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Semantics extracted by filters in deep learning networks correlate well with how human eyes perceive distortions. These methods (e.g., LPIPS, PieAPP, etc.) rely on the relative difference in activation between feature maps in pairs of references and distorted patches. However, Deep Feature extraction can be expensive to compute as a difference of latent code between reference and distorted frames. Therefore, it is challenging to integrate them into the decision process of modern video codecs like AV1, making thousands of encoding trials during exhaustive Rate-Distortion Optimization (RDO) searches. In this study, we present a method using deep features to predict the distortion perceived locally by human eyes in AV1-encoded videos. The prediction relies on Deep Features extracted from the reference frame only to weigh the Mean Squared Error (MSE) introduced during encoding. This approach will make integration into video codecs easier as a pre-processing step before starting encoding. We show the superiority of the proposed metric against other Reference-Only metrics on a dataset of local distortions in videos. We achieve comparable performance as state-of-the-art Full-Reference video quality metrics.

I. INTRODUCTION

A part of research in Computer Vision has focused on building Neural Networks to classify, locate, and track object instances. These networks with complex architectures rely successively on extracted, aggregated, and curated features. Traditional operations used for this process are convolutions, pooling, non-linear layers, and attention mechanisms. The outcomes of applying these operations are feature maps that can be classified into different categories. Low-level features, the first features extracted from pixels, are simple edge and texture detection filters. With the succession of layers and operations, features are spatially grouped into larger and larger regions to produce features more semantically representative of class concepts. These semantics are the final characteristics used to classify or detect objects.

Recent works [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF]- [START_REF] Ding | Image quality assessment: Unifying structure and texture similarity[END_REF] have shown that these Deep Features better correlate with how our eyes perceive distortions than existing image quality metrics. These metrics were benchmarked on various distortion types in static patches. In Image Quality Assessment, objective quality metrics, like PSNR and SSIM [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], rely only on pixel statistics and differences. These metrics are computationally efficient but have no semantic information to make decisions, resulting in lower performances. However, due to their simplicity and computational efficiency, these metrics have been favored to integrate into video codecs to tune and improve video encoding quality.

WPSNR [START_REF] Erfurt | A study of the perceptually weighted peak signal-tonoise ratio (wpsnr) for image compression[END_REF] and improved version XPSNR [START_REF] Helmrich | Xpsnr: A low-complexity extension of the perceptually weighted peak signal-to-noise ratio for high-resolution video quality assessment[END_REF] are blockbased perceptually weighted PSNR metrics. Weights are derived from efficient spatial and temporal filtering in a reference frame to capture the Human Visual System (HVS) sensitivity to local distortions. These methods are computationally inexpensive to run and serve, for example, in HEVC and VVC video codecs, to perform subjectively optimized bit allocation.

Video Encoding research involves working on the triparadigm of compressing video data while maintaining acceptable visual quality and reasonable computation cost: crucial points for cloud encoding computation management, efficient storage, and transmission of videos to diverse client platforms.

To tune video quality locally in video coding algorithms like AV1, the optimizer selects at the Coding Unit (CU) level between different coded proposals of a reference block while accounting for the cost (i.e., bit rate) and the distortion introduced by signal compression. The distortion is estimated using the Sum of Squared Error (SSE) or equivalent in the transform domain (i.e., SATD). This fidelity paradigm guides the encoding between a reference block and its coded version. In tune=WPSNR mode of HEVC, the SSEs are weighted by the factors derived from WPSNR. Similarly, in AV1, tune=ssim flag enables a weighting of SSEs with factors proportional to reference blocks pixels variance.

The work in [START_REF] Pastor | On the accuracy of open video quality metrics for local decision in av1 video codec[END_REF] proposes a benchmark of image and video quality metrics on small video tubes. These tubes were subjectively annotated with how humans perceived the distortion introduced by AV1 encoding. This work demonstrates how video quality metric VMAF [START_REF]Vmaf v0.6.1 model[END_REF], trained initially to predict video quality at a global scale, still performs relatively well on this dataset of tubes with small spatio-temporal horizons.

In this research work, we present a new metric to improve on WPSNR and XPSNR. Our metric derives weights to scale MSE distortions values, using information extracted by Neural Network to consider content semantics in predicting HVS local perception of distortions.

The following sections present, in section II, the dataset and what we call tubes for local distortions evaluation in videos. In section III, we explain how we extract features and the pooling techniques we consider to represent information extracted by Neural Networks efficiently. In section IV, we show the performances of our metric and compare it to other state-of-the-art video quality metrics. Lastly, section V concludes the paper.

II. SUBJECTIVE DATASET

This section introduces our subjective dataset. From the reference sources (SRCs) of the VideoSet database [START_REF] Wang | VideoSet: A large-scale compressed video quality dataset based on JND measurement[END_REF], we extract tubes. A tube is a short video sequence of size 64 × 64 pixels and lasts 400ms, 12 frames at 30fps.

Motivations behind these tubes dimensions are the following. Human perception and gaze mechanisms inspire our spatio-temporal design choices. We incorporate how our eyes perform fixations to explore scenes and objects. These fixation events can last between a hundred and a few hundred milliseconds, hence the duration of our tubes. For the spatial resolution, we utilize the size of the fovea, which covers around 1°at the center of our field of view, translating to 60 pixels under standard viewing distance. Our tubes are aligned on the motion in the video to mimic our eyes' Smooth Pursuit on moving objects.

Before extracting the tubes, we encode all SRCs of the VideoSet database using AV1 encoder at fixed Quantization Parameter (QP) values, using -cq-level flag in libaom 1 . We generate 31 Processed Video Sequences (PVS) for each SRC using QP 3 to 63 with a step of 2.

We define a tube-content as a set (T ube ref , T ube D1 , ..., T ube Dn ): with a first tube extracted in the SRC, T ube ref , and N distorted version of it extracted from PVS. In the current dataset, N equals 5. Check Fig. 1 for tube-contents examples.

We define a Perceptual Difference curve (PD-curve) as the relation in a tube-content between its subjectively estimated perceived distortions (PD-scores) and the Mean Squared Error in Luma channel M SE Y between the T ube ref and its corresponding T ube Di . In fig. 2, we provide as an example the 54 PD-curves contained in the test set, 20% of the dataset size. The total dataset subjectively annotated contains 268 PDcurves.

The tube-contents in our subjective dataset are selected out of 100K following the clustering approach suggested in [START_REF] Pastor | On the accuracy of open video quality metrics for local decision in av1 video codec[END_REF] for content selection. This clustering approach relies on the responses of various Full-Reference quality metrics on the degraded tubes.

The subjective data is collected in crowdsourcing by recruiting 1130 participants on Prolific2 . Each participant is asked to perform 40 quadruplets comparisons, which took 6 minutes to complete on average. Subjective evaluations were made using a quadruplet preference-based scenario. For subjective quality assessment of image/video, it has been shown that Two-Alternative Forced Choice (2AFC) methods are more precise and sensitive than direct rating methods while reducing the cognitive load of participants. In our work, we used the Maximum Likelihood Difference Scaling (MLDS) [START_REF] Knoblauch | Mlds: Maximum likelihood difference scaling in r[END_REF] method. It efficiently selects stimuli to compare in a subjective study. In [START_REF] Pastor | Improving maximum likelihood difference scaling method to measure inter content scale[END_REF], a solution 3 is proposed to improve MLDS to select quadruplets for inter-content scaling efficiently. Intercontent scaling enables human observers to compare and rate the relative distortions introduced by codec across regions in a video frame [START_REF] Pastor | Perception of video quality at a local spatio-temporal horizon: Research proposal[END_REF]. The method has been compared with tripletbased and pairwise comparison subjective methodologies in [START_REF] Pastor | Perceptual annotation of local distortions in videos: Tools and datasets[END_REF] and validated for a crowdsourcing scenario in [START_REF] Pastor | Recovering quality scores in noisy pairwise subjective experiments using negative loglikelihood[END_REF] where noisy annotations from outliers/spammers need to be handled.

III. PROPOSED MODEL

This section details our model and how we extract Deep Features from popular Neural Networks (NN) architectures.

A. Feature extractors

We evaluate AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], ResNet18-152 [START_REF] He | Deep residual learning for image recognition[END_REF], EfficientNetB0-2 [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], SqueezeNet [START_REF] Iandola | Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size[END_REF], Shuf-fleNetV2 [START_REF] Ma | Shufflenet v2: Practical guidelines for efficient cnn architecture design[END_REF] and MobileNetV3 [START_REF] Howard | Searching for mobilenetv3[END_REF] architectures. We include AlextNet, VGG16, and ResNet networks since they are popular choices for feature extraction and fine-tuning of quality assessment models [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF]- [START_REF] Ding | Image quality assessment: Unifying structure and texture similarity[END_REF], [START_REF] Bosse | Deep neural networks for no-reference and full-reference image quality assessment[END_REF]. We choose SqueezeNet, ShuffleNetV2, and MobileNetV3 architectures, designed to be highly efficient and lightweight for mobile inference use cases. We pick the three most lightweight versions of EfficientNet for their fast inference speeds while having high classification performances. We fix the weights to their pre-trained versions on the ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] classification task.

Additionally, we remove the last activation layer and keep the remaining intermediate layers as feature extractors. We use the five conv layers for AlexNet and VGG16. In SqueezeNet, the first conv and the 6 fire modules. For ResNets, the first conv1 and the 4 conv2 x-conv5 x modules. For EfficientNet networks, the first ConvNormActivation and the 7 MBConv modules. In ShuffleNet, the first conv and the 11 Inverte-dResidual modules. In MobileNetV3, the first conv and the 3 stage modules.

B. Features extraction and pooling from a reference tube

From a reference tube, a (12, 3, 64, 64)-tensor, we extract the feature maps from the K selected modules in the feature extractor, K (12, C k , H i , W i )-tensors. C i is the number of filters in module i. (H i , W i ) are the feature map height and width.

After this operation, the feature maps are first averaged on the two spatial dimensions: we obtain K (12, C i )-tensors. Then, to pool temporal activation, we apply two methods: a temporal mean averaging to get K (1, C i )-tensors and a temporal variance pooling: another K (1, C i )-tensors.

In summary, after flatting empty dimensions, a reference tube is represented by 2 (C)-tensors, where C is the sum of the K C i . In the AlexNet context, C is equal to 1152. These two tensors, M eanSem and V arSem, represent the semantics in a tube from low textural information to high-level semantics and its temporal variation, respectively. 

C. Dimensionality reduction

To cope with the high dimensional space of the latent representation obtained per reference tube, we use Principal Components Analysis (PCA) to reduce the latent space size. We apply PCA separately on M eanSem and V arSem to easily track their contributions during training. The PCA projections are learned from our database of tubes. This database contains around 100K tube contents. This dataset is populated with tubes extracted from the large set of videos we encoded with libaom; see section II for more details.

D. Model Training and feature selection

Popular video quality metrics like VMAF [START_REF]Vmaf v0.6.1 model[END_REF] operate simple Machine Learning techniques to learn good aggregation of atoms features. We used a Support Vector Machine Regressor (SVR) to learn from the top K Principal Components (PC) of PCA projections.

We consider three variants to train the SVR model with our PD-curves: namely raw, lin, and exp. For the raw configuration, we train an SVR to predict the raw subjective Perceptual Difference estimated between a reference and distorted tube. The model inputs are the PCA projected features extracted from the reference tube and the Mean Squared Error in the Luma Channel with the distorted tube. The model is responsible for learning the complete relationship inside a PDcurve in this configuration.

In the lin configuration, first, we extracted on each PDcurve of the dataset their best linear fitting slope. In figure 3, examples of slopes and fitted linear functions are provided in orange. The fitting function is:

P D ′ score = A × M SE Y (1) 
The SVR model inputs in this training configuration are only the projected features from PCAs. The model outputs a linear slope, a weighting factor to transform M SE Y values to perceptual scores.

In the exp configuration, a two parameters exponential fitting is applied on the PD-curves, in figure 3 (green). The exponential function is:

P D ′ score = A × (e B×M SE Y -1) (2) 
Similarly to lin configuration, the inputs are only the projected features from PCA. Two SVR models are employed We conducted the Grid Search on the dataset train set with a 25-fold cross-validation. We reported performances on the test set only. The best-performing set of hyper-parameters for each learning configuration is reported in table I. For example, the best combination of attributes for the lin configuration is based on features extracted from RestNet101 backbone, using the six Principal Components of M eanSem features vector and the two Principal Components of V arSem.

IV. RESULTS

In this section, we present the results. We consider metrics performances in terms of Pearson correlation coefficient (PLCC), Spearman correlation (SRCC), Kendall tau correlation (KRCC), and Root Mean Squared Error (RMSE). To report existing objective metrics performances, we fit a 4parameter cubic polynomial to map the objective scores to the subjective scores. This fitting affects PLCC and RMSE scores and allows to compensate for range gaps and nonlinear relationships. To be fair to trained and retrained metrics, fitting coefficients are optimized on the train set and reported on the test set.

First, we evaluate the performances of Full-Reference image and video quality metrics in table II. These traditional quality metrics extract statistics from both reference and distorted frames. Moreover, these statistics contain no semantic information. We can see that VMAF and DLM have the highest correlation with the subjective scores. With VMAF retrained on our dataset, the performances are improving as the best performances overall.

Second, we evaluated the performances of Deep Learning Full-Reference Image Quality Assessment metrics. These metrics perform better than PSNR, SSIM, or VIF but remain lower than VMAF and DLM. Retraining of LPIPS and DISTS on our dataset was unsuccessful due to its limited training data and large sets of weights in these metrics.

Third, we explored the performances of Reference-Only metrics. We can see that their performances are lower than VMAF and DLM but on par with other IQA/VQA metrics and Deep learning Full-Reference quality metrics. We also included results of the metric performing bit allocation in libaom available under the tune=ssim flag. This metric is not the exact implementation of SSIM. This version only uses the pixel variance intra-block block var in reference frames to derive scaling factors for computed MSE distortions between reference and coded blocks. The equation of this blockvariance scaling is the following: ssim var = 67.0354 × (1 -e -0.00214×blockvar ) + 17.4922 (3) Finally, our models achieve the second-best overall performances for SRCC and KRCC indicators after the VMAF retrained version. Regarding PLCC and RMSE, performances are similar to VMAF and DLM but significantly improve over WPSNR, XPSNSR, and tune=ssim. Our model fpr lin and exp training configurations outperforms raw training configuration, hinting at the gain brought by added prior knowledge of the shape of the PD-curve.

V. CONCLUSION

This work presents a new model to predict the perception of local distortions over tubes. The model relies on Deep Learning features extracted only from reference frames. We pool these features spatially and temporally to represent the semantic information along reference tubes. With PCA projections to better represent essential features, we reduced the complexity of this semantic latent space and eased the training while avoiding overfitting. Relying on the prediction of PDcurves slopes also improved performances.

The proposed method outperforms other methods based on reference frame-only pixel statistics. These metrics are still the primarily used objective metrics for optimizing video encoding algorithms. Our method could improve bit allocation strategies by replacing these metrics in future research work.

Compared to Full-Reference metrics, the proposed methods outperform existing Deep Learning Image quality metrics by efficiently learning from limited data. Evaluating the metric on high-resolution video remains a subject for future research.

Fig. 1 .

 1 Fig.1. Example of tube-contents in the subjectively evaluated dataset. Each column represents a tube-content and its five distortion levels in increasing order from the top with the reference tubes to the bottom with the most distorted levels.

Fig. 2 .

 2 Fig. 2. The 54 PD-curves contained in the test set of the dataset. On the X-axis are the MSE in the Luma Channel between each reference tube and its corresponding distorted tubes. The perceptual differences participants estimated during the subjective study are on the Y-axis.

Fig. 3 .

 3 Fig. 3. Example of PD-curves fitting, in orange best linear fitting, in green best exp fitting. RMSE between individual PD-curves and fitted functions are provided.

TABLE I THE

 I PROPOSED MODELS. WE REPORT THE NUMBER OF PRINCIPAL COMPONENTS (PCS) OF PCA PROJECTIONS AND THE BACKBONE TO EXTRACT THE FEATURES FOR EACH LEARNING CONFIGURATION.

	Learning conf.	Backbone	MeanSem features	VarSem features
	raw	SqueezeNet	first 4 PCs	0 PC	
	lin	resnet101	first 6 PCs	first 2 PCs
	exp	resnet101	first 8 PCs	first 2 PCs
		TABLE II			
	FULL-REFERENCE AND REFERENCE-ONLY METRICS SCORES ON DATASET
	TEST SET. * INDICATE PERFORMANCES OF RETRAINED METRICS.
	Type	Metrics	PLCC	SRCC KRCC	RMSE
		PSNR CB	0.472	0.594	0.428	0.535
		PSNR CR	0.447	0.539	0.376	0.539
	Full-	PSNR Y	0.517	0.685	0.507	0.526
	Reference	SSIM [4]	0.629	0.763	0.586	0.481
	IQA/VQA	VIF [24]	0.693	0.780	0.603	0.431
	no semantic	DLM [25]	0.846	0.869	0.696	0.321
		VMAF [8]	0.833	0.867	0.694	0.335
		VMAF*	0.875	0.900	0.747	0.291
	DL Full-	LPIPS-vgg [1]	0.711	0.795	0.631	0.420
	Reference	LPIPS-squeeze	0.674	0.785	0.622	0.445
	IQA	LPIPS-alex	0.628	0.754	0.588	0.470
	semantic	DISTS [3]	0.787	0.851	0.671	0.369
	Reference-	WPSNR [5]	0.618	0.819	0.642	0.483
	Only	XPSNR [6]	0.665	0.828	0.652	0.461
	no semantic	libaom tune=ssim	0.653	0.795	0.614	0.476
	DL	our model (raw)	0.844	0.878	0.714	0.336
	Reference-	our model (lin)	0.843	0.888	0.721	0.328
	Only VQA	our model (exp)	0.852	0.888	0.728	0.316
	here to regress the two factors (A, B). These two factors scale
	M SE Y values to the perceptual continuum.		
	During each configuration training, we perform a Grid
	Search selection over (1) the number of PCA components
	inputted to the SVR model, (2) the Neural Network employed
	to extract the deep features, and (3) SVR hyperparameters. In
	table I, we reported the best combinations of features.	

AV1 encoder v3.1.2, from AOM Alliance Open Media: https://aomedia.googlesource.com/aom/

Prolific: https://www.prolific.co/

https://github.com/andreaspastor/MLDS inter content scaling