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Hierarchical modeling of heterogeneous solids

Introduction

The ability to analyze and accurately model heterogeneous and composite materials has assumed greater importance as the need to account for micromechanical effects in predicting the service life of machine parts and structures is more broadly accepted. One of the main features of these materials is that their response to loads and forces is often a complex multiscale, multiphysics phenomenon. Despite advances in computational techniques and computing power, direct simulation of heterogeneous materials is still not a viable option. Finite element models that can capture micromechanical effects generally must employ mesh sizes of the order of the size of the microstructure and can result in an algebraic system with many millions of unknowns. On the other hand, homogenization and averaging techniques for analyzing heterogeneous materials, while possibly leading to manageable problem sizes, do not provide information about the microscopic fi elds needed, for example, to predict failure. Thus there is a need for accurate and computationally efficient techniques that take into account the most important scales involved in the goal of the simulation while permitting the analyst to choose the level of accuracy and detail of description desired.

Towards this end, the concept of hierarchical modeling was introduced [START_REF] Zohdi | Hierarchical modeling of heterogeneous bodies[END_REF][START_REF] Oden | Analysis and adaptive modeling of highly heterogeneous elastic structures[END_REF] as a methodology that provides a multilevel description of the physical phenomenon of interest based, when possible, on a rigorous mathematical foundation. A hierarchy of descriptions of the physics of the problem is fi rst set up, ranging from the coarsest possible description to the most detailed description contained in the class of models. Rather than to heuristically choose a level of description from the hierarchy, a posteriori estimates of the modeling error associated with a particular description are evaluated to enable the adaptive selection of a suitable characteriza tion. Also, the level of description is allowed to vary spatially so that finer descriptions may be used in 'critical' regions.

Based on this concept of hierarchical modeling, the Homogenized Dirichlet Projection Method (HDPM) was developed in [START_REF] Zohdi | Hierarchical modeling of heterogeneous bodies[END_REF][START_REF] Oden | Analysis and adaptive modeling of highly heterogeneous elastic structures[END_REF]. In this method, at the coarsest level in the hierarchy of models is a mathematical model characterized by homogenized material properties. This is referred to as the homogenized problem and the lack of heterogeneity generally makes this problem computationally inexpensive compared to models of fi ner scale. The adequacy of the solution to this homogenized problem, compared to the fine-scale solution, is then estimated using a posteriori modeling error estimates. In regions where the modeling error exceeds a preset tolerance, a finer-scale model is used and a correction to the homogenized solution is computed. This process is continued until a simulation is obtained which is sufficiently accurate to satisfy preset error tolerances. Fuller details of this procedure are given later in this investigation.

While the use of hierarchical modeling permits the adaptive reduction of modeling error, it is equally important to control the numerical error associated with the approximation of each model used in the analysis. In our computations in this work, we employ an adaptive 3-d hp finite element method to control and minimize the effect of numerical error on our results. The use of hp finite elements significantly enhances the quality of the final solution obtained with HDPM while reducing the number of DOF required to solve both local and global problems.

The use of hierarchical modeling presents some intriguing observations on modeling of structures. The final computational model achieved by, say, the HDPM to meet a given tolerance, may exhibit highly nonuniform material characterizations that depend upon the data in the simulations (the geometry, loads, boundary conditions, etc.) and the norms used to control the error. Thus, different tolerances and different norms lead to different material characterizations. We present here new error estimation results for control of L 2 error and error in local quantities of interest.

We also describe the extensions of the HDPM to a class of nonlinear problems involving local damage and possible crack initiation. We describe an application of HDPM to a two-phase composite in which local failure is assumed to occur when the local stresses reach a prescribed limit value. When this limit is attained, the local stiffness in a neighborhood of the failure point vanishes and a local redistribution of stresses takes place. Cycles of HDPM for the damaged structure are repeated until the damage is arrested or full failure occurs.

The outline of the presentation in this paper is as follows. We first present some preliminaries and notation and set up the model class of problems under consideration. In Section 3, we present energy and L 2 estimates of the error associated with the homogenized solution. In Section 4, we briefly describe the HDPM. Next, in Section 5, we develop an estimate of the homogenization error in quantities of interest described by linear functionals on the space of admissible displacements. This is followed by numerical examples in Section 6. In the numerical applications, we describe a straightforward extension of the HDPM to problems of local damage and of simulating accumulative damage in a two-phase composite. Finally, we offer some comments and discuss future directions of research in this area.

Preliminaries

In this section we describe the notation and conventions to be adopted in our analysis. The model problem characterizing the exact or fine-scale problem and the homogenized problem are presented followed by an analysis of the error introduced by homogenization.

Notation and the exact problem

We consider the familiar problem of linear elastostatics describing the deformation of a heterogeneous body in static equilibrium under the action of body forces / and boundary tractions t. The body occupies an open bounded domain fl C !R N , N 1, 2, 3. The boundary an of the body is assumed to be Lipschitz and consists of a portion r;, on which displacements are prescribed and a part r; on which tractions are prescribed and an = r;, u r;, r;, n r; = 0. Vector and tensor valued functions defined over [J are denoted by boldface letters and repeated indices indicate summation. As usual, H 1 (fJ) stands for the space of scalar valued functions with distributional derivatives of order :s;:;1 in L 2 (fJ). We also define H\fJ) � (H 1 (fJ)t as the space of vector valued functions whose components are all in H 1 (fJ) and similarly we denote L 2 (fJ) � (L 2 (fJ)t. The spaces H 1 (fJ) and H 1 (fJ) are equipped with the norms

(1)
respectively, where V; are the cartesian components of v. Values of functions v EH 1 (fJ) on r;, are understood in the sense of traces and denoted v I r. It is also assumed that the loading is such that f EL 2 (fJ) and t EL \I;). Next, the body is assumed to be characterized by an elasticity tensor E which is a bounded function in IR N xN and satisfies the following conditions of ellipticity and symmetry: 3 a 1 , a u > 0 such that VA E IR NxN , A A T , af :A �A :E(x)A � a.,A :A, x E fJ

(2) E u kl (x) being the cartesian components of the elasticity tensor E. The ellipticity condition states that the strain energy of the body is positively finite for admissible non-zero strain fields; the syf«etry condition restricts the number of indef¹ndent components in the elasticity tensor.

The displacement boundary conditions on r;, are specified as follows: 3 u EH \fJ) such that u I r = 0/l, where U/1 is the prescribed displacement data on r;,. Then the principle of virtual work govefÊng the displicement field in the body leads to the following problem:

Find u E {u} + V(fJ) such that 96(u, v) = �(v) V v E V(fJ) ,
where the space of admissible functions V(fJ) is defined as 

(5) [START_REF] Ghosh | A material based fi nite element analysis of heterogeneous media involving Dirichlet tesselations[END_REF] If the solution to (3) and the data are sufficiently regular, which is rarely the case, then it satisfies the following equations of classical elasticity,

-V • E(x)Vu(x) = /(x) x E fJ u(x) = U/l(x) n • (E(x)Vu(x)) = t(x) x Er;. (7) 

The homogenized problem

For the type of problems considered in this paper, E is a highly oscillatofÎ function thus making the use of conventional methods like finite elements computationally expensive and in most cases, impossible. This problem can however be made more amenable to computation through standard homogenization processes whereby E is replaced by a function E 0 , often a constant, that is designed to characterize the macroscopic behavior of the sfÜucture. The loading due to body force and tractions is assumed to remain unchanged, but this assumption could also be relaxed without significantly complicating our analysis.

The homogenized elasticity tensor is also assumed to satisfy ellipticity and symmetry conditions similar to (2) with ellipticity constants /3 1 and f3 u, i.e. 3 /3 1 , f3 u > 0 such that 'r/ A E IR NxN , A= A T , /3/i: A �A : E °(x )A � /3 ,,A : A

The homogenized problem thus reads with Find u O E {u} + V(fl) such that

;lJ 0 ( u 0 , v) .'¥(v) 'r/ v EV(fl) (8) 
(9) [START_REF] Prudhomme | Goal oriented adaptivity and local error estimation and control[END_REF] and with the right-hand side as defined earlier. Again, if the solution to the homogenized problem represented by ( 9) is suffcciently regular, then it also satisfies the following homogenized equations, 

-V • E °(x)Vu °(x) = /( x) x E ff

Analysis of the homogenization error (11)

The homogenized solution u 0 is obviously in error because material information is lost due to the process of homogenization. The homogenization or modeling error is defined as the difference between the exact solution . l .

o tlef o
and the homogemzed so utton, e = u -u .

To be able to develop adaptive methods of simulation, it is important to evaluate the quality of the homogenized solution. In this section, we present various measures of the homogenization error e 0 as well as a measure of the error in the stresses between the exact and homogenized solutions.

An energy estimate of the hom ogenization error

The following theorem is proved in [START_REF] Zohdi | Hierarchical modeling of heterogeneous bodies[END_REF].

THEOREM 3.1. Let u and u 0 be the solutions to problems (3) and ( 9), respectively. Then, the following holds: where

0 2 II 0 112 2 def f o o I� IIE(Ol = u u E(li) � ( = n !1 0 Vu : E !J 0 Vu dx (12) (13) 

□

Thus, if the solution to ( 9) is known, the homogenization error is bounded by a quantity that can expressed in terms of known quantities.

An L 2 estimate of the homogenization error

Another global estimate of the homogenization error is presented below. 

Find e 0 E V(fl) such that @ (e 0 ,v)=.o/t °(v) v'vEV(fl)
where the right-hand side is defined as

.o/t °(v)=-LVv:E...¢ 0 Vu 0 dx.
Setting v = e O , we have @ (e 0 , e

0 ) = L Ve 0 : EVe 0 dx = -L Ve 0 : E...¢ 0 Vu 0 dx
The left-hand side of ( 17) can be bounded below,

f Ve 0 : EVe 0 dx � a 1 f Ve 0 : Ve 0 dx = a 1 11V e 0 ll12u2i
a a and the right-hand side can be bounded above using the Cauchy-Schwartz inequality,

f Ve 0 : E. ..¢ 0 Vu 0 dx � IIV e 0 II L 2<aJIIEJi0 Vu 0 L2< m !2 thus leading to 11v e 0 11 L 2 (fl ) � l IIEJio Vu 0 11 L 2 (!.l) • al Now, we use the Poincare inequality ll v llL2u2) � C (fl) IIVv llL 2<m v' v E V(fl)
with (20) and the assertion follows. □

An estimate of the error in the stresses

(15) (16) 
(17)

(18) (19) (20) (21) 
The final estimate presented in this section provides an upper bound on the error in the stresses corresponding to the exact and the homogenized solutions. We present other a posteriori estimates of modeling error in Section 5.

The Homogenized Dirichlet Projection Method (HDPM)

(26) (27) ( 28 
)
The HDPM is discussed in detail in [9,12,13J. The role of numerical error in HDPM is discussed in [START_REF] Moes | Investigation of the interactions between the numerical and the modeling errors in the homogenized Dirichlet projection method[END_REF]. In this section, we summarize the major aspects of this method. We begin by noting that the homogenized solution u O can in general be a poor approximation to the fine-scale solution u. The error in the homogenized solution depends mainly on the homogenized material properties. Typically, most homogenization techniques provide satisfactory solutions when the microstructure is small with respect to the size of the structfäe and is periodic. In most practical appf¡cations, however, the microstructure is random. Also, the homogenized stress state f ¶ 0 = E 0 Vu 0 can be quite inaccurate and hence cannot be used for damage prediction. It is therefore natural to ask if the homogenized solution can be improved without having to solve the original problem [START_REF] Fish | Multigrid method for periodic heterogeneous media. Part 1: Convergence studies for one-dimensional case[END_REF]. The HDPM provides a systematic way of enhancing the homogenized solution by solving relatively small local problems in areas of high modeling error. These local problems use the exact microstructure fformation and where necessary, the homogenized solution is used as Dirichlet data.

1. Construction of local problems

We first consider a non-overlapping partition [1/' of the domain lJ into N subdomains El, k = 1, 2, ... , N( fö) (Fig. 1) such that

(29)
The boundary a 0 k of each subdomain 0 k consists of a portion I;, , on which tractions are prescribed and a portion I;, " on which displacements are prescribed

Local function spaces are defined as

def 1 V(0 k ) {v : v EV(IJ) , v n,ek 0, vl r. ku (30) O} . ( 31 
)
For each subdomain, we define an operator 'l: k that extends functions from the local space V(0 k ) to V(IJ) as follows:

(32)

The restriction of the homogenized solution to each subdomain is defined as u� d ef u 0 I ek . We denote by ii � the solution to the following boundary value problem 

Find ii � E {u�} + V(0 k ) such that fj k (ii� , v k ) �(v k ) V v k EV( 0 k ), (33) 

Characterization of the HDPM so lutio n

We begin by defining the potential energy of functions w E {u} + V(fl) as

def l = $(w ) = 2 �(w, w) -.'.ffe (w ) .
If u is the exact solution to (3), then it is well known that

$(u)�$(w ) VwE{u}+ V({J ).
The following result guarantees that the HDPM solution is indeed an improved solution.

'F/i/EOREM 4. 1. Wi th the previo us de finitio ns in fo rc e, $(u o ) �$(u o ), and hence llu -u 0 IIE,il) ,;;;; llu -u 0 ll£ (.Q).

PROOF. See [START_REF] Oden | Analysis and adaptive modeling of highly heterogeneous elastic structures[END_REF] . 0

(40)

This result implies that the HDPM solution is always closer to the exact solution than the homogenized solution regardless of the homogenized material properties. Proof of two corollaries that follow immediately from this theorem are in [START_REF] Oden | Analysis and adaptive modeling of highly heterogeneous elastic structures[END_REF] :

COROLLAR Y 4. 1.
Let u be the ex ac t so lution to [START_REF] Fish | Multigrid method for periodic heterogeneous media. Part 1: Convergence studies for one-dimensional case[END_REF]. Additionally, assume that V • (EVu�), f EH

1 (0*) and n-0 8 -112 r ) 'h (E 't' U k) . H E (1 ku • T, en, llu - 0112 
2 def ~O• u wn � f 2($(u ) ( 4 1) 
This result provides an estimate of the error in the correction ii O of the homogenized solution. It can be seen that the term ($(u 0 ) $(u 0 )) is negative so that f .s; ( always. The next result is a very useful sensitivity property:

COROLLAR Y 4.2. De fine ( k by (42) (43)
The above corollary predicts the improvement that can be obtained by solving a local problem. If C k is small in a subdomain, then there is little gained by solving a local problem. On the other hand, if the above estimate is sharp, and C k is high in a subdomain, the homogenized solution can be significantly improved by solving the local problem (33 ). We discuss this issue in more detail in the section on numerical examples.

Finally, we present an L 2 estimate of the difference between the HDPM solution and the homogenized solution.

THEOREM 4.2. Let a 1 be as defined in (2). Then, fo r 1 � k � N ( ff/>)

(44)
where C(@ k ) is constant that only depends on the subdomain @ k .

PROOF. The proof is essentially the same as the proof of Theorem 2. First, we note that i� is the solution to the following boundary value problem on subdomain B k :

Find i� E V(@ k ) such that fJJ/ i�, v k ) g;�(v k ) 'I v k E V(fl k ) with the right-hand side g;�(v k ) = -f Vv k : E.1i 0 Vu � dx.

€\

The rest of the steps carry over directly. D

The overall algorithm

The overall adaptive algorithm is as follows:

(45)

(46)
Step 1. Given the initial data fl, 1: , I;, E, f, u and t, construct a partition of the domain ff/>== { @ k }� = 1 . Choose a homogenized material tensor E 0 . Specify sensitivity and error tolerances a 1 and a 2 so that (47)

Step 2. Solve the homogenized problem (9) to obtain u 0 .

Step 3. Compute the local sensitivities C k using ( 42) for k = 1, ... , N( ff/>) and form a set J of subdomains which are above the prescribed sensitivity tolerance (48)

Step 4. For the subdomains that fail to satisfy the sensitivity tolerance, k E J, solve the local problems (33) to obtain ii,�.

Step 5. Construct the HDPM solution u 0 = u 0 + L 'l:/ u� -u�) .

(

) 49 
kE,1

Step 6. Compute the estimated error in the HDPM solution

1/1 � f [ 2(J(u o ) -J( u o )) + ( 2 ] 112 (50) 
Step 7. If t/J � ¢101' STOP. Else, repeat Steps 2-7 with improved material properties. A general algorithm for choosing improved properties can be found in [START_REF] Oden | Analysis and adaptive modeling of highly heterogeneous elastic structures[END_REF]. If the error tolerance is not satisfi ed with improved material properties, go to Step 8.

Step 8. Coarsen the partition and repeat Steps 2-7.

Step 9. Relaxation. (This step is optional). At the conclusion of the adaptive process when all global and subdomain errors meet the assigned tolerances, tractions are discontinuous across subdomain boundaries. A number of Schwarz-type iterations relaxing the boundary constraints on displacements can be performed to reduce the stress discontinuity, remove spurious singularities in the displacement derivatives, and further improve the accuracy of local features of the solution. 

REMARK 4.2.

There is a considerable amount of literature on the use of global-local and multiscale analyses for modeling heterogeneous materials. This includes the works of Fish and Belsky [START_REF] Fish | Multigrid method for periodic heterogeneous media. Part 1: Convergence studies for one-dimensional case[END_REF][START_REF] Fish | Multigrid method for periodic heterogeneous media. Part 2: Multiscale modeling and quality control in multidimensional case[END_REF], Ghosh and Moorthy [START_REF] Ghosh | Elastic-plastic analysis of arbitrary heterogeneous materials with the voronoi cell finite element method[END_REF], Ghosh and Mukhopadhyay [START_REF] Ghosh | A material based fi nite element analysis of heterogeneous media involving Dirichlet tesselations[END_REF] and more recently Moes et al. [START_REF] Moes | A two-scale strategy and a posteriori error estimation for modeling heterogeneous structures[END_REF]. In the HDPM, the effects of multiple scales are automatically included in the analysis by allowing the a posteriori estimates to choose the most appropriate scales. The coarsening of the partition in Step 8 of the overall adaptive algorithm above corresponds to an increase in the disparity between scales.

Homogenization error in quantities of interest

Recent work in error estimation in the context of finite element analysis has focused on obtaining bounds on the numerical error in quantities of interest other than the energy norm [1 ,10]. In this section, we use the approach of Prudhomme and Oden [START_REF] Prudhomme | Goal oriented adaptivity and local error estimation and control[END_REF] to obtain an upper bound on the homogenization error in other quantities. We assume that we are interested in estimating L(e 0 ) = L(u) L(u 0 ), where L is a continuous linear functional on V(.Q ), LEV'. For instance, L may represent something more localized than the global estimate (12) such as the error in u or Vu over a small region in fl. The main objective here is to relate L(e 0 ) to the 'source' of the homogenization error, the right-hand side of (16). So, we would like to find a linear functional WE V", if it exists, such that (51)

The functional W is known as the influence function(al ) since it inclicates the influence of the residual on the quantity of interest. Since, V is refl exive, we have that 3 !w EV such that and hence (51 ) becomes L(e 0 ) = .92 °(w) .

Using (16), we obtain L(e 0 ) = f(e 0 , w) .

The infguence function w can thus be obtained as a solution to the global dual problem

Find w E V(IJ) such that Finally, using ( 12) and ( 59), we arrive at the following bound for the homogenization error in the quantity of interest,

9:J(v, w) L(v) 'v' v E V(IJ) .

(62)

Thus, the estimation of the homogenization error in the quantity of interest requires the solution of a global dual problem. In our analysis above, we assume that the homogenization parameters chosen for the dual problem are the same as the ones chosen fo r the primal (original) problem. As a result, the two problems have the same left-hand side which is computationally convenient. This assumption, however, can be relaxed without major changes to our analysis. Indeed, this may not be an unattractive choice considering the fact that the homogenized problem typically requires far fewer degrees of freedom than a local problem with microstructure (see Example 6.1). Later in this paper, we present some 1-D examples to illustrate the performance of our estimate.

Numerical examples

I. Exa mple 1

Consider a composite slab (dimensions 8 X 1 X 2) divided into 16 equal subdomains. The body is subjected to a uniform compressive load over one subdomain as shown in Fig. 2. We assume that the microstructure is provided by 1024 spherical inclusions distributed uniformly in the matrix material so that each subdomain has a 4 X 4 X 4 arrangement of inclusions (Fig. 3). While the matrix has the properties E = 400.0 MPa, v = 0.2, the inclusions have the properties E = 4000.0 MPa, v = 0.2. The volume fraction of the inclusions is assumed to be 0.2. To obtain the homogenized material properties, we use the arithmetic average of the Hashin-Shtrikman bounds. Finally, we use (/; .) to! = o.s11u 0 11 £(!1} x 1e k 111n1.

An approximation to u 0 is generated using the adaptive hp finite element program ProPHLEX [2] and is denoted by u 0 , H . The hp mesh used to solve the homogenized problem (see Fig. 4) has 7407 degrees of freedom with an estimated relative numerical error of 4.0% in the energy norm. On computing the Ck 1 � k ,s;; 16, it is found that 4 subdomains fail to satisfy the sensitivity criterion (see (48)) so that cf= { l, 2, 9, 10}. In these subdomains, we fi nd approximate solutions to the local problems (33 ), k E cf and denote these by ii�• h _ The hp mesh for subdomain 1 is shown in Fig. 5. The HDPM solution is constructed using A quantity that is of interest in stress analysis is the Von-Mises stress.The maximum Von-Mises stress (see Fig. 6) predicted by the homogenized problem is 170.3 MPa at x = 0 whereas the maximum Von-Mises stress predicted by the HDPM solution is 534.98 MPa in subdomain 1 at x = ( 0.177, 0.072, 0.072) (see Fig. 7). Thus the use of the homogenized solution for making design decisions without further processing can be quite dangerous.

SUB DOMAIN BOUNDARIES

Finally, we note that the homogenized problem needs 7407 degrees of freedom and each local problem on an average requires about 90 000 degrees of freedom. For this problem, it is estimated that a direct simulation requires about 1 800 000 degrees of freedom.

2. Exa mple 2

Now, we consider an example focusing on the difficulties posed by the highly oscillatory nature of E, the most significant of these being the integration of functions of E. One such quantity is the local sensitivity indicator ( 42) .

We choose the problem of a beam clamped to a wall at one end and loaded by tractions on the other end. The beam has reinforcing bars as shown in Fig. 8. The mismatch ratio of the two materials is assumed to be 5.0. We homogenize the beam using the Hashin-Shtrikman bounds and then compute an approximation to the homogenized solution u 0 . The next step is to compute and

d ef o o {J }l/2 ( k = e, !f 0 Vu : E!f 0 Vu dx (64) (65) 
Obviously, the integrands above are highly oscillatory. We use two methods to evaluate the above expressions. In the first method, we use a conforming mesh that respects the boundaries of the microstructure as shown in Fig. 9(a) and in the second method, we use a uniform mesh as in Fig. 9(b). The two methods are compared for Gaussian integration rules varying flom the 1 X l X l integration rule to the IO X 10 X 10 integration rule in each element. In the first case, the material properties are known element-wise and in the second, it is necessary to check if a given integration point lies in the matrix or an inclusion. From Fig. 10, we see that the result obtained using a non-conforming mesh is highly oscillatory both for ( k = 1 and (. This shows that the use of confofÈing meshes, though expensive due to time spent in mesh generation, is necessary for integrating highly oscillatory functions. On the other hand, non-conforming meshes are relatively easier to generate but the number of integration points per element required for accurate results make their use an unatfÝactive choice.

Example 3

We now present a preliminary study on the performance of the estimate (62) for the following 1-D problem. Consider an elastic bar of unit length fixed at both ends and subjected to a constant body force. The primal fine-scale and homogenized problems are dr E i x) dx = H(x -a) -H(x -b), (73) The unit interval is divided into l O 000 equal intervals, and for each interval the material property is chosen at random to be either E 1 or E T, where T is the mismatch ratio. Equal amounts of hard and soft material are used. All of the following calculations are performed analytically. Also, E� and E� are independently chosen to be the arithmetic average (E) or the harmonic average (£-1 )i. Finally, we define the effecti vity index by T/ � r IL (e 0 ) 1 / f÷. From Tables 1 and2 it is seen that when the harmonic average is chosen to homogenize the primal problem, pointwise errors are very small but the estimate performs poorly. The poor performance results from the fact that the estimate (62) does not account for any cancellations. On the other hand, when the arithmetic average is chosen to homogenize the primal problem, pointwise efÌors are high and the estimate performs relatively well. The effect of cancellations is not very significant in this case. In either case, using the arithmetic average for the dual problem improves the estimate.

4. Examp le 4

In the final example of this paper, we demonstrate a simple scheme for the study of damage mechanics of composites in the framework of hierarchical modeling. We consider a unit cube of material, with a two-phase isotropic spherical microstructure (see Fig. 11 ). The volume fraction of the inclusion material is 0.25 and the material properties are chosen to be those used in Example 1. The cube is fixed on the face y O and loaded by shear on the face y = 1. We employ a unidirectional partitioning of the cube into four simple 'slabs' : 0<0 1 <1/ 4, 1/4< 0 2 <2/ 4, 2/4< 0 3 <3/4, and 3/4< 0 4 <1. The homogenized parameters are Now, we wish to study the initiation and propagation of damage in each of the subdomains e k , I,;;; k,;:;; 4. This is done using the following algorithm:

Step 1. Set iteration count to 0.

Step 2. Solve the local problem (33) to obtain uZ• h for this iterafÚon.

Step 3. Loop over the elements of the mesh and compute the mafêmum Von-Mises stress in each element. If this is greater than a preset limit, disable , tfx element by setting the stiffkess of the element to a very small number.

Step 4. If the number of elements that fail the test in Step 3 is >O, increment the iteration count and GOTO Step 2. Else, STOP.

The process of 'disabling' elements leads to a redistribution of stresses and the new stress state may or may not satisfy the failure criterion. In case the criterion is not satisfied, the above algoiithm can be carried out until a certain volume fmaction of the subdomain has failed. Note that Step 3 in the algorithm above can be modified to include other failure modes such as debonding by considering different failure criteria. The essential idea is that these analyses can be performed in the context of hieratcbic�l modeling.

The above algorithm is applied to subdomain 4. We assume that the inclusion material fails at 490.0 MPa and the matrix material fails at 400.0 MPa. Fig. 12 shows two views; A and B, of the Vo n-Mises stress distribution in the subdomain at the zeroth iteration, i.e. before the initiation of damage. View B is obtained by rotating view A by 180 ° about the z axis. It is found that the maximum Von-Mises stress at this iteration is 497.24 MPa. Four inclusion elements and 8 matrix elements fail the tolerance test (Step 3 above). These elements are disabled and the problem is resolved. The Von-Mises stress field for iteration l is shown in Fig. 13. Now the maximum Von-Mises stress in the subdomain increases to 968.58 MPa and 46 elements fail the tolerance test. After another iteration, we see the propagation of damage in the inclusions more clearly (Fig. 14 ). The maximum Von-Mises stress in the subdomain is now I 194.79 MPa. 

Final comments

The concept of hierarchical modeling, and its implementation through the Homogenized Dirichlet Projection Method, provide a systematic family of approaches toward the resolution of multiscale problems, particularly problems of analyzing heterogeneous materials. The approach bypasses or generalizes many of the traditional limitations of homogenization theory and the theory of composite materials. To mention a few:

• no periodicity of microscale constituents is assumed • the approach (therefore) does not rely on the existence of RVEs (Representative Volume Elements)

• homogenization methods are merely artifacts of the overall adaptive strategy and are not goals of the modeling process in themselves (however, the choice of homogenization technique has significant impact on the performance of error esfÛmators and the success of the method) • extensions to multiscale modeling problems are possible • as shown in the present study, nonlinear behavior can be accommodated in the modeling process in a straightforward manner, albeit at more computational expense. A number of extensions and generalizations of the hierarchical modeling concept represent challenging but critical areas for future work and some of these are currently under study. These include the development of adaptive modeling strategies more integrated with the homogenization steps to allow for systematic modeling of multiscale phenomena. These could be used to control multiple (intefÉal) iterations of the HDPM strategy to address many different levels of scales present in many applications. More work is needed to refine our approach to local error estimation and to study the limitations of the approach for model error analysis described here. Finally, modeling of a wide range of nonlinear phenomena is within reach, including a more general simulation of progressive damage accumulation, crack initiation and propagation, life cycle prediction and micromechanical effects, such as local diffusion phenomena. We plan to explore these issues more deeply in future works.

  ) {v: v EH (fJ), v r. = O }. The bilinear and linear forms are defined as and

  ) = t(x) xEr;. 

THEOREM 3 . 2 .

 32 Let u and u 0 be as above. Then, the following estimate holds II ) = llu u I L2(m � --I E. ..¢0 Vu L2<m al where a 1 is defined in (2) and C (fl) is a positive constant depending on the domain fl. (14) PROOF. It can be easily verified that the homogenization error e 0 is the solution to the following problem:

THEOREM 3 . 3 .II

 33 Let u and u 0 be as above. Define the stress states associated with these solutions as follows: u o!IL 2 (m ::s;;: 2 ya,,( where a u is defined in (2).PROOF. First, we decompose the difference between u and u 0 ,u u 0 = EVu-E 0 Vu 0 +EVu 0 -EVu 0 = EVe 0 + E.1 0 Vu 0 .U s1ng the triangle inequality, ll uu olli2<m ::s;;: II EVe 0 IIL 2 (fJ) + IIE.,o Vu on the right-hand side of (25) can be bounded above, since under the assumptions in place E has a well-defined square root. II EVe 0 ll�2<m2 L EVe 0 : EVe 0 dx = L (✓EVe 0 ) :E(✓EVe 0 )dx ::s;;: a. L ( ✓EVe 0 ): ( ✓EVe 0 ) dx � a u L Ve 0 : EVe 0 dx L2<m ::s;;:ya,,(. The second term on the right-hand side of (25) can also be bounded similarly: II E .,o Vu 0 ll�2cm = L E., 0 Vu 0 : E.1 0 Vu 0 dx � a. L ., 0 Vu 0 :E., 0 Vu 0 dx 2 ::s;;:a ., ( ⇒ II E -1o Vu 0 IIL 2 WJ ::s;;: ya,, ( Finally, combining (25), (27) and (28), the assertion follows . □

  Fig. I. A non-overlapping partition of the domain.

  displacements on I;, are prescribed as ii� l r. = u�l r. , i.e. the homogenized solution is used as Dirichlet data u k ., Iu on the I;, portion of each subdomain's boundary. In particular, this data is used on the interior part of each subdomai�' s boundary given by a@\afl As a result, the local problems are uncoupled. Finally, a global solution is constructed from the local solutions in the following manner N( £1') -o def o + 'v ep(-o U U L..J @k Uk (36) k=I which will be referred to as the HDPM solution. Clearly, this new solution is continuous across subdomains.

REMARK 4 . 1 .

 41 While in principle, it is possible to use traction boundary conditions to solve the local problems, the need for fl ux-equilibration introduces certain difbculties. Moreover, the final solution may not be continuous across subdomains. The use of Dirichlet boundary conditions obviates these complications and allows for easy parallel solution of the local problems[11].

J o 0 e

 0 It then follows that w exists and is unique. The dual problem (55), however, is as difficult to solve as the original problem[START_REF] Fish | Multigrid method for periodic heterogeneous media. Part 1: Convergence studies for one-dimensional case[END_REF]. A natural way to simplify this problem is to solve the homogenized dual problemFind w O E V(il) such that @ 0 (v, w 0 ) = L(v) 'fl V E V(il) .It immediately follows that the modeling error in the infhuence function e 0 def w -w O satisfies with f °(v) = -L Vw 0 : E!J 0 Vv dx.We also note that e 0 satisfies the following bound (analogous to[START_REF] Zohdi | Error estimation and adaptive methods for the analysis of elastic structures composed of highly heterogeneous media[END_REF]E<m w w E(m � /; n !1 0 Vw : E!J 0 VfÍ dx .Next, we note that L(e 0 ) = fû(e 0 , w) = @(e 0 , e) + [?i;J(e
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 23 Fig. 2. Schematic of the composite bar partitioned into 16 subdomains. Subdomain numbering is also shown,

  It is found that CH / ll u 0 IIE<m 0.604 and ,;,

IIE

  (m 0.065. Thus, the HDPM can dramatically improve the homogenized solution.
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 84 Fig. 4. hp mesh for the homogenized problem with 7407 degrees of freedom.

Fig. 5 .

 5 Fig. 5. hp mesh for subdomain I with 93 261 degrees of freedom.
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 678 Fig. 6. Von-Mises stress field on the exterior of composite body. Maximum stress predicted by the homogenized problem is 170.3 MPa.

Fig. 9 . 10 Fig. 10 .

 91010 Fig. 9. (a) Conforming and (b) non-conforming meshes for computing {, and (.

Fig. 11 .

 11 Fig. 11. Schematic of (a) the composite cube and (b) the microstructure employed 'in. studying damage mechanics.

Fig. 12 .

 12 Fig. 12. Von-Mises stress distribution on the inclusions in subdomain 4 at iteration 0, ( a) View A and (b) View B.

Fig. 13 .

 13 Fig. 13. Von-Mises stress distribution on the inclusions in subdomain 4 at iteration I, ( a ) View A and ( b) View B.

Fig. 14 .

 14 Fig. 14. Von-Mises stress distribution on the inclusions in subdomain 4 at iteration 2, (a) View A and (b} View B.
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