein interactions 

have been included to provide a complete overview of tubulin crystallization systems. 

In order to investigate the interaction of the cellular MT growth factor, Stu2p, Ayaz 

et al. co-crystallized its tumor overexpressed gene domain TOG1 with tubulin [47]. Sur-

prisingly, it was found that TOG1 was establishing interactions with both - and -tubulin 

and preferentially bound to the curved state of soluble tubulin dimers (Figure 3C). 

More recently, a fifth crystallization system, targeting MT binding proteins, has been 

introduced. Therein, one artificially designed -Rep protein is used to prevent tubulin 

polymerization and to enable crystallization of the complex (Figure 3D). -Rep was spe-

cifically designed to bind to tubulin sites involved in longitudinal protofilament interac-

tions in order to expose the surface of tubulin, which would be on the exterior site of the 

MT [37]. So far, the system has been used to elucidate the structural details of centrosomal 

P4.1-associated protein CPAP [48], allowing a more throughout investigation compared 

to the previously published CPAP –tubulin DARPin structures [49,50]. 

3.1.2. Binding Sites on Tubulin 

As mentioned in the introduction, extensive work has been done on determining the 

binding mode of tubulin-targeting agents. Here, we would like to give a brief overview of 

the eight established binding sites (Figure 4) and their mode of action on modulating MT 

dynamics (in more detail reviewed in [51]). The most prominent member of MTAs is 

paclitaxel, sold as a blockbuster drug under the name Taxol, which is an MSA that binds 

to an exposed pocket on -tubulin. Taxane-site ligands are able to enhance MT stability, 

either by promoting the curved-to-straight transition, e.g., paclitaxel [52,53] or by direct 

structural stabilization of the S7-H9 loop (M-loop), a key structural element forming 

inter-dimer contacts in MTs [54], e.g., epothilone A or zampanolide [44]. Laulimalide-

/Peloruside-site agents strengthen the interactions of tubulin dimers across neighboring 

protofilaments in MTs by binding to a pocket near the lateral protofilament interface. 

Moreover, these agents have been described to allosterically stabilize the M loop to some 

extent [55,56]. 

 

Figure 4. The eight distinct binding sites are highlighted on one tubulin dimer with all their repre-

sentative ligands in colored sphere representation. The protein is shown in a transparent surface 

representation - and -tubulin chains are colored dark and light grey, respectively. The chemical 
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structures of the ligands after which the binding sites were named are indicated next to the labels 

and colored following the color code of their sphere model. 

In the group of MDAs, colchicine-site ligands are present with a great variety and a 

high number of different scaffolds. They bind in a buried pocket at the intra-dimer inter-

face of  and  tubulin, flipping the T7 loop out of its native position. By occupying this 

binding site, they effectively prevent the curved-to-straight transition by blocking the 

compaction of the pocket formed by the strands S8 and S9, and by the helices H8 and 

H7 [42,57]. 

Another well-known group of MDAs are the vinca alkaloids, which bind at the lon-

gitudinal interface between tubulin dimers. Vinca-site ligands induce a ‘wedge’ [58] at 

the tip of the MT and thus prevent the straightening of the dimers. Additionally, they 

promote the assembly of small helical tubulin polymers, thereby effectively reducing the 

amount of assembly-competent tubulin. It has also been noted that vinca-site ligands in-

terfere with the hydrolysis of GTP by blocking the proper alignment of the catalytic resi-

dues, thereby further hindering the polymerization process [59,60]. 

The group of maytansine-site ligands blocks the assembly of MTs by inhibiting the 

addition of new tubulin dimers to the growing end. This is achieved by binding to the 

exposed site of -tubulin and then effectively blocking the site that should accommodate 

the H8 and T7 loop of the binding tubulin dimer [61]. Ligands bound at this site not 

only block further growth of MTs, but are also capable of fully blocking the formation of 

smaller tubulin oligomers, at high concentration, effectively keeping tubulin within the 

dimeric state. 

So far, the only ligand known to exclusively bind to α-tubulin is pironetin, which 

binds to a buried pocket by covalent attachment to Cys316 [62,63]. Binding of pironetin 

perturbs the above-mentioned helix H8 and the T7 loop, thus similar to maytansine 

preventing the interaction of these elements with the neighboring tubulin and fixing tu-

bulin in an assembly-incompetent state. Furthermore, pironetin also prevents the growth 

at the −end of the MT, which exposes the -tubulin surface harboring both the helix H8 

and the T7 loop and thus eventually promotes the disassembly of already formed MTs 

[62]. 

Recently, both the 7th and the 8th distinct binding sites on the tubulin dimer have 

been described. Gatorbulin, a cydodepsipeptide isolated from marine cyanobacteria, was 

found to bind to the intra-dimer interface adjacent to the well-known colchicine binding 

site [64]. Todalam, the first rationally designed tubulin binder, which emerged from a 

crystallographic fragment screen [11], binds at the inter-dimer interface at a site located 

between the maytansine site on β-tubulin and the end of the pironetin pocket on α-tubulin 

[12]. Both compounds are thought to hinder MT formation by a mechanism similar to that 

of the vinca-site ligands, by creating a wedge into the tubulin-oligomer structure. As ob-

served for vinblastine, todalam as well was shown to promote the formation of ring-like 

tubulin oligomers, further decreasing the pool of tubulin available for polymerization. 

The position of the binding sites has clear implications on the choice of the crystalli-

zation system: due to its size, the TD1 crystallization system is well suited for molecules 

bound internally within one dimer (e.g., colchicine, gatorbulin), however the binding sites 

at the inter-dimer interface such as for example the vinca-site can only be targeted by us-

ing the T2R(-TTL) systems. 

3.1.3. System Selection for Virtual Screening (VS) and MD Simulations 

Not all out of the more than 300 crystal structures within the PDB database were 

equally often used in computational experiments, as we noticed in our analysis of the most 

recent MD simulation literature (overview in Table A6). Surprisingly, we found that even 

20 years after the first description of the tubulin structure at near-atomic resolution [54], 

simulations of taxane-site ligands or apo tubulin are often based on some of the very first 

tubulin datasets obtained with electron diffraction in 1998 (PDB ID 1TUB, 3.7 Å, [40]) and 
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2001 (PDB ID 1JFF, 3.5 Å, [54]). There is a bit more of variety in the colchicine site struc-

tures that were selected for simulations, although only a fraction of the great number of 

available high-resolution tubulin colchicine site structures have been considered: PDB ID 

1SA0 2004 3.6Å [42], PDB ID 1Z2B 2005 4.1Å [58], PDB ID 3E22 2008 3.8Å [59], PDB ID 

3HKC 2009 3.8Å [57], PDB ID 4O2B 2014 2.3Å [65], PDB ID 6Y6D 2020 2.2Å [66]. For sim-

ulations of other ligands, since a lower number of structures is available, the choice of the 

starting model was obvious: vinca-site ligands PDB ID 3E22 2008 3.8Å [59], PDB ID 4O4J 

2014 2.2Å [56], PDB ID 5JH7 2016 2.2Å [67], and laulimalide site: PDB ID 4O4H 2014 2.1Å 

[56]. 

While this analysis reflects on only a fraction of the most recent literature, we see a 

trend that not always the most recent or high-resolution structures are selected. Due to 

the importance of the selection of the starting model for virtual screening and MD simu-

lations we provide in Table 1 an overview of the highest resolution structures available to 

support the selection process. Further, in Table 2 we have compiled a list of the CryoEM 

models for MT structures with highest resolution for tubulin-small molecule complexes, 

a field in which not many structures are available yet. 

Table 1. List of high-resolution tubulin crystal structures by binding site. 

Binding Site PDB ID Resolution (Å) Crystallization System Bound Ligand 

Apo 

5NQU [68] 1.8 TD1 - 

3RYC [69] 2.1 T2R - 

4I55 [44] 2.2 T2R-TTL - 

Taxane site 

4I4T [44] 1.8 T2R-TTL Zampanolide 

5LXT [70] 1.9 T2R-TTL Discodermolide 

6SES [71] 2.0 T2R-TTL B2 

Laulimalide/Peloruside  
4O4H [56] 2.1 T2R-TTL Laulimalide 

4O4J [56] 2.2 T2R-TTL Peroluside A 

Maytansine 

4TV9 [61] 2.0 T2R-TTL PM060184  

6FJM [72] 2.1 T2R-TTL Disorazole Z 

4TV8 [61] 2.1 T2R-TTL Maytansine 

Colchicine 

6S8K [46] 1.5 TD1 Plinabulin 

6ZWB [73] 1.7 TD1 Z-SBTub3 photoswitch 

7Z2P [74] 2.0 T2R-TTL Nocodazole 

5M7E [75] 2.0 T2R-TTL BKM120 

6TH4 [76] 2.1 T2R exo-methylene-nor-colchicine 

Vinca 

5IYZ [77] 1.8 T2R-TTL Monomethylauristatin E 

5J2T [77] 2.2 T2R-TTL Vinblastine 

5JH7 [67] 2.3 T2R-TTL Eribulin 

Pironetin 
5LA6 [62] 2.1 T2R-TTL Pironetin 

5FNV [63] 2.6 T2R-TTL Pironetin 

Todalam 
5SB3 [12] 2.2 T2R-TTL Todalam precursor 4 

5SB6 [12] 2.3 T2R-TTL Todalam derivative 10 

Gatorbulin 7ALR [64] 1.9 TD1 Gatorbulin 

Table 2. High-resolution CryoEM MT structures. 

MT Structure  PDBID Resolution (Å) 

Taxol-stablized MTs 6WVR [78] 2.9 

Peloruside stabilized MTs 5SYC [55] 3.5 

Taxol/Peloruside MTs 5SYE [55] 3.5 

Taxol MTs 5SYF [55] 3.5 

Zampanolide MTs 5SYG [55] 3.5 

Undecorated MTs recombinant tubulin 7SJ7 [79] 3.8 

When choosing the VS system, one should also consider the target of the desired 

molecule. If one is aiming for an MT-binder, one might compare the binding pocket found 

in crystallization systems with the CryoEM MT structures to evaluate the differences and 

the impact of MT formation on the specific binding site. However, one needs to be careful 

because most of the structures have been obtained by stabilizing the MT with small mol-

ecules, most often paclitaxel, or using non-hydrolyzable nucleotides. Therefore, these 
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structures could also be different from the MT structure in the absence of stabilizers or 

artificial nucleotides. 

The next consideration on the selection of the system for MD simulation is the assem-

bly of tubulin into protofilaments and MT structures. If the binding site studied is far from 

any tubulin inter-dimer interface (e.g., colchicine site, gatorbulin) or is considered to com-

pletely prevent the interaction of two dimers (e.g., maytansine site, pironetin site), a dimer 

can serve as a model for tubulin binders. It can be extracted from either T2R, T2R-TTL or 

TD1 structures, however the presence of the stabilizing proteins could artificially modify 

the tubulin structure in the proximity of their binding site. Ideally, the site of VS should 

be far from crystal contacts established in the system and the binding sites of the stabiliz-

ing proteins DARPin, RB3 and TTL. 

If the binding site is present at the longitudinal inter-dimer interface (e.g., vinca, toda-

lam, gatorbulin) or the lateral axes (e.g., taxanes), a more complex system may need to be 

considered. To extract two dimers in the curved conformation either T2R or T2R-TTL struc-

tures can be used to generate longitudinally linked tetramers. In the case of both longitu-

dinal and lateral axes as present only within the context of an MT, a CryoEM structure 

should be used as a basis. For example, scientists such as Castro-Álvarez et al. [80] opted 

to study a ‘tetramer’ model to investigate binders at the taxane site, since the M loop sta-

bilized by some taxane-site ligands is establishing lateral interactions with the neighbor-

ing tubulin dimer. The choice of the system size is a trade-off between the accuracy of the 

site and the computational effort needed. 

3.2. Tubulin-Related VS Strategies 

3.2.1. Pharmacophore Screening 

We already discussed ligand-based pharmacophore modeling and its application in 

VS, where models are generated from structures of active molecules relying on conforma-

tional space sampling and ligand alignment. In structure-based pharmacophore model-

ing, a ligand’s bioactive conformation in the binding site along with knowledge of the 

receptor structure guides the pharmacophore features placement and often provides 

higher quality models than those deduced by the ligand-based approach [31]. 

It is common to start such modeling by choosing one or several protein structures 

with bound ligands. Then, possible interactions are estimated between ligand and binding 

site atoms. After that, pharmacophore features are automatically assigned to regions of 

binding site space based on estimated H-bond formation, charge, and hydrophobic con-

tact. Such models can be combined by merging over common features or refined manually 

[81]. The same validation strategy is applied before usage in VS, as described for ligand-

based models. 

Structure-based pharmacophore screening has shown significant value in tubulin-

related research. It has been mostly used as one of the steps in multi-step VS campaigns 

that yielded novel colchicine and taxane-site targeting modulators of tubulin polymeriza-

tion. Interestingly, recent successful works used different approaches to model building 

and selection. As such, Nagarajan et al. [82] built six colchicine-site interaction models 

based on relevant crystal structures and merged them by common features to obtain a 

model later used in a VS. Mangiatordi et al. [18] built seven colchicine-site models based 

on manually selected relevant PDB structures, validated them with a set of actives and 

decoys, and used the model with the best discriminative performance for VS. On the con-

trary, Zhou et al. [83] built four pharmacophore models based on relevant well-resolved 

PDB structures containing colchicine-site ligands and refined them manually, putting em-

phasis on interactions with experimentally known key residues. Similarly, Zhang et al. 

[32] derived seven pharmacophore models of the taxane site interactions from a single 

PDB crystal structure and refined all of them to highlight only the most important fea-

tures. However, Gallego-Yerga et al. [84] noted that defining a single pharmacophore 

model puts unnecessary constraints on the model. Instead, they used an ensemble of 118 
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pharmacophore models derived from all resolved structures of tubulin with different 

bound colchicine-site targeting ligands in an attempt to capture flexibility of the site and 

variating nature of ligands. By contrast, Elseginy et al. [85] was able to produce good re-

sults by using a single model automatically extracted from a relevant colchicine site struc-

ture without any additional refinement. Table A4 provides an overview of pharmaco-

phore screening implementations from each mentioned VS campaigns. 

3.2.2. Protein-Ligand Docking 

One of the most frequently used structure-based drug design methods is protein-

ligand docking. It is used to estimate with a considerable degree of accuracy the most 

likely conformation of a ligand within a given binding site, and therefrom extrapolate—

with, unfortunately, not very good accuracy—its binding affinity. 

By computationally predicting the binding affinity of tubulin-targeting agents, re-

searchers identify compounds that have a high binding affinity for tubulin and are there-

fore more likely to be effective binders. This information can be used to prioritize com-

pounds for further experimental validation, such as performing in vitro or in vivo assays 

to confirm their binding activity and efficacy. It's worth noting that computational predic-

tions of binding affinity are not always accurate, and experimental validation is needed 

to confirm the predictions. However, computational predictions can be very useful for 

rapidly and efficiently identifying potential binders and prioritizing them for further ex-

perimental validation. Then, the success rate can vary depending on several factors, such 

as the quality of the computational method, the quality of the input data, and the com-

plexity of the system being studied. 

Protein-ligand docking tools operate on 3D structures of proteins and ligands. Typi-

cal docking computations involve sampling of a ligand’s conformational space, and rank-

ing the computed poses by estimating the (free) energy of interaction between the ligand 

in a given pose and the binding site using specific scoring functions. These computations 

may consider the binding pocket’s residues to be rigid or flexible. Rigid docking is com-

putationally faster, but unable to account for ligand-specific adjustments of the protein 

site geometry. 

Algorithms for conformation sampling modify torsional, translational, and rotational 

degrees of freedom of a given ligand in a site in either a systematic sequential or a sto-

chastic randomized fashion. Detailed reviews of sampling methods were compiled previ-

ously for example by Sulimov et al. [86] or Halperin et al. [87]. 

Sampling algorithms visit many putative poses of a ligand within the site and the 

docking software ranks all of them according to a scoring function. These functions aim 

to estimate a ligand’s affinity toward the binding site in each specific sampled pose, taking 

into account intermolecular interactions and other physicochemical effects. The calcula-

tions are based on either force fields, modeled contribution of empirically defined physi-

cochemical parameters, or knowledge of different atom-type interactions statistically ex-

tracted from resolved co-crystallized protein-ligand structures. 

Before use, protein structures are pre-processed by adding missing hydrogens, com-

puting charges, removing solvent molecules, ligands, and other heteroatoms. It is consid-

ered good practice to validate the suitability of a chosen docking software to model a de-

sired binding pocket, which is most often done by re-docking. It consists of removing a 

native ligand from the modeled system and placing it back using the docking method of 

choice. If the best pose output by the software matches the bioactive pose of the native 

ligand, it is assumed that both the conformation sampling algorithm and the scoring func-

tion adequately describe the modeled system and can be used to model interactions of 

novel ligands with the pocket [88,89]. 

With protein-ligand docking being an efficient and quick way to obtain significant 

intuition for drug design and optimization, it has been used in several contexts of tubulin-

related drug design. For example, it is often included in VS campaigns as one of the last 

steps to prioritize a virtual hit for further investigation. As such, Mangiatordi et al. used 
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protein-ligand docking to further filter the results of a prior pharmacophore screening 

and prioritize remaining compounds, the latter containing 31 novel colchicine-site target-

ing agents with in vitro anti-proliferative properties [18]. In a similar manner, Guo et al. 

reported protein-ligand docking as an essential step that allowed them to discover eight 

confirmed cytotoxic agents targeting the colchicine binding site [26]. Moreover, Zhou et 

al. used protein-ligand docking to highlight five virtual hits found by pharmacophore 

screening as most promising ones, their cytotoxic action related to binding at colchicine 

site was later confirmed in vitro [83]. A work by Ayoub et al. showed how docking-based 

optimization of VS hits could benefit from pose rescoring using the MM/PBSA method 

[16]. 

A noteworthy work by Zhang et al. compared five docking programs by re-docking 

10 complexes of tubulin co-crystallized with taxane-site targeting ligands and selecting 

the three best software programs for evaluation of virtual hits found by pharmacophore 

screening; among the prioritized molecules, two were established as cytotoxic agents, sup-

posedly targeting the taxane binding site [32]. Protein-ligand docking was instrumental 

in highlighting 15 virtual hits found by pharmacophore screening in the work by Naga-

rajan et al., later experimentally confirmed to be cytotoxic in vitro due to targeting the 

colchicine site of the tubulin protein [82]. Similarly, Federico et al. used docking to evalu-

ate potential affinity of found virtual hits toward tubulin’s colchicine site, eventually dis-

covering seven micromolar inhibitors of tubulin polymerization [19]. Consensus docking 

of pharmacophore screening virtual hits helped Elseginy et al. establish four novel com-

pounds with significant antiproliferative activity against cancer cells due to targeting the 

colchicine site of the tubulin protein [85]. Interestingly, Mao et al. incorporated protein-

ligand docking and interaction fingerprint similarity comparison to discover a novel tax-

ane-site targeting promoter of tubulin polymerization [90]. Lastly, Stefanski et al. also 

combined docking and fingerprint similarity measure of protein-ligand interactions as a 

last step of a VS campaign that yielded two potent in vitro cytotoxic colchicine-site target-

ing agents [27]. 

Protein-ligand docking is a powerful VS tool that alone can produce high-quality re-

sults. For example, Zúñiga-Bustos et al. used only protein-ligand docking to screen a large 

compound library, with virtual hits being confirmed promotors of tubulin polymerization 

targeting the laulimalide binding site [91]. In another study, Liu et al. screened a large 

database with consecutive docking experiments with increasing rigor of conformational 

sampling, eventually yielding six hits with in vitro antitumor activity due to targeting the 

colchicine binding site [92]. In a similar manner, Liu et al. docked a large compound li-

brary and discovered two colchicine-site targeting in vitro inhibitors of tubulin polymer-

ization among the highest ranked molecules [93]. 

Often, protein-ligand docking is used as a way to provide rationale for a tubulin-

targeting agent’s biological action. In such case, designed molecules are docked into one 

or several potentially targeted binding sites. Best estimated poses are then examined in 

terms of docking scores and physicochemical interactions within the site. Such analysis 

may also provide ideas for further compound optimization. For example, docking studies 

were used to assess possible binding modes and guide rational design of colchicine-site 

targeting compounds of different classes independently reported by Ameri et al. [94], Guo 

et al. [17], Riu et al. [95], Patel et al. [96], and Mustafa et al. [97]. In a similar manner, 

Tripathi et al. [98], Ayoub et al. [99], and Chávez-Estrada et al. [100] used protein-ligand 

docking to estimate putative binding modes of taxane-site targeting molecules. Interest-

ingly, Forero et al. [101] predicted possible binding modes of the designed compounds by 

docking them into both colchicine and taxane site, eventually settling on colchicine site as 

the possible target of the designed compounds based on interaction analysis. Finally, Pan-

dit et al. [29] used docking to evaluate binding regimes of vinca-site targeting peptides. 

Table A5 provides an overview of exact implementations of docking protocols used in 

mentioned works. 
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3.3. Molecular Dynamics (MD) Simulations to Study Tubulin-Ligand Complexes 

3.3.1. Classical MD Simulations Used on Tubulin 

Molecular dynamics (MD) is a computational simulation technique that allows ex-

ploration of the behavior of a molecular system over time by solving Newton’s equations 

of motion. This is of great importance for research, as biomolecules are dynamic entities 

whose atoms are in constant motion. In this way, by using MD, time-dependent processes 

in molecular systems can be monitored to facilitate the analysis of their structural, dy-

namic, and thermodynamic properties.  

MD simulations can provide valuable information that is not accessible from experi-

ments, allowing the formulation of new hypotheses. In addition, technical progress, both 

in algorithm efficiency and computational power, allows the study of biological macro-

molecules of larger dimensions on longer timescales, and the predictions that are inferred 

from these simulations make MD simulations a very valuable computational approach in 

the drug design field.  

MD is widely used as a computational technique to examine protein-ligand com-

plexes, such as the binding of molecules to tubulin and MTs, to analyze the effects on the 

tubulin structure upon ligand binding. 

In the study of MTAs in complex with tubulin using classical MD simulations, dif-

ferent settings need to be considered during system preparation. For instance, the choice 

of the force field that best suits the system under study is important, since the quality of 

the MD simulations results depends on the quality of the energy function used to treat the 

interactions among atoms in the system. Additionally, the simulation time and the MD 

engine used are important factors that also condition the accuracy of the simulations. 

In this review, Table A6 summarizes the settings used by scientists to set up classical 

MD simulations to investigate tubulin-ligand complexes. Due to the number of articles 

related to this topic published since 2019, we have decided to dedicate the review of clas-

sical tubulin MD simulations to the articles which were published in the last three years 

and thus are the most up-to-date manuscripts. 

By analyzing Table A6, we can observe that most often the tubulin-ligand complex 

systems are simulated under periodic boundary conditions, solvated in explicit water 

(TIP3P or SPC water model) in cubic or octahedral box at room temperature and atmos-

pheric pressure. The typical simulation time is ~100 ns. While different force fields are 

explored, the most prevalent are Amber Force Fields FF99SB and the more recent one 

FF14SB. 

3.3.2. Enhanced Sampling Methods 

Enhanced sampling algorithms have appeared as a powerful tool for increasing the 

efficiency of classical MD simulations. During a certain simulation time, enhanced sam-

pling methods allow for the sampling of larger areas of a complex system configuration 

space. The accuracy of the results is highly dependent on the selection of the simulation 

settings. Here, we outline three different enhanced sampling methods used to study tu-

bulin-ligand binding mechanisms. 

4. Umbrella Sampling (US) 

Umbrella sampling (US) is an enhanced sampling computational technique applied 

to expand the sampling of a system in which ergodicity is hampered by the form of the 

energy landscape of the system. US is used to calculate the thermodynamic parameters 

for the binding of a ligand to a protein. In the tubulin field, US has been used to predict 

the strength of binding (binding energy) of a ligand to tubulin by slowly pulling away the 

ligand from the binding site. ΔGbind derives from the potential of mean force (PMF), ob-

tained from a series of US simulations. Several initial positions of the ligand with respect 

to the protein of interest are generated, each corresponding to a location where the ligand 

is harmonically restrained at increasing center of mass (COM) distance from other selected 
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groups via an umbrella biasing potential. These restraints allow the ligand to sample the 

conformational space in a defined area along a single degree of freedom (reaction coordi-

nate) [102]. 

US is subject to certain limitations, such as biases in sampling due to improper selec-

tion of reaction coordinates (RCs), challenges in identifying appropriate RCs for complex 

systems, the need for multiple RCs in systems with multiple reaction pathways, and the 

method being dependent on the choice of RC. Additionally, the method can be computa-

tionally expensive and limited to systems with multiple reaction pathways and high-di-

mensional systems. 

Zhang et al. used US simulations to retrieve the free energy potential of αβ-tubulin 

separation upon binding to a certain ligand [103]. Also, Zhou et al. and Mane et al. simu-

lated the αβ-tubulin dissociation free energy under different system conditions using the 

US method [104,105]. 

5. Steered Molecular Dynamics Simulations (SMD) 

Steered molecular dynamics (SMD) is another enhanced sampling method in which 

an additional external force is applied to one or more atoms in the studied system to main-

tain the constant speed of motion along a selected coordinate [106]. SMD emulates atomic 

force microscopy (AFM) experiments. It allows the study of molecular processes, such as 

the protein-ligand unbinding mechanism, by focusing on selected degrees of freedom. It 

is important to keep in mind that in SMD the force applied is not necessarily proportional 

to the binding free energy, as it aims to simulate the process of binding a molecule to 

another, rather than the equilibrium state of the bound complex. 

Rai et al. performed SMD to study the bonding strength between eribulin and tubulin 

isotypes to which it presented the highest (aVIIIbIII) and lowest (aIbII) binding energies, 

which were previously calculated computationally. They kept the tubulin structures fixed 

by setting position restraints on their heavy atoms, whereas the eribulin structure was 

dynamic. They observed that a three-fold greater force was required to pull out eribulin 

from the active site of one tubulin isotype in comparison to that of another isotype [107]. 

6. Metadynamics (MetaD) 

Metadynamics is an enhanced sampling technique that enables conformational sam-

pling of the free energy landscape of a system through the use of collective variables that 

describe it. Castro-Álvarez et al. used MetaD to study the effect in the tubulin M loop on 

the binding of laulimalide and peloruside A to the taxane site [80]. 

Binding pose metadynamics (BPMD) allows for the assessment of the stability of the 

ligand in solution. This is because BPMD can differentiate between stable and unstable 

binding geometries. It is expected that the unstable ligand poses will rarely be occupied 

in the energy landscape under MetaD simulation bias. As a result, unstable ligand poses 

make a minimal contribution to binding affinity. 

Boichuk et al. applied BPMD to evaluate the stability of a colchicine binder in com-

plex with tubulin and to select its most stable conformation using as collective variables 

the RMSD values of the heavy atoms of the ligand [108]. Fusani et al. compared the bind-

ing mode of epothilone A in complex with tubulin of the first published 3D structure 

solved by Nettles et al. (PDB: 1TVK) and a later one solved by Prota et al. (PDB: 4I50) using 

BPMD. Fusani et al. wanted to differentiate between the correct and incorrect ligand bind-

ing poses by applying BPMD [109]. 

Moreover, Gaspari et al. used MetaD to induce the cis-to-trans isomerization of a col-

chicine binder in complex with tubulin. This allowed the authors to calculate the differ-

ence in binding free energy between the cis and trans isomers of the ligand via a thermo-

dynamic cycle. Furthermore, Gaspari et al. also used MetaD to gain insight into the dif-

ferences in the unbinding process of colchicine and another colchicine site binder studied 

in complex with tubulin [110]. 
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When using MetaD as an enhanced sampling method, it is important to be aware of 

its limitations, particularly in relation to the selection of the collective variable (CV). These 

limitations include potential bias in sampling, challenges in identifying appropriate CV 

for complex systems, increased computational cost for high-dimensional systems, and 

limitations in exploring the free energy surface. 

7. Applications of MD for Tubulin-Ligand Studies 

7.1. Docking Validation and Refinement 

MD is often used as a post-processing technique to validate and refine the binding 

modes of the protein-ligand complexes obtained from docking experiments. MD applied 

for docking validation has also been used in the tubulin research field. 

For example, Hadizadeh et al. investigated the possible binding mode of an active 

tubulin binder (9IV-c) that showed high activity against human tumor cell lines. For this, 

they used computational methods such as docking and MD. First, they docked 9IV-c in 

the colchicine site, and the output was later submitted to MD simulations to evaluate and 

refine the docking results. The simulation of the complex was analyzed using root mean 

square deviation (RMSD), radius of gyration (Rg), and hydrogen bond stability values. In 

this way, they obtained a successful prediction of the way 9IV-c binds to tubulin, allowing 

them to conduct further computational studies to identify new potent tubulin inhibitors 

[111]. 

El-Mernissi et al. designed four new colchicine site binders using 3D-QSAR models 

and docking based on a series of 2-oxoquinoline arylaminothiazole derivatives that were 

identified as promising tubulin inhibitors. Among the four newly designed binders, MD 

simulations of the compound with the best docking score were performed to validate its 

docking binding pose using the RMSD, root mean square fluctuation (RMSF), Rg, and 

solvent accessible surface area (SASA) metrics. By performing MD simulations, they con-

firmed the conformational stability of the complex, thus validating their docking experi-

ments [112]. 

Zhang et al. performed VS using a combination of molecular docking methods of 50 

compounds in the taxane site to search for novel tubulin polymerization inhibitors. Sub-

sequently, the best hits were submitted to IC50 experiments, from which the two com-

pounds with the highest antiproliferative activity were selected for MD simulations along 

with the tubulin-paclitaxel complex. By performing MD simulations, they further studied 

the binding mode, stability, and molecular interaction pattern of the docking results. 

Apart from using RMSD, RMSF, and Rg as MD analysis metrics, they performed cluster-

ing analysis to extract information on how tubulin in complex with the three studied tax-

ane-site binders is sampling the conformational space. They used ‘BitClust’ [113], which 

is a relatively new faster implementation of the Daura et al. clustering algorithm that per-

forms rapid structural clustering of long trajectories [114]. In this way, using MD simula-

tions, they validated the stability of tubulin in complex with the two compounds and 

probed the mechanism of their interactions, which aligned with the experimental results 

[115]. 

Elhemely et al. observed that a meta-substituted 3-arylisoquinolinone that had 

shown a high cytotoxic effect in several cancer cell lines mimicked the structure of colchi-

cine. They hypothesized that its mode of action could be related to its binding to the col-

chicine site of tubulin. To test the suitability of the compound to bind to this site, the au-

thors first performed docking experiments, which were later refined by MD. These com-

putational studies suggested that the meta-substituted 3-arylisoquinolinone was able to 

bind well to the colchicine binding site [116]. 

7.2. Comparison of the Binding Free Energy of Different Ligands 

The resulting trajectories from MD simulations are also used to compute the free en-

ergy of binding of different molecules binding to the same site to obtain a quantitative 
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measure to compare and rank the best hits normally resulting from docking studies. There 

are different methods to estimate the free energy of binding of protein-ligand complexes 

such as Free Energy Perturbation (FEP), Molecular Mechanics Generalized-Born Surface 

Area (MM-GBSA), and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-

PBSA). Due to the numerous computational resources required for the performance of 

MD simulations, this approach can only be used to rank a low number of molecules, in 

the tens range. 

Elhemely et al., in the article mentioned above, computed the free energy of binding 

applying the MM-GBSA method using the MD-based refined complexes of two 3-aryli-

soquinolinones bound to tubulin that only differed in the location of a substituent in their 

structure (meta versus para). The authors wanted to investigate how the change in the 

substituent position could alter the free energy of binding and compare the binding mode 

of the molecules in the tubulin sub-pocket. The computational results aligned with the 

experimental ones, concluding that the meta-substituted molecule was a better colchicine 

site binder than the para-substituted compound [116]. 

Stroylov et al. used FEP calculations based on MD simulations for predicting tubulin-

ligand free binding energy differences of new tubulin polymerization inhibitors targeting 

the colchicine site [117]. 

Mao et al. with the goal of discovering new tubulin inhibitors capable of binding to 

the taxane site, performed a VS of ~1.6M molecules retrieved from the ChemDiv database. 

After applying different computational filters, 17 hit compounds were selected and sub-

mitted for experimental evaluation. The in vitro tubulin polymerization assay found P2 

to be the most promising compound. Therefore, P2 was submitted to MD simulations not 

only to further investigate the interactions between P2 and tubulin based on the docking 

results but also to compare it with paclitaxel, an already known active taxane-site binder. 

They calculated the free energy of binding of both complexes using the MM-PBSA method 

obtaining—68.25 ± 12.98 kJ mol−1 for the tubulin-P2 complex and—146.05 ± 16.17 kJ mol−1 

for the tubulin-paclitaxel complex. These results were in line with the experimental evi-

dences, defining P2 as a lead compound that could be used for new tubulin inhibitors 

drug design campaigns [90]. 

7.3. Identification of Key Binding Site Residues 

MD is also used to further investigate the mechanisms of interactions between tubu-

lin and hits, as previously reported, and to find key amino acids in the protein that are 

especially important for binding to the studied ligand within a given tubulin binding site, 

also called ‘hot spots’. 

Neto et al. studied a series of chalcones predicted to bind to the taxane site using both 

experimental and computational approaches, including MD simulations. To identify the 

key binding site residues establishing the strongest interactions with the studied ligands, 

the authors performed Computational Alanine Scanning (CAS) of each tubulin-ligand in-

terface. This allowed analysis of the free energy contribution of the amino acids located at 

the taxane site, bringing new insights into this tubulin site for further exploitation using 

chalcones [118]. 

Gamya et al. reported a noscapine derivative (VPN) discovered and validated using 

computational tools such as docking and MD simulations. VPN was able to be properly 

accommodated in the colchicine site according to the docking results, which were then 

submitted to MD studies for validation of its stability at the site by calculating the RMSD 

and RMSF values, and its binding free energy using the MM-GBSA and MM-PBSA meth-

ods. Furthermore, they performed a deeper analysis of the interactions established be-

tween the residues of the receptor with the ligand by calculating the energy contribution 

of each residue in the binding of VPN by performing Per Residue Energy Decomposition 

(PRED) analysis using the MM-GBSA method. In this way, they were able to identify the 

residues that have the greatest impact on the binding and stability of VPN, the ‘hotspots’ 
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[119]. Other researchers have also applied PRED analysis to the search for 'hotspots' to 

investigate the details of tubulin-ligand interactions at the atomic level [90,120]. 

7.4. Analysis of Local and Global Effects Upon Ligand Binding 

Structure-based computational approaches have also been used to investigate the ef-

fect of different MTAs on the local geometry of tubulin. Moreover, since MTs are formed 

by allosteric proteins, the effect of binding of a ligand at one site can also cause non-local 

effects in MTs, and therefore, the study of global effects caused by ligand binding is also 

important. 

For example, the M loop has been widely studied by X-ray crystallography and other 

structural techniques to understand the effect of taxane site binders on this loop [44,70]. 

This is due to the fact that the M loop is found at the β1/β2 interface and is involved in the 

stability of the interaction. However, the dynamics of M loops remains unclear, and other 

research groups approach these questions using SB computational techniques. Castro-Ál-

varez et al. performed MetaD simulations of laulimalide and peloruside A to analyze the 

changes produced in the M loop upon binding of these ligands [80]. MetaD helped explain 

how laulimalide and peloruside A shift the M loop to an α-helix structure by bringing 

together different residues at the external site of β1. 

Basu et al. studied the collective changes that the tubulin over-stabilizing agents 

paclitaxel and taxotere induce on the structure and dynamics of the α,β-tubulin dimer by 

performing MD simulations. To study the conformational effects of tubulin induced by 

the binding of the ligands, they also performed MD of the apo protein to compare the 

results of the simulations of apo tubulin with those of holo tubulin. They investigated the 

influence of ligand binding on the essential dynamics of tubulin using Principal Compo-

nents Analysis (PCA). They observed that the apo tubulin samples a broader range of 

conformations than that of the holo tubulin. Therefore, the presence of the ligands biases 

the system toward a more stabilized conformation. Moreover, for a more local structural 

exploration, the authors performed a Define Secondary Structure of Proteins (DSSP) anal-

ysis to study the conformational changes of the M loop and its associated regions induced 

by the binding of the two ligands. More computational analyzes were performed to thor-

oughly investigate the effect of binding of both paclitaxel and taxotere on the dimeric 

structure, concluding that these ligands enhance the α,β-tubulin dimer to be more favor-

ably accommodated into the MT superstructure [121]. 

7.5. Exploration of Ligand Binding to Different Tubulin Isotypes 

The α and β tubulin in eukaryotes consist of isotypes that differ in their aminoacidic 

sequence. Therefore, in the field of tubulin, researchers study not only the binding of dif-

ferent ligands to the same binding site of a certain tubulin isotype, but also the binding of 

the same ligand to different tubulin isotypes [122]. In silico approaches have a great ad-

vantage in the study of tubulin isotypes, since they are rarely accessible to be investigated 

experimentally. In silico strategies allow for the analysis of the sensitivity of a certain lig-

and to bind to tubulin isotypes which would be highly demanding to do experimentally. 

Rai et al. performed MD simulations of the potent anticancer drug eribulin bound to dif-

ferent tubulin isotypes to report differential binding affinities. However, it remains to be 

explored how the residue composition at the binding site between tubulin isotypes trans-

lates into major changes in the tubulin conformation and the binding affinities with lig-

ands [107]. 

7.6. MD Analysis Metrics 

As previously described, MD simulations have multiple applications in the in silico 

study of tubulin-ligand complexes. To extract the information of interest from the output 
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of MD simulations (trajectory), different analysis metrics are available. In Table 3 we pre-

sent the techniques that have been used in the selected tubulin-related articles to analyze 

MD simulations of tubulin and its interactions with MTAs. 

Table 3. A glossary of key parameters and procedures used to analyze observed conformational 

changes during MD trajectories. 

MD Analysis 

Metrics 
Definition Examples of Application 

RMSD 

The root mean square deviation (RMSD) is a standard measure of the structural distance 

between coordinates: it measures the average distance between a group of atoms. RMSD values 

help to evaluate the global structural stability of the system studied in the simulation. 

Dash 2022 [119], El-Mernissi 2022 

[112], Zhang 2022 [115], Zhao 

2022 [120], Radha 2022 [123] 

RMSF 

The root mean square fluctuation (RMSF) represents the quadratic deviation of the atoms in 

temporal averages. RMSF values help to evaluate the internal structural flexibility of the studied 

system in the simulation. 

Dash 2022 [119], El-Mernissi 

2022, Zhang 2022 [115]  

Radha 2022 [123],  

Talimarada 2022 [124]  

Rg 

The radius of gyration (Rg) is defined as the mass-weighted root mean square atomic distance 

from the center-of-mass and can be applied to measure the level of structural compactness of a 

protein at different time points during the trajectory. 

Hadizadeh 2022 [111],  

El-Mernissi 2022 [112], Zhang 

2022 [115], Radha 2022 [123]. Rai 

2022 [107] 

SASA 
The solvent accessible surface area (SASA) permits assessment of the overall changes in the 

tertiary structure of a molecule and its solvent accessibility over the course of the simulation. 

El-Mernissi 2022 [112]  

Rai 2022 [107] 

2D interaction 

analysis 

2D interactions established between the protein and the ligand along the course of the 

simulations help to identify the residues within the binding site that play an important role in 

the binding of the ligand to the receptor and to list the ‘hot spots’ between the ligand and the 

protein. 

Basu 2022 [121], Mao 2022 [90], 

Zhao 2022 [120], Rai 2022 [107], 

Zhang 2022 [103], Majumdar 

2022 [125], Mao 2022 [90],  

Hadizadeh 2022 [111], Zhang 

2022 [115] 

DSSP 

The Define Secondary Structure of Proteins (DSSP) algorithm is the standard method for 

assigning a secondary structure to amino acids of a protein given the atomic resolution 

coordinates of the protein. 

Mao 2022 [90], Basu 2022 [121] 

Clustering 
Clustering is a data mining technique that allows molecular configurations to be grouped into 

subsets based on the similarity of their conformations. 
 Zhang 2022 [115] 

Binding free 

energy 

The Gibbs free energy (G) provides valuable information about the structure and stability of 

biomolecules. It is possible to calculate the predicted binding energy (ΔGbind) of a given tubulin-

ligand complex using the MD simulation trajectory of this biomolecular association. 

Zhao 2022 [120], Zhang 2022 

[115], Elhemely 2022 [116], Rai 

2022 [107], Radha 2022 [123], 

Majumdar 2019 [125] 

PRED 

The Per Residue Energy Decomposition (PRED) is a computational tool that is used to obtain 

the residue-wise contribution to the total binding free energy. It provides information on the 

key residues that contribute to protein-ligand association, the so-called ‘hot spots’. 

Dash 2022 [119], Mao 2022 [90], 

Zhao 2022 [120], Zhang 2022 

[120] 

CAS 

Computational Alanine Scanning (CAS) is a technique that consists of the mutation of amino 

acids present on the interaction surface between the protein and the ligand to alanine, and the 

measurement of the difference in binding free energy between the ligand and the native protein 

and the ligand and the multiple mutated proteins to identify ‘hot spots’. 

Neto 2022 [118] 

PCA 

Principal Component Analysis (PCA) is a linear dimensionality reduction tool used in the MD 

field to map the coordinates of each frame of the trajectory to a linear combination of 

orthogonal vectors and to investigate the internal modes of motion of the system under study. 

Basu 2022 [121] 

8. Conclusions 

In this review, we provide an overall picture of the different ligand and structure-

based computational methods that have been used in recent years for the study of tubulin-

targeting agents, and an overview on the available MT and tubulin structural data. We 

observed that computer-aided methods have had significant contribution to the field of 

tubulin-targeting drug design. VS of compounds, applying both ligand and structure-

based approaches, provided many hits with in vitro bioactivity. An advantage of ligand-

based methods is their computational efficiency and ability to work with big data. They 

are often beneficial to the early stages of VS, where the goal is to filter out compounds 

irrelevant to the task at hand in a fast manner. These initial results are well suited for 

subsequent filtering by structure-based methods, which provide more intuition behind 

the physico-chemistry of potential interactions between a given virtual hit and the desired 
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biomolecular target. Computational methods were also shown to guide in rational design 

and optimization of novel tubulin-targeting agents. 

Moreover, despite the large number of available tubulin binding sites (8), our 

analysis shows that the colchicine and the taxane sites are the most studied ones in 

tubulin-related computational research while the rest are underrepresented. We also 

observed a tendency to mainly use structure-based methods to find tubulin-targeting 

agents such as molecular docking for VS and MD for the refinement of the resulting 

docking hits. 

MD simulations have widely been used in the tubulin-directed drug discovery field. 

In the recent literature, there is a tendency to use MD as a computational docking post-

processing method that allow the validation and refinement of the docking results, the 

analysis of the ligand–tubulin dynamics and the estimation of binding free energies. 

We expect growth of interest in these computationally understudied sites in the near 

future since computational strategies are becoming essential in the first steps of the drug 

design campaigns. 
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Appendix A 

Table A1. Summary of similarity search implementations. 

Reference Screened Dataset Dataset Size Software Descriptors Similarity Metric Result 

Ayoub 2013 

[16] 
PubChem 33˟10� 

Built-in web 

search 

881-bit 

PubChem 

subgraph 

fingerprints 

[URL] 

Tanimoto, 80% 

similarity threshold 

Virtual hits ranked by protein-ligand 

docking, one compound used as a 

reference for further successful design 

Guo 2019 [17] ChemDiv 1.7˟10� 
Discovery 

Studio (Biovia) 
ECFP-4 

Tanimoto, 50% 

similarity threshold 

Virtual hits were found to be cytotoxic, one 

was confirmed as a colchicine site binder 

Lo 2015 [20] 

ChEMBL, 

PubChem 
35˟10� 

CSNAP2D OpenBabel FP2 
Tanimoto, 85% 

similarity threshold 

Correctly identified and validated tubulin 

as a target for 36 molecules that showed 

cytotoxicity in a HTS setting 

Lo 2016 [21] CSNAP3D ShapeAlign 
3D Tanimoto, 85% 

similarity threshold 

A virtual hit was established to promote 

tubulin polymerization by binding at the 

taxane site 

Magiatordi [18] CoCoCo 3.7˟10� 
Phase 

(Schrödin-ger) 

Atom-type-

based 3D shape 

Atom-type volume 

scoring, 0.65 similarity 

threshold 

31 virtual hits have been confirmed to 

decrease microtubule polymerization in 

vitro. 

Federico 2020 

[19] 

ZINC *, 

Chembridge 

Diverset CL, 

Chembridge 

Diverset EXP,  

BindingDB FDA, 

MayBridge 

164˟717 

ROCS 

(OpenEye) 

Smooth 3D 

Gaussian 

functions for 

each atom 

Tanimoto similarities 

of aligned overlap 

volumes (no threshold, 

top 5000 selected for 

ROCS, top 2000 for 

EON) 

Two virtual hits established by shape and 

electrostatic similarity to a known active 

were shown to inhibit tubulin 

polymerization in vitro. 
 

EON 

(OpenEye) 

Electrostatic 

potential maps 

of pre-aligned 

molecules 

* (Drug Database, Naturals). 
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Table A2. Summary of recent ligand-based QSAR modeling. 

Reference Modeled Data Descriptor Type Algorithm Validation Strategy Application and Result 

Gaikwad 

2018 [25] 

IC50 of 102 

phenylindoles 

cytotoxic against MCF7 

cancer cell line 

Fragment-based holograms 

implemented in SYBYL-X 

(Certara) 

PLS 
Two sets were used: 

training (77) and test (25). 

Leave- one-out and five-fold 

cross-validation were used. 

Analysis of literature data allowed 

the authors to highlight structural 

features important for cytotoxicity. 
Extended connectivity 

fingerprints, 

physicochemical descriptors 

Naïve Bayes 

(Discovery 

Studio 3.0, 

Accelrys) 

Guo 2020 [26] 

1076 diverse 

colchicine-site 

targeting small 

molecules extracted 

from the ChEMBL 

database 

Extended-connectivity 

fingerprints, path-based 

fingerprints 

Naïve Bayes 

Five-fold cross-validation. 

A colchicine site-binding inhibitor 

of tubulin polymerization was 

established after a virtual 

screening campaign. 

Single Tree 

Random Forest 

Stefanski 

2018 [27]  

IC50 of 83 thio-

derivatives of 

combretastatin-A4 

mined from literature 

Extended connectivity 

fingerprints, 

physicochemical descriptors 

Naïve Bayes Leave-one-out, cross-

validation, and external test 

set methods. The external 

validation test set was 

composed of 20 tubulin 

inhibitors and 800 decoys. 

Two virtual hits selected by 

consensus QSAR modeling were 

later confirmed to be cytotoxic due 

to perturbing microtubule 

polymerization by binding at the 

colchicine site. 

Multiple Linear 

Regression 

Quan 2018 

[28] 

IC50 values of 64 

literature-mined 

derivatives of 

combretastatin A-4 

CoMFA (steric and 

electrostatic fields) 

PLS (SYBYL-X 

2.0, Tripos) 
Leave-one-out validation 

A 3D QSAR study highlighted 

structural elements with 

pronounced relation to activity 

value, useful for further 

optimization. 

CoMSIA (steric, electrostatic, 

hydrophobic, hydrogen 

bond donor, and hydrogen 

bond acceptor fields) 

Pandit 2021 

[29] 

IC50 values of 49 

tubulysin derivatives 

reported in the 

literature 

CoMFA (steric and 

electrostatic fields) 

PLS (SYBYL-X 

2.0, Tripos) 
Cross-validation 

3D QSAR investigation of 

structure-activity data on 

tubulysins lead to rational design 

and synthesis of a new class of 

cytotoxic in vitro tubulysin 

derivatives 

CoMSIA (steric, electrostatic, 

hydrophobic, hydrogen 

bond donor, and hydrogen 

bond acceptor fields) 

Table A3. Summary of ligand-based pharmacophore screening campaigns. 

Reference 
Compound 

Library 

Compound Set 

Used to Build the 

Model 

Software Used to 

Build the Model 

Model Generation 

and Validation 

Settings 

Validation Set 

Validation 

Metric and 

Score 

Screening Result 

Zhang 2021 

[32] 

BioDiversity,  

30,000 

molecules 

Six agents targeting 

taxane site 

HipHop 

algorithm from 

Discovery Studio 

3.5 (Accelrys) 

Five features were 

used (HBA, HBD, 

HP, HP-A, and R-

A) 1, paclitaxel used 

as reference 

467 inactive 

molecules from 

ZINC15 database, 

33 known inhibitors 

Gunner-

Henry (GH) 

score of 0.62 

Large database filtered 

to focus on a subset that 

eventually led to 

discovery of two 

taxane-site targeting 

cytotoxic agents 

Lone 2017 

[33] 

IBScreen 

Natural 

Product 

Database,  

84,215 

molecules 

Four C20 

substituted 

vinblastine 

analogues extracted 

from literature 

Phase 

(Schrödinger) 

HBA, HBD, HP, PI, 

and R-A 1 

35 inactive and four 

active C20 

substituted 

vinblastine 

analogues 

The Survival-

inactive score 

of 4.006. 

Possibility of scaffold-

hopping for vinca-site-

targeting compounds 

design was shown 

Niu 2014 [34] 

Specs Screening 

Database,  

202,919 

molecules 

26 compounds 

designed to target 

colchicine site with 

known cytotoxic 

action 

HypoGen module 

from Discovery 

Studio 2.5 

(Accelrys) 

HBD, HBA, HP, 

and R-A 1 

66 colchicine site-

targeting 

compounds with 

known cytotoxicity 

(26 actives, 40 

inactives) 

Cost 

difference 

Two compounds with 

good fitness to the 

developed pharmaco-

phore model were 

shown to be tubulin 

polymerization 

inhibitors in vitro. 

Stefanski 

2018 [27] 

A custom-

designed 

virtual 

combinatorial 

library of 1159 

21 active colchicine 

site-targeting 

molecules mined 

from literature 

Discovery Studio 

3.5 (Accelrys) 

HBA, HBD, HP, 

and HP-A 1 

20 tubulin 

inhibitors and 800 

decoys mined from 

ChEMBL 

Area under 

receiver-

operator 

curve 

(AUROC) 

Two virtual hits were 

established as in vitro 

cytotoxic agents 

targeting colchicine 

binding site 
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combretastatin 

A-4 analogs 
1 HBA = hydrogen bond acceptor, HBD = hydrogen bond donor, HP = hydrophobic, HP-A = 

hydrophobic-aromatic, R-A = ring-aromatic, PI = positive ionizable bond. 

Table A4. An overview of structure-based pharmacophore screening implementations. 

Reference 
Data Used to Build 

the Model 
Software Validation Set Screened Data Result 

Nagarajan 2015 [82] 

1SA0, 1SA1, 3HKC, 

3HKE, 3HKD, 3N2K, 

3N2G; model derived 

from 1SA0 was 

manually removed of 

a hydrogen bond 

feature, shown best 

result in validation 

Model building: 

LigandScout v3.1 

(Inte:Ligand); 

 

Screening—Phase 

v3.4 (Schrödinger) 

52 active colchicine 

site binders mined 

from literature, 

1800 decoy 

molecules from the 

DUD database 

The CoCoCo database, 

containing 

multiconformer data 

on 3.7 million 

purchasable 

compounds 

31 novel colchicine site-targeting 

inhibitors of tubulin polymerization 

were established that match the 

derived pharmacophore model 

Mangiatordi 2017 [18] 

6F7C, 5EYP, 5YL2, 

4O2B (common 

feature model) 

MOE (Chemical 

Computing Group 

Inc.) 

970 inactive 

molecules and 30 

known inhibitors 

with experimental 

activity mined 

from literature 

Specs database, 

202,919 molecules 

The screening established five virtual 

hits that are cytotoxic in vitro, one 

most potent hit confirmed to bind at 

the colchicine site 

Zhou 2019 [83] 

118 crystal structures 

of tubulin co-

crystalized with 

colchicine site 

binding ligands 

LigandScout v3.1 

(Inte:Ligand), Phase 

v3.4 (Schrödinger), 

Pharmer 

81 co-crystalized 

ligands and 3354 

decoys randomly 

extracted from the 

DUD-E database 

A subset of 

specifically selected 

8918 purchasable 

compounds from the 

ZINC database 

Ensemble of many pharmacophore 

models based on colchicine site-

bound ligands structures was used in 

virtual screening which led to 

discovery of a potent tubulin-

targeting cytotoxic agent 

Zhang 2021 [32] 1JFF 
Discovery Studio 3.5 

(Accelrys) 

467 inactive 

molecules from 

ZINC15 database 

and 33 known 

inhibitors with 

experi- mental 

activity 

BioDiversity, 30,000 

molecules 

Large database filtered to focus on a 

subset that eventually led to discovery 

of two taxane-site targeting cytotoxic 

agents 

Gallego-Yerga 2021 

[84] 
1SA0 

Protein-ligand 

interaction 

fingerprints (PLIF) 

implemented in 

MOE (Chemical 

Computing Group 

Inc.) 

No additional 

validation 

performed 

A subset of 100, 000 

compounds from 

ZINC15 database 

Virtual screening campaign yielded a 

novel cytotoxic agent disrupting 

tubulin polymerization by binding at 

colchicine site 

Elseginy 2022 [85] 

3E22, 3HKD, 3HKE, 

3HKC, 1Z2B, and 

1SA1 

Discovery Studio 2.5 

(Accelrys) 

40 literature-mined 

tubulin inhibitors 

targeting the 

colchicine site, 2000 

decoy molecules 

randomly selected 

from ChemDiv 

library 

ChemDiv library, 

700,000 molecules 

A virtual screening campaign 

discovered an in vitro potent cytotoxic 

hit targeting the colchicine binding 

site 

Table A5. Protein-Ligand Docking. 

Screening setup Results Reference 

Binding Site 
Binding Site  

Definition 

Docking 

Software 
Screened Set Hit No Hit Rate, % 

Best Compound’s 

Activity 
 

Virtual screening in succession to other computational methods 

Colchicine 

Extracted from 

1SA0 as a 10 Å-

wide cubic box 

around the center-

of-mass of the 

native ligand 

Glide SP 

25,146 virtual hits 

established by 

pharmacophore 

screening of CoCoCo 

database 

68 35% 

Inhibition of tubulin 

polymerization at IC50 of 

3 µM 

Mangiatordi 2017 

[18] 
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Colchicine 

Extracted from 

5H7O as 10 Å-wide 

cubic box around 

the center-of-mass 

of the native ligand 

Glide SP, Glide 

XP 

30,327 virtual hits of 

pharmacophore 

screening of SPECS 

library 

8 20% 

Anti-proliferative activity 

(IC50) against different 

cancer cell lines in range 

6.14–15.06 µM 

Guo 2020 [26] 

Colchicine 

Extracted from 

6F7C (exact settings 

not specified) 

MOE 

3135 virtual hits found 

by pharmacophore 

screening of SPECS 

library 

5 100% 

80% growth inhibition 

rate against five different 

cell lines 

Zhou 2019 [83] 

Taxane 

Extracted from 

1TVK as a grid box 

centered around 

the native ligand 

with each 

dimension a size of 

5.8 Å 

AutoDock 4.2 

645 virtual hits 

yielded by similarity 

search in PubChem 

1 20% 

Established hit got 

satisfactory predicted 

physiochemical 

properties; later work 

saw an analog compound 

synthesized and tested 

Ayoub 2013 [16] 

Taxane 

Extracted from 1JFF 

as a sphere 

containing the 

residues within 

11.5 Å from the 

ligand 

AutoDock Vina 
1309 virtual hits 

established by a 

pharmacophore 

screening of the 

BioDiversity database 

11 22% 

Anti-proliferative activity 

(IC50) against four cancer 

cell lines ranging from 

10.31 µM to 21.04 µM 

Zhang 2021 [32] 

Gold 

CDOCKER 

Colchicine 

Extracted from 

1SA1 as all residues 

around the ligand 

at a 6.5 Å distance 

SurFlex-Dock 

1739 virtual hits found 

by pharmacophore 

screening of the 

ChemDiv library 

1 1.78% 

Tubulin polymerization 

inhibition IC50 value of 

17.6 µM 

Nagarajan 2015 

[82] 

Colchicine 

Extracted from 

4O2A as a sphere of 

8Å radius around 

the native ligand 

GOLD 

Around 3000 virtual 

hits procured by 

ligand-based virtual 

screening of six 

chemical libraries 

3 43% 

IC50 of 83.61 µM in 

hepatotoxicity model 

Federico 2020 

[19] 
Three databases: 

Chembridge Diverset 

EXP, Chembridge 

Diverset CL, and 

ZINC natural 

products 

4 66% 

Colchicine 

Defined as a 20 Å-

wide grid box 

around the centroid 

of the native ligand 

from the 1SA0 

structure 

MOE, BUDE, 

AutoDock 4.2 

2746 virtual hits from 

a pharmacophore 

screening of a subset 

of ZINC15 library 

4 30% 
Tubulin polymerization 

inhibition IC50 = 6.1 µM 

Elseginy 2020 

[85] 

Taxane 

Extracted from 1JFF 

as a 23 Å-wide box 

around the native 

ligand 

AutoDock Vina 

1,601,806 compounds 

from the ChemDiv 

library 

1 5.8% 

IC50 value against four 

cancer cells in range from 

9.21 to 17.30 µM 

Mao 2022 [90] 

Colchicine 

Extracted from 

1SA0, 1SA1 (exact 

procedure not 

specified) 

Glide SP 
1159 compounds from 

an in-house library 
6 35% 

Tubulin polymerization 

inhibition at IC50 = 0.85 

µM 

Stefanski 2018 

[27] 

Virtual screening based on protein-ligand docking only 

Peloruside 

Extracted from 

4O4J as a cubic grid 

of 20 Å in size 

AutoDock 4.2 

2000 virtual hits 

established after 

docking a 6 million 

ZINC subset with 

AutoDock Vina 

3 48% 

Cell viability of HeLa 

cells decreased after 48 h 

by 60% at 100 µM 

Zuniga-Bustos 

2020 [91] 

Colchicine 

Extracted from 

4O2B as all 

residues closer than 

12 Å to the centroid 

of the native ligand 

Glide SP, GOLD 

40,000 virtual hits 

obtained by high-

throughput docking 

with Glide HTVS of 

IBScreen library 

2 13% 
Tubulin polymerization 

inhibition IC50 = 23.5 µM 
Liu 2022 [92] 
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Colchicine 

Extracted from 

4O2B as a cubic 

grid of 20 Å in size 

AutoDock 4.2 

212,449 compounds 

from the SPECS 

library 

2 5.5% 

Tubulin polymerization 

inhibition activity with 

IC50 value of 1.68 µM 

Liu 2019 [93] 

Binding mode assessment 

Colchicine 

Extracted from 

1SA0 as a 15 Å-

wide cubic grid box 

centered on root 

point of native 

ligand 

AutoDock 4.2 
An in-house library of 

48 Schiff bases 
1 – 

Tubulin polymerization 

inhibition activity with 

IC50 value of 0.16 µM 

Ameri 2018 [94] 

Colchicine 

Extracted from 

4O2B as a sphere of 

12 Å in diameter 

center on the native 

ligand 

CDOCKER 

A virtual hit from a 

ligand-based 

screening of the 

ChemDiv library 

1 – 
IC50 of 2.99 µM against 

CNE2 cancer cell line 
Guo 2019 [17] 

Colchicine 

Extracted from 

4O2B as a 30 Å-

wide cubic grid box 

centered on root 

point of native 

ligand 

AutoDock Vina 

A single compound 

from an in-house 

designed library of 

colchicine site 

targeting ligands 

1 – 

IC50 = 0.6 µM in an anti-

proliferative assay 

against the HeLa cancer 

cell line 

Riu 2022 [95] 

Colchicine 

Extracted from 

6Y6D as a 12 Å-

wide grid box 

around the native 

ligand 

Glide XP 

In-house library of 9-

arylimino 

noscapinoids 

3 – 

Anti-proliferative activity 

with IC50 of 10.8 µM 

against MCF-17 cancer 

cell line 

Patel 2021 [96] 

Colchicine 

Extracted from 

1SA0 as a 25 Å-

wide box around 

the native ligand 

AutoDock Vina 

An in-house library of 

combretastatin A4 

derivatives 

2 – 

Anti-proliferative activity 

with IC50 = 0.62 µM 

against HepG2 cancer cell 

line 

Mustafa 2017 [97] 

Taxane 

Extracted from 1JFF 

and 1TUB a 30 Å-

wide grid box 

around the native 

ligand 

AutoDock 4.2 

Only a paclitaxel 

molecule was docked 

into tubulin mutants 

1 – 

Docking was used to 

provide rationale for 

paclitaxel resistance in 

mutant cancer cells 

Tripathi 2016 [98] 

Taxane 

Extracted from 

1TVK, 5MF4, 5LXT, 

and 3J6G as all 

residues within 6Å 

distance from each 

native ligand 

GOLD 

FRED 

Only a lankacidin C 

molecule was docked 

into several 

conformations of 

taxane site 

1 – 

Ensemble docking was 

used to account for 

binding site flexibility 

and establish the binding 

mode of a recently 

discovered microtubules 

stabilizer targeting the 

taxane site 

Ayoub 2019 [99] 

Taxane 

Extracted from 1JFF 

as a grid rectangle 

with a size of x = 

30, y = 34, z = 26 

centered on the 

native ligand 

AutoDock 4 

A single hit with the 

best in vitro 

microtubule 

stabilizing properties 

1 – 

Binding to taxane 

suggested as a 

mechanism of action, 

promotion of tubulin 

polymerization by 76% at 

50 µM 

Chavez-Estrada 

2020 [100] 

Taxane 

Extracted from 1JFF 

as a 21 Å-wide grid 

box centered on the 

native ligand 

AutoDock 4 

Three compounds 

with the best in vitro 

anti-proliferative 

properties from a 

library of 32 marine 

natural and 

semisynthetic 

diterpenes 

3 – 

Interactions fingerprint 

analysis after docking 

prioritized the taxane site 

as the probable binding 

site for designed 

molecules with IC50 < 1 

µM against three cancer 

cell lines 

Forero 2021 [101] 

Colchicine 

Extracted from 

1SA0 as a 21 Å-

wide grid box 

centered on the 

native ligand 

Vinca 

Extracted from 

4ZOL following an 

unspecified 

protocol 

SurFlex-Dock 
A known vinca-site 

ligand 
1 – 

Docking was used to 

guide the rational design 

of novel derivatives of 

tubulysin, which led to 

synthesis and validation 

of a hit with pronounced 

Pandit 2021 [29] 
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anti-proliferative 

properties attributed to 

binding at the vinca-site 

(IC50 = 9.4 nM against 

HeLa cell line) 

Table A6. Details of implemented classical molecular dynamics protocols for the study of tubulin-

ligand complexes. 

Reference PDB Object of Study MD Engine Force field 
Water 

Model 
Time 

Zhang 2019 [103] 1Z2B Docking refinement of DVB-α,β-tubulin complex GROMACS 4.5  SPC 100 ns 

Majumdar 2019 

[125] 

3HKB 

3HKC 

Comparison of the apo α,β-tubulin dimer and α,β-

tubulin dimer bound to E7010 
NAMD 2.9 

Tubulin: 

CHARMM36 

Ligand: 

CGenFF 

TIP3P 120 ns 

Zhang 2021 [32] 1JFF Docking validation of ligand–tubulin complex for GROMACS 2019.1 

Tubulin: 

Amber99sb-ildn 

Ligand: 

ACPYPE 

SPC216 90 ns 

Kumbhar 2021 

[122] 
4O4J 

Docking validation of PLA in complex with α,β-

tubulin isotypes 
GROMACS 5.0 

Tubulin: 

ff99SB-ildn 

Ligand: 

GAFF 

TIP3P 100 ns 

Elhemely 2022 

[116] 
4O2B 

Docking of molecules at the colchicine site using an 

α,β-tubulin dimer. 

MD was used to study interactions and validate 

ligand persistence in binding site and SAR studies. 

AMBER 19 

Tubulin: 

ff14SB 

Ligand: 

antechamber 

GAFF2 

TIP3P 50 ns 

Dash 2022 [119] 1SA0 

Docking of molecules in the αβ-tubulin interface 

using a tubulin dimer. 

MD was used to study interactions, validate ligand 

persistence at the binding site, and calculate 

binding free energies. 

AMBER 16 

Tubulin: 

ff14SB 

Ligand: 

GAFF 

TIP3P 100 ns 

Hadizadeh 2022 

[111] 
4O2B 

Docking of molecules at the colchicine site. 

MD was used to study interactions and validate 

ligand persistence at the binding site. 

NAMD 2.12 

Tubulin: 

CHARMM27 

Ligand: 

provided by 

SwissParam 

TIP3 100 ns 

Mao 2022 [90] 1JFF 

Docking of molecules in the taxane site using a 

monomer of β-tubulin. 

MD was used to study interactions, validate ligand 

persistence at the binding site, and calculate 

binding free energies. 

GROMACS 2019.1 

Tubulin: 

Amber99sb-ildn 

Ligand: 

ACPYPE 

TIP3P 80 ns 

Neto 2022 [118] 4O2B 

Docking of chalcones in the colchicine site. 

MD was used to study interactions, validate ligand 

persistence at the binding site, and calculate 

binding free energies. 

Discovery Studio 

software 
 implicit 1000 ns 

Pragyandipta 2022 

[126] 
6Y6D 

Docking of molecules in the noscapinoids site. 

MD was used to study interactions, validate ligand 

persistence at the binding site, and calculate 

binding free energies. 

GROMACS 2019.2 

Tubulin: 

GROMOS96 

Ligand: 

ACPYPE 

TIP3P 100 ns 

Yang 2022 [127] 
1JFF 

4O4H 

Study of wangzaozin as a binder for the taxane and 

laulimalide sites. 
GROMACS 2019.1 

Tubulin: 

Amber99sb-ildn 

Ligand: 

ACPYPE 

TIP3P 90 ns 

Boichuk 2022 [108] 4O2B 

Assess the position of the ligand at the colchicine 

binding site and determine key amino acid 

interactions using the EAPC-67-tubulin complex. 

Desmond in 

Schrödinger suite 

2021-2 

 SPC 100 ns 

Basu 2022 [121] 1JFF 1TUB 
Comparison of apo α,β-tubulin dimer, bound to 

taxol, and bound to Taxotere. 
NAMD 2.11 

Tubulin: 

CHARMM36 

Ligand: 

CGenFF 

TIP3P 200 ns 
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El-Mernissi 2022 

[112] 
3E22 

3E22-colchicine in complex with tubulin and two 

selected tubulin compound complexes to examine 

protein-ligand interactions. 

Desmond Dynamics OPLS  50 ns 

Zhang 2022 [115] 1JFF 
Docking validation of hits bound to the 

taxane site 
GROMACS 2019.1 

Tubulin: 

Amber99sb-ildn 
SPC216 90 ns 

Zhao 2022 [115] 4O2B 
Docking validation of styrylquinoline tubulin 

inhibitors 
AMBER16 

Tubulin: 

Amber ff99SB 

Ligand: 

GAFF 

TIP3P 100 ns 

Radha 2022 [123] 6Y6D 
Docking validation of shikonin as a tubulin 

inhibitor 
GROMACS 2019.2 

Tubulin: 

Amber ff99SB 

Ligand: 

GAFF 

TIP3P 100 ns 

Rai 2022 [107]  
MD used for the analysis of the Interactions 

between eribulin and different tubulin isotypes 
AMBER 12 

Tubulin: 

Amber ff99SB 

Ligand: 

Antechamber tool 

implicit 60 ns 

Note: the majority of these simulations were performed at a temperature of ~300K, a pressure of 1 

bar, in Periodic Boundary Conditions (PBC) at a constant temperature and pressure (NPT 

ensemble). 
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