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Abstract

Following the widespread use of deep learning for genomics, deep gener-
ative modeling is also becoming a viable methodology for the broad field.
Deep generative models (DGMs) can learn the complex structure of ge-
nomic data and allow researchers to generate novel genomic instances that
retain the real characteristics of the original dataset. Aside from data gen-
eration, DGMs can also be used for dimensionality reduction by mapping
the data space to a latent space, as well as for prediction tasks via exploita-
tion of this learned mapping or supervised/semi-supervised DGM designs.
In this review, we briefly introduce generative modeling and two currently
prevailing architectures, we present conceptual applications along with no-
table examples in functional and evolutionary genomics, and we provide our
perspective on potential challenges and future directions.
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Hidden Markov
model: a Markov
model (stochastic
model for Markovian
systems, i.e., where
future states only
depend on the current
state) with observable
and unobservable
(hidden) states

Logistic regression:
a model where the
probability of an event
happening is linked to
a linear combination
of independent
observations via the
logit function

Supervised learning:
learning from labeled
datasets a mapping
from the data to their
label(s) (e.g.,
regression and
classification)

Unsupervised
learning: learning
from unlabeled
datasets, the data
structure, and relevant
patterns (e.g.,
clustering and
dimension reduction)

1. INTRODUCTION

Machine learning has a broad range of applications, from research to industry and commerce. In
the past few decades, rapid developments in the field have paved the way for breakthroughs in
natural language processing, image recognition, robotics, biology, and many other domains (1).
Generative modeling, as a subfield of machine learning, is similarly now widely researched and
applied thanks to recent algorithmic and computational advances (2). In the broader statistical
context, generative approaches model the statistical distribution of given data and can create new
data instances following this distribution. They model the joint probability P(X), where X is the
observable variable or data instances, or P(X,Y), if the data has labels Y. In some cases, generative
models are only able to sample from the model distribution without providing its explicit estima-
tion (3). On the other hand, discriminative approaches model the conditional probability P(Y|X),
where Y is the target variable; in other words, they try to find the decision boundaries for specific
labels in the data. Based on this terminology, a hidden Markov model (HMM) is generative, as it
models the joint distribution of hidden states and observations for a Markovian process, and new
data points can be sampled from the HMM distribution. In contrast, logistic regression is an ex-
ample of a discriminative model (Figure 1). A second and straightforward definition of generative
models would encompass any model that aims to generate partial or full data points (e.g., pixels in
an image or a full image). Finally, a third definition focuses on the training scheme rather than the
final task and includes any model for which the training loss function is based on the generation
of the whole or parts of the data (4). Generative models falling in at least one of these three cat-
egories can address many tasks, such as data generation, density estimation, modeling, denoising
and inpainting, compression, dimension reduction, and feature learning (5).

Genomics is the study of the geneticmaterial of an organism in terms of function, structure, and
evolution. Research in this field has revolutionized our understanding of cellular mechanisms and
evolutionary processes, which has not only increased our collective knowledge but also fostered
the discovery and development of novel drugs and treatments for diseases.Machine learning, and,
in particular, deep learning, has become fundamental in genomics thanks to its ability to utilize
big data and capture high-dimensional correlations and complex genomic structures (6–8). More
recently, deep generative models (DGMs) have also been gaining research attraction in the broad
genomics field, especially after the introduction of generative adversarial networks (GANs) (9).
While the most common goal of DGMs is data synthesis, they can also be used for dimensionality
reduction (and, relatedly, data characterization by visualization) or prediction. In this review, we

Discriminative Generative Conditional generative

Figure 1

Discriminative and generative models: Discriminative approaches model decision boundaries for classification or regression tasks
through supervised learning, whereas generative approaches model the data distribution, often through unsupervised learning. This
distribution, even if not learned explicitly, can be sampled to generate new data instances. Generative models can also be conditioned on
labels to generate data in a supervised manner. It is important to note that there is no strict dichotomy between these terms in practice;
they are only presented here for explanatory purposes. In recent years, the term “generative” has started to include models that are
generating data during training, regardless of their statistical modeling and final task (generative or discriminative).
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Deep learning: subset
of machine learning
involving neural
networks with multiple
layers that can learn
hierarchical
representations from
data

Neural network:
a computational
architecture of
connected nodes
inspired by how
biological neurons
work

Latent space:
a meaningful encoding
of data in a lower
dimensional space

Gradient: derivative
of a multivariate
function denoting the
direction of greatest
change at any point;
also called slope

Gradient descent: for
optimizing the neural
network weights, an
iterative algorithm for
finding a local
minimum of the
network loss function
by stepping in the
gradient’s opposite
direction

Earth mover’s (or
Wasserstein)
distance: a distance
measure between two
multidimensional
distributions, which is
the minimum cost of
turning one
distribution into
another

first provide a brief technical summary of DGMs, followed by an overview of recent applications
in genomics under three main utility themes: generation, dimension reduction, and prediction.

2. DEEP GENERATIVE MODELS

DGMs are a subset of generative models that use deep neural networks to approximate complex
probability distributions of usually large training datasets. Since GANs and variational autoen-
coders (VAEs) are two of the most common DGMs for applications in genomics, we briefly
introduce the fundamentals of both in this section.

2.1. Generative Adversarial Networks

GANs are part of the family of implicit density models, which do not estimate or approximate
the data distribution but instead provide a direct way to sample from it (3). Although there are
many variations, a GAN fundamentally consists of two neural networks: a generator (G) and a
discriminator (D) (Figure 2).G takes a noise vector (z) as input and generates a new sample G(z)
as output; in other words,Gmaps the data space to a latent space.The discriminator takes a sample
(x) as input and outputs a probability (or a score)D(x) to assess whether x is sampled from the real
dataset or generated byG.These two networks are trained in an adversarial manner:D is trained to
maximize the probability of assigning the correct label, whileG is trained to fool the discriminator
by minimizing the probability of D assigning the fake label to G(z). To put it another way, they
compete in a zero-sum game until an equilibrium is reached where D cannot determine whether
the output G(z) is real or not. In a more technical definition, the basic loss function that G tries
to minimize and D tries to maximize is as follows:

Ex[logD(x)] + Ez[log (1 −D(G(z)))],

where Ex is the expected value for all real data points and Ez is the expected value for generated
data points. As for other deep neural networks, the loss is optimized through gradient descent.
Aside from this loss function, proposed initially by Goodfellow et al. (9), many alterations and
variations have been introduced. One commonly employed loss function is the Wasserstein loss
used in the Wasserstein GAN (WGAN) model (10). In WGAN, instead of a discriminator, there
is a critic (C), which no longer assigns the probability of real or fake to the input, but rather a score
estimating the earth mover’s (or Wasserstein) distance between the training and generated data.
The new loss function, to be minimized by the generator G and maximized by the critic C, is as
follows:

Ex[C(x)] − Ez[C(G(z)],

whereC needs to be 1-Lipschitz continuous,which is achieved by clipping gradients (whichmeans
gradient values are clipped to a threshold before updating the weights during training) in the orig-
inal WGAN study (mathematical proofs can be found in the original paper). Better approaches to
achieve this constraint have since been proposed, such as using gradient penalty (GP), resulting in
yet another commonly used GAN alteration called WGAN-GP (11). Overall, WGAN seems to
be less prone to mode collapse (when samples are generated only for a subset of the data distribu-
tion), demonstrates less sensitivity to hyperparameter adjustments, and generally generates more
realistic samples than the naive GAN model (10, 11).

2.2. Variational Autoencoders

Similarly to GANs, there are many variations of VAEs, but a simple VAE is a deep neural net-
work with the same architectural basis as an autoencoder (AE), consisting of an encoder E and a
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Hyperparameters:
parameters that
control a learning
process and are not
learned by training;
they can be tuned
through
hyperparameter
optimization

a

b

Random
noise, z

Predicted property P(G(z))

Latent space adjustment

Generated data G(z)

Pretrained
predictor, P

Generator, G

Random noise, z

Real data, x

D(x) - classification (real or fake) or 
C(x) - regression (score)

Training based on loss functions
e.g., Ex[log D(x)] + Ez[log(1 − D(G(z)))]

Generated data, G(z)

Real distribution Generated distribution

In WGAN, C (critic) estimates the earth
mover's (Wasserstein) distance between
the two distributions

Discriminator, D
or critic, C

GANs can be
conditioned on

data labels

Label, y

Label, y

Pretrained
generator, G

Forward process
Backward process

Figure 2

(a) GANs consist of a generator G, which generates new data instances, and a discriminator D or a critic C, which assesses the realness
of the generated data. These two architectures are trained adversarially up to an equilibrium point where the discriminator cannot
identify whether the generated data are real or fake. GANs can also be conditional, allowing for novel data to be generated with
specified labels. (b) There are many modifications of the GAN concept to generate directed outputs similar to conditional GANs. One
type of application that generates genomic sequences with desired properties, such as higher protein binding, uses the pretrained
generator of a GAN model and a predictor that scores sequences for the desired property. The gradient of the score put out by the
predictor P(G(z)) with respect to the latent space z is calculated, and the latent space is adjusted based on the direction of this gradient,
which guides the generated sequences toward the desired property with each adjustment step (13). Abbreviations: GAN, generative
adversarial network; WGAN,Wasserstein GAN.

decoder D (Figure 3) (12). In a typical AE, E reduces the dimension of the input data x through a
succession of layers leading to an embedding vector in the so-called latent space.D then decodes
the embedding with the goal of reconstructing the input data as well as possible. Additionally, the
VAE’s goal is to ensure that the latent space is regular (organized in a desired way); consequently,
small variations in the latent space will yield small variations in the decoded outputs. This is a
valuable property for sampling meaningful embeddings directly from the latent space. For that,
E encodes x as a distribution (a so-called latent distribution), generally a Gaussian characterized
by its mean μx and standard deviation σ x. Then a vector z is sampled from this distribution and
decoded by D. The VAE loss function has two parts, a reconstruction loss between x and D(z)
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Kullback–Leibler
divergence:
a statistical
nonsymmetric distance
measuring how much
one probability
distribution differs
from another
probability
distribution

Regularization loss: KL[N(μ, σ), N(0, 1)]

Training data, x Reconstructed data, D(z)

Encoder, E Decoder, D

σ

μ
Sampling 

latent distribution

Latent space, z

Reconstruction loss: RL[x, D(z)]

μ

σ

Figure 3

The variational autoencoder (VAE) architecture has two components: an encoder E, which encodes the training data into a parametric
latent distribution, and a decoder D, which decodes a latent encoding z drawn from the latent distribution back to the original data
space. Unlike conventional AEs, VAE latent space is regulated toward a known distribution. Therefore, the loss function used for
training consists of a reconstruction term based on the difference between training and reconstructed data, and a regularization term
based on the difference between the latent distribution and a target distribution (e.g., the standard normal distribution). After training,
one can sample embeddings from the target distribution and decode them to generate novel data instances.

and a regularization term, which is an estimation of the distance between the latent and the prior
distribution—most commonly betweenN (μx, σx ) and the standard normal distributionN (0, 1):

RL(x,D(z)) + KL[N (μx, σx ) ||N (0, 1)],

where the first part is the reconstruction loss (such as cross-entropy for binary data or mean-
squared error for Gaussian data), which measures the likelihood of the reconstructed data, and
the second part is the Kullback–Leibler divergence, which measures the distance between two
distributions. The regularization term is critical, as it allows the convergence of the latent space
toward the standard normal distribution through training, which can then be used to sample new
data instances.

2.3. Network Architectures

DGM architectures, including VAEs and GANs, consist of different types of neural networks,
such as fully connected, convolutional and recurrent neural networks, or a combination of these
(Figure 4). This architectural choice depends on the nature of the data, the task, and the available
computational resources. Since in fully connected layers, all nodes in a given layer are connected to
all nodes in the next layer, training will become memory intensive with larger input sizes, yet fully
connected networks are adapted to the processing of data with an unknown structure. Initially
designed for image data, convolutional layers are particularly suited for capturing local shift-
invariant patterns that are then combined into features of higher complexity. In most cases, they
are less parameter heavy than fully connected layers, as they share weights along the input. They
have been widely applied in genomics (for an overview in functional genomics, see Reference 7,
and in population genetics, see Reference 14). Alternatively, recurrent layers, traditionally applied
in text and speech recognition, account for temporal or sequential dynamics and are thus pertinent
for experimental time series data or omic sequences [e.g., bidirectional recurrent layers for a DNA
sequence (15–17)]. Finally, graph neural networks are suited for non-Euclidian data with a graph
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Linkage
disequilibrium:
nonrandom
association of alleles at
different loci

Genome-wide
association study:
the analysis of
genotype–phenotype
associations by looking
at the allele
frequencies of
individuals with
different phenotypes,
correcting for
differences in ancestry

a b c

Figure 4

Types of neural networks. (a) In fully connected neural networks, each node in a given layer is connected to
each node in the subsequent layer. In the genomics context, this full connectivity is useful for capturing any
association in sequence data, whether it be short range, long range, or arbitrary correlation patterns. Yet,
using this architecture for long sequences is not feasible due to the drastic increase in parameters to be
learned with increase in input size. (b) Convolutional neural networks relay the information from one layer
to the next through filters (or kernels) sliding along the input. These filters can capture spatial patterns, such
as edges or shapes in image data. Deeper into the architecture (i.e., getting closer to the output), basic and
local patterns are combined into more complex and global features. For genomics applications, this might be
particularly advantageous for modeling local structures in genomic data, such as linkage disequilibrium
patterns or sequence motifs. (c) Recurrent neural networks process a sequence of inputs and produce a
sequence of outputs. They allow feedback connections where the information from the output of a previous
position is used by subsequent inputs. This type of memory keeping is specifically utilized for temporal and
sequential data types in which the inputs are not independent, such as DNA or RNA sequences.

structure. This makes them relevant for bioinformatics applications since biological networks,
such as molecular structures, gene ontologies, regulatory pathways, or other biological systems,
are ubiquitous in the field (18). Although discriminative neural networks have largely explored
these architecture types, the vast majority of current DGM applications in genomics consist of
fully connected and convolutional architectures.

3. THE GENERATION OF GENOMIC DATA

As the cost of sequencing continues to decrease and new technologies are developed, the amount
of genomic data increases immensely.With a cursory assessment, one might assume that the need
for simulation of novel DNA sequences is nominal in this era, yet generative approaches are imper-
ative for both functional and evolutionary genomics. For example, benchmarking data processing
pipelines and inference methods related to next- and third-generation sequencing depend on sim-
ulated sequence data (19–22). In evolutionary biology and population genetics, coalescent and
forward simulations of genetic variants among individuals have been fundamental for modeling
evolutionary histories and estimating parameters related to demography and natural selection (23).
Another approach for simulating genomic variants is the use of resampling methods, which mimic
the characteristics of real haplotypes, such as linkage disequilibrium (LD) patterns. They are ben-
eficial for simulating disease-associated variants and, consequently, for evaluating genome-wide
association study (GWAS) methods and their statistical power (24, 25).

Although these more traditional DNA generation methods are still fundamental and relevant,
they mostly require prior domain knowledge and simplified assumptions, and they fail to capture
the full complexity of real sequences in most cases, which in turn limits their application to certain
problems. Additionally, they either generate sequences that cannot be directly used along with real
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Overfitting: when a
model models a
particular dataset (such
as the training data)
too well and fails to
generalize

sequences (as real and generated data exist in different spaces) or fail to generate enough diversity
and overfit the real dataset (26). In this context,DGMs, as a new approach to sequence generation,
can provide interesting and exciting solutions.

3.1. Applications in Functional Genomics

One of the main objectives in synthetic biology and bioengineering is the design of functional
sequences with desired structures and properties, such as binding affinity or gene expression
levels—yet this typically requires extensive biological domain knowledge. The general approach
for the design of novel regulatory sequences, for instance, mainly relies on invoking random mu-
tagenesis or combinatorial approaches with known sequences prior to candidate selection through
predictive modeling and eventually in vivo analysis (27–30). However, even an excellent selection
model cannot counterbalance the difficulty of covering the vast sequence space via arbitrary and
undirected changes or a combination of known sequences. In recent years, several DGMs have
been proposed as potentially better alternatives for functional novel sequence design. Although
they have architectural differences, they all rely on (a) GAN-like models for capturing the main
structure of the target region and (b) a selective function for fine-tuning the desired properties.
In theory, the selective function can be any type of function that either selects suitable candidates
from the generated sequence pool or is integrated into themodel to adjust the generated sequences
toward desired properties during training. In one of the first applications of GAN models for the
generation of novel DNA,Killoran et al. (13) combined the generator of a pretrained GAN,which
creates realistic sequences,with a pretrained deep neural network predictor,which predicts the tar-
get characteristic for a given sequence (such as preferential binding to one specific protein). They
trained this combinedmodel by calculating the gradient of the output of the predictor with respect
to the input noise of the generator. Following the direction of this gradient, the input noise was
adjusted so that the outputs of the generator could converge to the desired properties (Figure 2).
Instead of replacing the discriminator, Gupta & Zou (31) included a third component, called the
analyzer, which can predict how desirable a sequence is (in terms of targeted antimicrobial proper-
ties, in this case). The original GAN and the analyzer were pretrained independently before being
linked through a feedback loop: At each epoch, the generated sequences scored by the analyzer as
most desirable were fed back to the discriminator as real examples, gradually replacing the training
set of real genes and guiding the sequence generation toward the target. Similar generative models
showed promising results for creating novel promoter regions, protein-binding motifs, protein-
coding sequences, sequences with antimicrobial properties, and even whole regulatory structures
(e.g., promoter, 5′ UTR, 3′ UTR, terminator) with desired expression levels (13, 30–34).

In a different application, a conditional GAN model was proposed to generate realistic single-
cell RNA sequencing (scRNA-seq) data for different cell types (35). Since the availability of
scRNA-seq data is limited due to costs and ethical reasons, it was suggested that the real data
augmented with the generated data could improve downstream analyses such as distinguishing
different cell populations.

3.2. Applications in Evolutionary Biology and Population Genetics

In population genetics and GWAS, biobanks with thousands of samples belonging to different
populations play a vital role for both evolutionary research and discovery of genetic variant–disease
associations. Although there are some publicly available databases for human genomic data, such
as the 1000 Genomes Project, the Human Genome Diversity Project, and the HapMap Project
(36–38), most of these data are not readily available to researchers. In addition, many populations
are heavily underrepresented in such studies (39, 40). The generation of novel genomic data with
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the same statistical properties as the real databases could increase data accessibility immensely
and accelerate research without breaching the privacy of biobank donors. In this context, GANs,
VAEs, and their derivatives have recently been suggested for generating realistic human genome
segments (26, 41–45). These models have learned not only the global population stratification
in real datasets but also complex underlying structures, such as LD patterns along the genome,
haplotype-based selection signals, and genomic local ancestry proportions; this indicates that they
might be used as reliable second-best alternatives for real genomes in the future (26, 41). Further-
more, they can be conditioned on extra variables, such as population labels, to generate targeted
genomes depending on the task (41, 42). Finally, it was shown that the generated genomes could
be good at preventing privacy leakage from genome donors in the training datasets, yet extensive
research in this regard is still needed for further confirmation and improvements before these
models can be applied in practical cases (26).

4. DIMENSIONALITY REDUCTION AND VISUALIZATION

Since omics data are often high dimensional, dimensionality reduction techniques have been im-
portant tools for initial screening and characterization of datasets in a wide range of omics studies.
These techniques are commonly used for investigating the spatial genetic variation and demo-
graphic history in evolutionary studies or for characterizing the differences among cell types (46,
47). Both linear methods, such as principal component analysis (PCA) (48, 49), and nonlinear
methods, such as t-distributed stochastic neighbor embedding (t-SNE) (50) or uniform manifold
approximation and projection (UMAP) (51), are used for projecting the high-dimensional data
space into a smaller feature space in the hope of capturing the global and local structures in a few
dimensions that can be easily visualized. Dimensionality reduction methods can also be helpful
for further downstream analyses, as they reduce data size and complexity. Moreover, they can be
applied to many data types without prior knowledge. However, the above techniques have certain
drawbacks. PCA cannot capture nonlinear relations and is sensitive to outliers, such as rare genetic
variations, causing principal component axes to separate based on the rare variations rather than
real clusters (52). t-SNE and UMAP can capture nonlinear relationships and the underlying local
data structure with adequate cluster separation, yet the distances between clusters obtained with
these methods might not be meaningful—in other words, relative distances between clusters in
the projection space might not correspond to the intrinsic differences between real data clusters
(53).

In more recent years, deep neural networks, such as AEs (which are not generative models) and
VAEs, have gained research interest for learning the compressed embeddings of genomic data and
integration of multiomics data (54–60).These dimensionality reduction techniques can be applied
to various data types, such as gene expression or SNP (single-nucleotide polymorphism) data.
Since the VAE loss function consists of not only the reconstruction loss but also the regularization
of the latent space, the relative positions in the embeddings are expected to be more meaningful,
with a better representation of global data structure.

4.1. Applications in Functional Genomics

DGM-based dimensionality reduction was applied to transcriptomic data for probabilistic mod-
eling of gene expression, at both tissue (RNA sequencing) and single-cell (scRNA-seq) resolution
(61–68). The latent space learned by VAE and GAN derivatives enables clustering and the classifi-
cation of different cell types, through either 2D and 3D projections of the embeddings or further
downstream analyses. One approach commonly undertaken for clustering is to perform t-SNE
on the latent space. Alternatively, the architecture of DGMs is sometimes modified to enhance
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interpretability, for example, by encouraging a correspondence between cell and gene embed-
dings (56) or by using gene annotations to guide the network connections (59). In both cases, the
alterations have helped link input expression profiles and functionality.

Moving away from transcriptomics, in a noteworthy application to chromatin accessibility,
Kshirsagar et al. (69) trained a Dirichlet VAE to learn latent representations of DNA k-mers. Be-
cause the network targeted a Dirichlet latent distribution instead of a traditional Gaussian, each
open chromatin region could be represented by its membership to multiple topics (corresponding
to the latent dimensions). Topics were represented as a multinomial distribution over k-mers and
learned different binding patterns. A post hoc interpretation procedure mapped transcription fac-
tors to the VAE latent dimensions, which in turn helped to interpret the regulatory information
available in chromatin accessibility peaks.

Another interesting aspect of DGM architectures is that they can be used for integratingmulti-
ple data types. In one study, Simidjievski et al. (57) investigated different VAEmodels trained with
multiomics and clinical data and demonstrated that the latent representations learned by these
integrated VAE models could be exploited to predict cancer-related parameters such as cancer
subtypes and disease relapse. Similarly, VAE models have been used to integrate multiomics data
for studying drug–omics associations via in silico perturbations (70).

4.2. Applications in Evolutionary Biology and Population Genetics

VAE and AEmodels can also capture the fine population structure present in SNP data and under-
line the global structure better than other dimensionality reduction methods (54, 55, 71). These
studies trained convolutional and fully connected models on SNP data belonging to real samples
from multiple populations or simulated samples with known demographic histories. Similar to
principal components in PCA, embeddings of the latent space in these models seem to represent
the genetic differentiation between genomes. This representative information is valuable for pop-
ulation genetics studies, as the differentiation is shaped by the species migration history (such as
waves of humanmigration within Africa and out of Africa toward Eurasia,Oceania, and the Amer-
icas) and numerous subsequent admixture events between populations. Although not belonging
to a deep architecture, the components of a restricted Boltzmann machine hidden layer have also
been shown to capture fine-scale human population structure (26).

5. PREDICTION

The main utility of generative models is in learning the data distribution in an unsupervised man-
ner; hence their use for direct predictive modeling is limited. However, in a supervised setting,
they can learn conditionally on a label, P(X|Y). This differs from learning directly what in the
data is informative of the label, P(Y|X), but it can still be used to perform predictions. For exam-
ple, in a Naive Bayes classifier, the membership of a new point is assessed based on the learned
distributions within each class. This section briefly discusses some notable predictive applications
that rely on generative models in genomics-related studies.

5.1. Applications in Functional Genomics

First, it is noteworthy that predictive tasks can exploit unsupervised dimensionality reduction
methods. Indeed, they yield meaningful data representations encompassing information relevant
to target variables contributing to the data structure, even though the encoding has not been op-
timized for these targets (as illustrated in Reference 57, where multiomic encodings were used
for cancer-related predictions). Any downstream predictive approach could benefit from these

www.annualreviews.org • Deep Generative Models in Genomics 181

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
23

.6
:1

73
-1

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

17
6.

17
5.

43
.4

4 
on

 1
0/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



compact representations, particularly those sensitive to input size. Some DGM dimensionality
reduction methods have been used, through latent space vector arithmetic or alterations to classi-
cal VAE structure, to predict the cellular response (in terms of gene expression) to perturbations
such as infection, treatment, or knockout of genes (72, 73). Vector arithmetic applied on latent
representations can produce meaningful outputs for manipulating semantic properties underly-
ing image data (illustrated by the famous [“man with glasses” − “man” + “woman”] operation in
the latent space leading to a latent vector corresponding to an image of a “woman with glasses”)
(74). Similarly, vectors obtained by subtracting latent representations of gene expression profiles
of different cell types have been shown to correspond to biologically meaningful differences and
applied to simulate the impact of epidermal cell differentiation, interferon stimulation, Salmonella
infection, cancer therapeutics, and other drug treatments (68, 72, 73). In a different application,
vector arithmetics were used to interpolate between the latent vectors of healthy and Alzheimer’s
disease expression profiles generated by a GAN model (75). The interpolation was used to ob-
tain transition curves for multiple genes demonstrating changes from healthy to disease types.
This type of approach could present novel ways for inferring pathological cascades and disease
progressions that would not be possible with conventional bioinformatics methodology.

5.2. Applications in Evolutionary Biology and Population Genetics

At the crossroads of functional studies and population genetics,DGMswere used to predict disease
outcomes or identify risk variants in a context of insufficient data labeling. In one study, Davi &
Braga-Neto (76) modified the GAN model with a discriminator that classifies not only between
real and fake data but also between two phenotypes (severe or normal dengue fever). The model
was trained in a semi-supervised setting on phenotype-labeled and unlabeled SNP data, and the
discriminator served as a phenotype predictor after training. In another study, Frazer et al. (77)
modeled the variation among amino acid sequences across multiple species using a VAE, which in
return allowed them to assess sequence fitness and consequently predict possible disease variants.
Although this model targeted amino acid sequences, a similar framework could be adapted to
genomic data.

As a different application in population genetics, a study used a GAN-like model to infer de-
mographic parameters from SNP data (78). Instead of a neural network, a coalescent simulator,
msprime (79), was integrated as a nondifferentiable generator taking evolutionary parameters as
input to generate SNP data for a pool of individuals. The discriminator indirectly assessed the
plausibility of the parameters by assessing the realism of the generated data. Because of its non-
differentiability, the generator was trained using simulated annealing instead of backpropagation.
Eventually, the properties of its simulations converged toward the properties of the real data, and
its parameters toward the putative real evolutionary parameters.

5.3. Applications in Data Processing

DGMs have been investigated in a few studies to improve variant calling, which is the process
of identifying variants from sequencing data. A recent study utilized a GAN to boost the perfor-
mance of genome variant calling on low-depth data (80). In particular, generative and adversarial
training was used to convert low-depth data (an image computed from the aligned reads and their
quality measurements) to a high-depth equivalent. The variant calling algorithm was then applied
to pairs of low-depth original and high-depth generated images. Additionally, for improving vari-
ant calling, DeepConsensus (81) implements a gap-aware, encoder-only transformer applied to
multiple sequence alignment (MSA) windows in order to generate the consensus sequence. No-
tably, both studies used not only the nucleotide sequences but also auxiliary information such as
read quality or base caller features (e.g., pulse width).
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Differential privacy:
a definition of privacy
where a dataset can be
statistically analyzed
while each of its
individuals is protected

Federated learning:
a machine learning
approach for training
algorithms over
multiple servers
without data exchange

Secondly,DGMs can be used for data imputation, which is simply a partial generation of a data
subset that is missing Xmissing conditional on the subset that is known Xknown. Autoencoders, and
specifically denoising autoencoders, are well suited for imputation tasks and have been applied
to genomics (82–84). In a similar spirit, in one recent study, a VAE was implemented to perform
transcriptome and methylation imputation (85). The authors used an iterative process that first
randomly filled Xmissing and then iteratively encoded and reconstructed X. At each iteration until
convergence, it updatedXmissing with the reconstructed values. The variational setting allowed the
latent distribution to be amended by integrating a shift correction, which is useful when a gap
exists between the training dataset and the target data (e.g., due to data not missing at random).

Finally, language models (LMs) processing DNA data have very recently emerged and their
training integrates a concept close to imputation. An LM models a language domain as a proba-
bility distribution over sequences of words. It can be learned with the help of machine learning,
and recent LMs have leveraged deep neural networks. In particular, two frameworks named BERT
(bidirectional encoder representations from transformers) (86) and GPT (generative pretrained
transformer) (87) have revolutionized the natural language processing (NLP) field by providing
expressive pretrained LMs. Although computationally intensive to train in the first place, they
could conveniently be further fine-tuned for specific tasks (such as question answering, transla-
tion, or text classification). Shortly after its introduction, multiple DNA LMs inspired by BERT
were proposed (88–93). Their common idea is the use of masked LMs, in which a portion of the
input k-mer or nucleotide tokens is randomly masked and the model is trained to solve the pre-
text task of predicting those masked tokens (similar to denoising autoencoders). Thanks to this
self-supervised pretraining, the model learned the underlying DNA language without requiring
annotated data. In genomics, these pretrained models can then be fine-tuned for any downstream
task such as predicting promoters, transcription factor binding sites, and splice sites or inferring
disease mechanisms and genotype–phenotype associations.

6. CONCLUSIONS

With the advent of novel algorithms and increased computational capacities, deep generativemod-
eling is now finding its way into broad genomics research. The ability to model complex data
distributions without any prior knowledge required makes these models ideal for various applica-
tions with omics and medical data. An important opportunity for DGMs lies in the field of data
privacy. Human genomic data are inherently very sensitive, as they encapsulate partial informa-
tion on phenotypic traits, disease susceptibility, and ancestry (94, 95). Moreover, genomic data
constitute a unique identifier that, if leaked, cannot be replaced. Access to human genomic data is
often restricted as a result. Several privacy-preserving methods have been proposed to overcome
this issue, such as encryption (96, 97), differential privacy (98), federated learning (99, 100), or a
combination of those (101). In differential privacy, some amount of noise is added to the data in-
put or the predicted output for anonymization, whereas in federated learning, algorithm training
is performed without direct access to the raw data. Data synthesis via DGMs can be an alterna-
tive to these approaches that has certain advantages, such as unrestricted analysis, unlike federated
learning, and potentially less distorted data compared to differential privacy (since differential pri-
vacy essentially presents a trade-off between capturing the intrinsic characteristics of the data and
privacy preservation), yet extensive comparative research in this regard is still lacking. These ap-
proaches are not necessarily mutually exclusive. For instance, differential privacy can be integrated
into GAN training by adding carefully adjusted noise to the gradients to reduce privacy leakage
from the training data (102). It is important to mention here that donor privacy is only one aspect
of the ethics of genomic and medical research. Even if privacy guarantees are provided, studies
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Transfer learning:
the utilization of the
knowledge learned
while solving a task
(e.g., a pretrained
network) to address a
separate but related
problem

exploiting privacy-preserving methods might still need to respect the ethical regulations designed
by the original data holders/donors. In this regard, further ethical and philosophical discussion
could provide useful insights especially considering the relatively novel status of DGMs.

Another potentially transformational aspect of DGMs is functional sequence design. As pre-
sented in Section 3.1, GAN-based models have been extensively used in recent years to generate
novel sequences with desired properties and have yielded more diverse and better outcomes than
more conventional sequence design methodologies. The design of highly specific biological DNA
and protein sequences is one of the holy grails of synthetic biology, as it could advance drug discov-
ery, precision medicine, and biomanufacturing significantly. In this context, DGMs are becoming
critical tools by providing a substantial shift in the methodological approach to this problem.

There is also potential for advanced generative models to be employed in genomic data sim-
ulations. DGMs can both produce realistic data with minimal privacy leakage and be altered for
directed generation with desired characteristics. In addition, learned characteristics from a dataset
via a model could be transferred to another dataset (style transfer), as suggested by Booker et al.
(45). All these factors make DGMs suitable for the generation of adjustable simulated data with
known ground-truth parameters, which is essential for the development of new bionformatics
methods. Furthermore, the same factors also allow DGM-generated sequence data to be used for
data augmentation, especially considering that certain genomic data types are not easily accessi-
ble (due to biobank restrictions) or obtainable (due to ethical issues or costs related to sampling)
(26, 35).

From awider perspective, a major advantage ofDGMs is their unsupervised or semi-supervised
training, making them especially suitable for genomic data, which are abundant quantitatively but
in most cases lack adequate labels (such as phenotype information or annotations). Capitalizing
on extensive unlabeled or mixed datasets has been key in recent progress in computer vision and
NLP research (4) and should likewise allow for modeling of complex structures and interactions
present in different genomic data types. In particular, LMs can capture this underlying complex-
ity using large unlabeled sequence databases and be fine-tuned on smaller annotated datasets for
various downstream analyses, such as regulatory sequence prediction, in a manner similar to trans-
fer learning. An additional important characteristic of most DGMs is the mapping of data space
to latent space. Through directed manipulation or interpolation of the latent space vectors, se-
quences with novel characteristics can be obtained. This unique aspect allows DGMs to be used
for sequence design and for providing innovative ways of understanding the genetic foundations
of various diseases and drug responses.

DGMs are being utilized for various genomics applications, such as the characterization of
population structure, cell clustering, phenotype and disease variant prediction, evolutionary pa-
rameter estimation, and imputation, as described in this review. Despite their promising results,
DGMs suffer from general pitfalls hampering deep learning (103), as well as other specific issues
that remain to be addressed for their broader use in genomics. One obstacle is the computa-
tional limitations associated with whole-genome generation. Even with the help of high-capacity
GPUs (graphics processing units) and adjusted architectural designs, training models with large
sequences of millions of base pairs is impractical with current approaches. In addition,GANmod-
els are especially difficult to train due to the adversarial nature of the training and hard-to-reach
equilibrium points. Although several improvements have been proposed (10, 11, 104), training on
large data instances, in particular, is still problematic given the long training times and high depen-
dency on hyperparameter tuning (105, 106). Another general issue with DGMs is the black-box
nature of most models. Interpretability of learned features is widely researched for deep neural
networks (5, 107, 108). Although a few studies tackle interpretability for DGMs, research in a
biological context is still limited (56, 109).

184 Yelmen • Jay

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
23

.6
:1

73
-1

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

17
6.

17
5.

43
.4

4 
on

 1
0/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



Despite these points that remain to be further researched, it has already been demonstrated
that deep generative modeling in genomics is a robust and efficient methodology. This might be
seen as the initial step toward a broad new field, artificial genomics, which can be defined as the
use of artificial intelligence for in silico genomic data generation. Unlike traditional rule-based
approaches or domain-specific simulators, artificial genomics can allow researchers to capture
high-degree complexities in genomic data in order to design novel sequences with no or little
prior knowledge.
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Errata

An online log of corrections to Annual Review of Biomedical Data Science articles may be
found at http://www.annualreviews.org/errata/biodatasci
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