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Abstract—Semantics extracted by filters in deep learning net-
works correlate well with how human eyes perceive distortions.
These methods (e.g., LPIPS, PieAPP, etc.) rely on the relative dif-
ference in activation between feature maps in pairs of references
and distorted patches. However, Deep Feature extraction can
be expensive to compute as a difference of latent code between
reference and distorted frames. Therefore, it is challenging to
integrate them into the decision process of modern video codecs
like AV1, making thousands of encoding trials during exhaustive
Rate-Distortion Optimization (RDQO) searches. In this study, we
present a method using deep features to predict the distortion
perceived locally by human eyes in AV1-encoded videos. The
prediction relies on Deep Features extracted from the reference
frame only to weigh the Mean Squared Error (MSE) introduced
during encoding. This approach will make integration into video
codecs easier as a pre-processing step before starting encoding.
We show the superiority of the proposed metric against other
Reference-Only metrics on a dataset of local distortions in videos.
We achieve comparable performance as state-of-the-art Full-
Reference video quality metrics.

Index Terms—video quality, machine learning, local percep-
tion, dimensionality reduction, open video codec

I. INTRODUCTION

A part of research in Computer Vision has focused on
building Neural Networks to classify, locate, and track object
instances. These networks with complex architectures rely
successively on extracted, aggregated, and curated features.
Traditional operations used for this process are convolutions,
pooling, non-linear layers, and attention mechanisms. The
outcomes of applying these operations are feature maps that
can be classified into different categories. Low-level features,
the first features extracted from pixels, are simple edge and
texture detection filters. With the succession of layers and
operations, features are spatially grouped into larger and larger
regions to produce features more semantically representative
of class concepts. These semantics are the final characteristics
used to classify or detect objects.

Recent works [1]-[3] have shown that these Deep Features
better correlate with how our eyes perceive distortions than ex-
isting image quality metrics. These metrics were benchmarked
on various distortion types in static patches. In Image Quality
Assessment, objective quality metrics, like PSNR and SSIM
[4], rely only on pixel statistics and differences. These metrics
are computationally efficient but have no semantic information
to make decisions, resulting in lower performances. However,
due to their simplicity and computational efficiency, these

metrics have been favored to integrate into video codecs to
tune and improve video encoding quality.

WPSNR [5] and improved version XPSNR [6] are block-
based perceptually weighted PSNR metrics. Weights are de-
rived from efficient spatial and temporal filtering in a reference
frame to capture the Human Visual System (HVS) sensitivity
to local distortions. These methods are computationally in-
expensive to run and serve, for example, in HEVC and VVC
video codecs, to perform subjectively optimized bit allocation.

Video Encoding research involves working on the tri-
paradigm of compressing video data while maintaining accept-
able visual quality and reasonable computation cost: crucial
points for cloud encoding computation management, efficient
storage, and transmission of videos to diverse client platforms.

To tune video quality locally in video coding algorithms
like AV1, the optimizer selects at the Coding Unit (CU)
level between different coded proposals of a reference block
while accounting for the cost (i.e., bit rate) and the distortion
introduced by signal compression. The distortion is estimated
using the Sum of Squared Error (SSE) or equivalent in the
transform domain (i.e., SATD). This fidelity paradigm guides
the encoding between a reference block and its coded version.
In fune=WPSNR mode of HEVC, the SSEs are weighted
by the factors derived from WPSNR. Similarly, in AVI,
tune=ssim flag enables a weighting of SSEs with factors
proportional to reference blocks pixels variance.

The work in [7] proposes a benchmark of image and video
quality metrics on small video tubes. These tubes were sub-
jectively annotated with how humans perceived the distortion
introduced by AV1 encoding. This work demonstrates how
video quality metric VMAF [8], trained initially to predict
video quality at a global scale, still performs relatively well
on this dataset of tubes with small spatio-temporal horizons.

In this research work, we present a new metric to improve
on WPSNR and XPSNR. Our metric derives weights to scale
MSE distortions values, using information extracted by Neural
Network to consider content semantics in predicting HVS local
perception of distortions.

The following sections present, in section II, the dataset and
what we call tubes for local distortions evaluation in videos. In
section III, we explain how we extract features and the pooling
techniques we consider to represent information extracted
by Neural Networks efficiently. In section IV, we show the
performances of our metric and compare it to other state-of-



the-art video quality metrics. Lastly, section V concludes the
paper.

II. SUBJECTIVE DATASET

This section introduces our subjective dataset. From the
reference sources (SRCs) of the VideoSet database [9], we
extract fubes. A tube is a short video sequence of size 64 x 64
pixels and lasts 400ms, 12 frames at 30fps.

Motivations behind these fubes dimensions are the fol-
lowing. Human perception and gaze mechanisms inspire our
spatio-temporal design choices. We incorporate how our eyes
perform fixations to explore scenes and objects. These fixa-
tion events can last between a hundred and a few hundred
milliseconds, hence the duration of our tubes. For the spatial
resolution, we utilize the size of the fovea, which covers
around 1° at the center of our field of view, translating to 60
pixels under standard viewing distance. Our tubes are aligned
on the motion in the video to mimic our eyes’ Smooth Pursuit
on moving objects.

Before extracting the fubes, we encode all SRCs of the
VideoSet database using AV1 encoder at fixed Quantization
Parameter (QP) values, using —cg-level flag in libaom'. We
generate 31 Processed Video Sequences (PVS) for each SRC
using QP 3 to 63 with a step of 2.

We define a tube-content as a set (T'ube,.p, Tubepn, ...,
Tubepy,): with a first tube extracted in the SRC, T'ube, s, and
N distorted version of it extracted from PVS. In the current
dataset, N equals 5. Check Fig. 1 for fube-contents examples.

We define a Perceptual Difference curve (PD-curve) as the
relation in a tube-content between its subjectively estimated
perceived distortions (PD-scores) and the Mean Squared Er-
ror in Luma channel M SEy between the T'ube,.; and its
corresponding Tubep;. In fig. 2, we provide as an example
the 54 PD-curves contained in the test set, 20% of the dataset
size. The total dataset subjectively annotated contains 268 PD-
curves.

The tube-contents in our subjective dataset are selected out
of 100K following the clustering approach suggested in [7]
for content selection. This clustering approach relies on the
responses of various Full-Reference quality metrics on the
degraded tubes.

The subjective data is collected in crowdsourcing by recruit-
ing 1130 participants on Prolific2. Each participant is asked to
perform 40 guadruplets comparisons, which took 6 minutes
to complete on average. Subjective evaluations were made
using a quadruplet preference-based scenario. For subjective
quality assessment of image/video, it has been shown that
Two-Alternative Forced Choice (2AFC) methods are more
precise and sensitive than direct rating methods while reducing
the cognitive load of participants. In our work, we used
the Maximum Likelihood Difference Scaling (MLDS) [10]
method. It efficiently selects stimuli to compare in a subjective

TAV1  encoder v3.1.2, from AOM Alliance
https://aomedia.googlesource.com/aom/
2Prolific: https://www.prolific.co/
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study. In [11], a solution® is proposed to improve MLDS to
select quadruplets for inter-content scaling efficiently. Inter-
content scaling enables human observers to compare and rate
the relative distortions introduced by codec across regions in a
video frame [12]. The method has been compared with triplet-
based and pairwise comparison subjective methodologies in
[13] and validated for a crowdsourcing scenario in [14] where
noisy annotations from outliers/spammers need to be handled.

III. PROPOSED MODEL

This section details our model and how we extract Deep
Features from popular Neural Networks (NN) architectures.

A. Feature extractors

We evaluate AlexNet [15], VGG16 [16], ResNetl8-
152 [17], EfficientNetBO-2 [18], SqueezeNet [19], Shuf-
fleNetV2 [20] and MobileNetV3 [21] architectures. We in-
clude AlextNet, VGG16, and ResNet networks since they are
popular choices for feature extraction and fine-tuning of qual-
ity assessment models [1]-[3], [22]. We choose SqueezeNet,
ShuffleNetV2, and MobileNetV3 architectures, designed to be
highly efficient and lightweight for mobile inference use cases.
We pick the three most lightweight versions of EfficientNet
for their fast inference speeds while having high classification
performances. We fix the weights to their pre-trained versions
on the ImageNet dataset [23] classification task.

Additionally, we remove the last activation layer and keep
the remaining intermediate layers as feature extractors. We use
the five conv layers for AlexNet and VGG16. In SqueezeNet,
the first conv and the 6 fire modules. For ResNets, the first
convl and the 4 conv2_x—conv5_x modules. For EfficientNet
networks, the first ConvNormActivation and the 7 MBConv
modules. In ShuffleNet, the first conv and the 11 Inverte-
dResidual modules. In MobileNetV3, the first conv and the
3 stage modules.

B. Features extraction and pooling from a reference tube

From a reference tube, a (12, 3,64, 64)—tensor, we extract
the feature maps from the K selected modules in the feature
extractor, K (12,Cy, H;, W;)-tensors. C; is the number of
filters in module i. (H;, W;) are the feature map height and
width.

After this operation, the feature maps are first averaged on
the two spatial dimensions: we obtain K (12, C;)-tensors.
Then, to pool temporal activation, we apply two methods:
a temporal mean averaging to get K (1,C;)—tensors and a
temporal variance pooling: another K (1, C;)—tensors.

In summary, after flatting empty dimensions, a reference
tube is represented by 2 (C)—tensors, where C is the sum of the
K C;. In the AlexNet context, C' is equal to 1152. These two
tensors, MeanSem and VarSem, represent the semantics in
a tube from low textural information to high-level semantics
and its temporal variation, respectively.

3https://github.com/andreaspastor/MLDS_inter_content_scaling



Fig. 1. Example of tube-contents in the subjectively evaluated dataset. Each column represents a fube-content and its five distortion levels in increasing order
from the top with the reference rubes to the bottom with the most distorted levels.
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Fig. 2. The 54 PD-curves contained in the test set of the dataset. On the
X-axis are the MSE in the Luma Channel between each reference tube
and its corresponding distorted tubes. The perceptual differences participants
estimated during the subjective study are on the Y-axis.

C. Dimensionality reduction

To cope with the high dimensional space of the latent
representation obtained per reference tube, we use Principal
Components Analysis (PCA) to reduce the latent space size.
We apply PCA separately on MeanSem and VarSem to
easily track their contributions during training. The PCA pro-
jections are learned from our database of tubes. This database
contains around 100K tube contents. This dataset is populated
with tubes extracted from the large set of videos we encoded
with libaom; see section II for more details.

D. Model Training and feature selection

Popular video quality metrics like VMAF [8] operate simple
Machine Learning techniques to learn good aggregation of
atoms features. We used a Support Vector Machine Regressor
(SVR) to learn from the top K Principal Components (PC) of
PCA projections.

We consider three variants to train the SVR model with our
PD-curves: namely raw, lin, and exp. For the raw configura-
tion, we train an SVR to predict the raw subjective Perceptual
Difference estimated between a reference and distorted tube.
The model inputs are the PCA projected features extracted

~®- tube-content 9 ~®- tube-content 2
05 tubecontent 9 -l slope=0.02 204 ___ tubecontent 2 - lin slope=0.04
RMSE=0.032 RMSE=0.337
o ___ tube-content 9 - a,b coeffs=(0.56,0.02) o tube-content 2 - a,b coeffs=(0.12,0.08) 7
s RMSE=0.018 Y T RMSE=0.040 .
c 04 c -
g g1s
k] o
£ £
g o3 a
© ® 10
2 2
202 =3
@ @
5 5
9 905
& &
0.0 0.0
o 5 10 15 20 25 0 5 10 15 20 25 30 35
MSE_Y MSE_Y
~®- tube-content 3 ~®- tube-content 1
204 __ tube-content 3 - lin slope=0.05 025 . ~lin slope=0.
0 heccontent % _ tube. content 1-lin slope=0.01
___ tube-content 3 - a,b coeffs=(0.61,0.04) A tube-content 1 - a,b coeffs=(0.09,0.04)
I RMSE=0.078 9 0201 — RMSE=0.021
< c
15 o
S o
£ £ 015
a a0t
T 10 =
E] s
o 8010
Sos o
e & 0054 #E
0.0 0.00

0 H 0 15 25 30 35 4 5 10 20 25 30

B 5
MSE_Y MSE_Y

Fig. 3. Example of PD-curves fitting, in orange best linear fitting, in green

best exp fitting. RMSE between individual PD-curves and fitted functions are
provided.

from the reference tube and the Mean Squared Error in
the Luma Channel with the distorted tube. The model is
responsible for learning the complete relationship inside a PD-
curve in this configuration.

In the lin configuration, first, we extracted on each PD-
curve of the dataset their best linear fitting slope. In figure 3,
examples of slopes and fitted linear functions are provided in
orange. The fitting function is:

PD/ :AXMSEY (1)

score

The SVR model inputs in this training configuration are
only the projected features from PCAs. The model outputs a
linear slope, a weighting factor to transform M .S Ey- values to
perceptual scores.

In the exp configuration, a two parameters exponential
fitting is applied on the PD-curves, in figure 3 (green). The
exponential function is:

PD!

score

— A x (BXMSBY _q) @)

Similarly to lin configuration, the inputs are only the
projected features from PCA. Two SVR models are employed



TABLE I
THE PROPOSED MODELS. WE REPORT THE NUMBER OF PRINCIPAL
COMPONENTS (PCS) OF PCA PROJECTIONS AND THE BACKBONE TO
EXTRACT THE FEATURES FOR EACH LEARNING CONFIGURATION.

Learning conf. Backbone MeanSem features | VarSem features
raw SqueezeNet first 4 PCs 0 PC
lin resnet101 first 6 PCs first 2 PCs
exp resnet101 first 8 PCs first 2 PCs
TABLE II

FULL-REFERENCE AND REFERENCE-ONLY METRICS SCORES ON DATASET
TEST SET. * INDICATE PERFORMANCES OF RETRAINED METRICS.

Type Metrics PLCC | SRCC | KRCC | RMSE
PSNRc B 0.472 0.594 0.428 0.535

PSNRc R 0.447 0.539 0.376 0.539

Full- PSNRy 0.517 0.685 0.507 0.526
Reference SSIM [4] 0.629 0.763 0.586 0.481
IQA/VQA VIF [24] 0.693 0.780 0.603 0.431
no semantic DLM [25] 0.846 0.869 0.696 0.321
VMAF [8] 0.833 0.867 0.694 0.335

VMAF* 0.875 0.900 0.747 0.291

DL Full- LPIPS-vgg [1] 0.711 0.795 0.631 0.420
Reference LPIPS-squeeze 0.674 0.785 0.622 0.445
IQA LPIPS-alex 0.628 0.754 0.588 0.470
semantic DISTS [3] 0.787 0.851 0.671 0.369
Reference- WPSNR [5] 0.618 0.819 0.642 0.483
Only XPSNR [6] 0.665 0.828 0.652 0.461

no semantic | libaom tune=ssim | 0.653 0.795 0.614 0.476
DL our model (raw) 0.844 0.878 0.714 0.336
Reference- our model (lin) 0.843 0.888 0.721 0.328
Only VQA our model (exp) 0.852 0.888 0.728 0.316

here to regress the two factors (A, B). These two factors scale
M SEy values to the perceptual continuum.

During each configuration training, we perform a Grid
Search selection over (1) the number of PCA components
inputted to the SVR model, (2) the Neural Network employed
to extract the deep features, and (3) SVR hyperparameters. In
table I, we reported the best combinations of features.

We conducted the Grid Search on the dataset train set with
a 25-fold cross-validation. We reported performances on the
test set only. The best-performing set of hyper-parameters for
each learning configuration is reported in table I. For example,
the best combination of attributes for the lin configuration is
based on features extracted from RestNet101 backbone, using
the six Principal Components of MeanSem features vector
and the two Principal Components of VarSem.

IV. RESULTS

In this section, we present the results. We consider met-
rics performances in terms of Pearson correlation coefficient
(PLCC), Spearman correlation (SRCC), Kendall tau correla-
tion (KRCC), and Root Mean Squared Error (RMSE). To
report existing objective metrics performances, we fit a 4-
parameter cubic polynomial to map the objective scores to
the subjective scores. This fitting affects PLCC and RMSE
scores and allows to compensate for range gaps and nonlinear
relationships. To be fair to trained and retrained metrics, fitting
coefficients are optimized on the train set and reported on the
test set.

First, we evaluate the performances of Full-Reference image
and video quality metrics in table II. These traditional quality

metrics extract statistics from both reference and distorted
frames. Moreover, these statistics contain no semantic infor-
mation. We can see that VMAF and DLM have the highest
correlation with the subjective scores. With VMAF retrained
on our dataset, the performances are improving as the best
performances overall.

Second, we evaluated the performances of Deep Learning
Full-Reference Image Quality Assessment metrics. These met-
rics perform better than PSNR, SSIM, or VIF but remain lower
than VMAF and DLM. Retraining of LPIPS and DISTS on
our dataset was unsuccessful due to its limited training data
and large sets of weights in these metrics.

Third, we explored the performances of Reference-Only
metrics. We can see that their performances are lower than
VMAF and DLM but on par with other IQA/VQA metrics
and Deep learning Full-Reference quality metrics. We also
included results of the metric performing bit allocation in
libaom available under the tfune=ssim flag. This metric is not
the exact implementation of SSIM. This version only uses
the pixel variance intra-block block,,, in reference frames to
derive scaling factors for computed MSE distortions between
reference and coded blocks. The equation of this block-
variance scaling is the following:

581Myqr = 67.0354 x (1 — ¢~ 0:00214xblockuary 1 17 4929 (3)

Finally, our models achieve the second-best overall per-
formances for SRCC and KRCC indicators after the VMAF
retrained version. Regarding PLCC and RMSE, performances
are similar to VMAF and DLM but significantly improve over
WPSNR, XPSNSR, and tune=ssim. Our model fpr lin and exp
training configurations outperforms raw training configuration,
hinting at the gain brought by added prior knowledge of the
shape of the PD-curve.

V. CONCLUSION

This work presents a new model to predict the perception
of local distortions over tfubes. The model relies on Deep
Learning features extracted only from reference frames. We
pool these features spatially and temporally to represent the
semantic information along reference tubes. With PCA pro-
jections to better represent essential features, we reduced the
complexity of this semantic latent space and eased the training
while avoiding overfitting. Relying on the prediction of PD-
curves slopes also improved performances.

The proposed method outperforms other methods based on
reference frame-only pixel statistics. These metrics are still the
primarily used objective metrics for optimizing video encoding
algorithms. Our method could improve bit allocation strategies
by replacing these metrics in future research work.

Compared to Full-Reference metrics, the proposed methods
outperform existing Deep Learning Image quality metrics by
efficiently learning from limited data. Evaluating the metric on
high-resolution video remains a subject for future research.
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