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3 Regina Pikalyova, Yuliana Zabolotna, Dragos Horvath, Gilles Marcou, and Alexandre Varnek*

4 ABSTRACT: The development of DNA-encoded library (DEL)
5 technology introduced new challenges for the analysis of chemical
6 libraries. It is often useful to consider a chemical library as a stand-
7 alone chemoinformatic object�represented both as a collection of
8 independent molecules, and yet an individual entity�in particular,
9 when they are inseparable mixtures, like DELs. Herein, we

10 introduce the concept of chemical library space (CLS), in which
11 resident items are individual chemical libraries. We define and
12 compare four vectorial library representations obtained using
13 generative topographic mapping. These allow for an effective comparison of libraries, with the ability to tune and chemically
14 interpret the similarity relationships. In particular, property-tuned CLS encodings enable us to simultaneously compare libraries with
15 respect to both property and chemotype distributions. We apply the various CLS encodings for the selection problem of DELs that
16 optimally “match” a reference collection (here ChEMBL28), showing how the choice of the CLS descriptors may help to fine-tune
17 the “matching” (overlap) criteria. Hence, the proposed CLS may represent a new efficient way for polyvalent analysis of thousands of
18 chemical libraries. Selection of an easily accessible compound collection for drug discovery, as a substitute for a difficult to produce
19 reference library, can be tuned for either primary or target-focused screening, also considering property distributions of compounds.
20 Alternatively, selection of libraries covering novel regions of the chemical space with respect to a reference compound subspace may
21 serve for library portfolio enrichment.

1. INTRODUCTION
22 Chemical library design and evaluation have always been one
23 of the central aspects of computer-aided drug design. Over the
24 last decades, the main efforts in chemoinformatics were
25 directed toward different ways of chemical structure encoding,
26 various approaches for chemical space representation, visual-
27 ization, and efficient ways to characterize the chemical
28 composition of analyzed collections. Considering that at the
29 time medicinal chemists were operating with only a few
30 compound collections, a given library (in-house stock or
31 preferable supplier catalog) was a space of exploration, and
32 underlying compounds were the objects in this analysis. Later
33 on, advances in organic chemistry (e.g., parallel synthesis)
34 increased significantly the number of distinct chemical
35 collections, and the compound population in those libraries
36 exploded, especially so for tangible libraries. However, the
37 association of a given molecule to a “classical” compound
38 library was still somewhat arbitrary�one collection could be
39 enhanced using compounds from the other or even a new
40 library could be created by cherry-picking compounds from
41 numerous different collections. Moreover, considering that
42 each compound was synthesized and biologically tested
43 separately, it was logical to only evaluate libraries at the level
44 of individual molecules.
45 With time, combinatorial chemistry has advanced to the
46 point that it is now possible to simultaneously synthesize a

47mixture containing millions of compounds in a few simple and
48easily automatable steps. A variety of encoding methods have
49been developed, enabling the recording of specific reaction
50rules and building block (BB) combinations defining a
51mixture.1 Affinity selection combined with decoding techni-
52ques allowed for the simultaneous biological screening of ultra-
53large compound collections contained within a single
54Eppendorf tube. It is from the background of these
55advancements that DNA-encoded library (DEL) technology
56emerged and recently became an attractive tool for hit
57identification successfully applied at the early stages of drug
58discovery.2,3 DEL technology enables much faster and cheaper
59identification of potential hits as opposed to widely used but
60quite expensive high-throughput screening. DEL technology is
61associated with various challenges�both experimental and
62computational. One of them is related to the fact that a library
63of DNA-encoded molecules is synthesized and tested as a
64whole. It can, of course, be designed by thorough choice of its
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65 BBs or pooling multiple DELs together�but, once the mixture
66 is produced, it cannot be broken down to individual molecules
67 any longer. This means, it is impossible to exclude or replace
68 some of the compounds from the DEL once the synthesis is
69 completed. Hence, it is no longer sufficient to analyze it only
70 on the level of individual molecules, but a global representation
71 of a compound library is needed.
72 Here, we wish to formalize the concept of chemical library
73 space (CLS)�a vector space in which residing items are entire
74 chemical libraries. The key point here is the chemically
75 meaningful definition of libraries as mappable objects�a
76 generalization of standard chemical cartography. Several
77 approaches of the representation and comparison of chemical
78 libraries were proposed so far. For example, in the approach of
79 Fourches et al.,4 each library was represented as a similarity
80 graph (chemical space network) where two nodes�individual
81 compounds�are connected if the similarity between them is
82 higher than a given threshold. To compare two libraries,
83 connectivity indices are calculated for the corresponding graphs,
84 allowing discrimination between similar versus dissimilar pairs
85 of datasets. However, the explicit pairwise compound-to-
86 compound similarity calculations limit the application of this
87 approach to rather small datasets. To solve this problem,
88 modification of the fingerprint-based similarity metrics for
89 library comparison, avoiding calculation of the entire similarity
90 matrix, was introduced by Miranda-Quintana et al.5 Proposed
91 extended similarity coefficients were then applied for the
92 visualization of the similarity relationships between libraries via
93 chemical library networks6 by analogy to above-mentioned
94 chemical space networks.
95 The aforementioned methods, however, do not intuitively
96 explain why some libraries are said to be similar. Indeed, a
97 visual pairwise inspection of compounds in the connected
98 nodes of chemical space networks answers the question for
99 individual molecules, but not for compound libraries. One of

100 the methods that address this problem is a consensus diversity
101 plot where library position in the CLS is defined by the pair of
102 diversity values�(i) the median of the pairwise Tanimoto
103 scores over intra-library compound pairs and (ii) the fraction
104 of scaffolds retrieving 50% of the library.7 The relative size of
105 the collection is represented by the size of the circle
106 representing a data point, while its color is defined by the
107 third diversity metric�the mean of the intra-set Euclidean
108 distance of six physicochemical properties. Such plots are easily
109 interpretable, as each of the values in the vector has a particular
110 chemical meaning. However, the comparison of the internal
111 diversity of libraries instead of the similarity between them is
112 much less informative: a library can be internally highly diverse
113 but have a very similar chemical composition to another
114 equally diverse library. In another library representation by a
115 Database Fingerprint (DFP), proposed by Fernańdez-de
116 Gortari et al.,8 the on-bits correspond to the most frequent
117 fragments occurring in numerous molecules from the analyzed
118 library. Even though the DFP allows the incorporation of the
119 main structural information of the library, it ignores finer
120 differences between the collections that might lie in the
121 distribution of the less frequent structural fragments or mutual
122 occurrence and rearrangements of several fragments in
123 different groups of compounds. There is also no possibility
124 to include property information along with the structural one
125 into the comparison using DFPs.
126 To solve the foregoing limitations of existing methods, here
127 we introduce and test several more complex vector-based

128representations for compound libraries that allow us to
129compare numerous large collections (in our case DELs)
130from different perspectives and produce intuitive visualizations
131of the CLS. They all are based on generative topographic
132mapping (GTM)�a probabilistic dimensionality reduction
133method.9 For each mapped item of the initial, high-
134dimensional descriptor space, GTM provides a vector R
135(“responsibility vector”) rendering its fuzzy levels of assign-
136ment to the k nodes of the 2D map grid. The sum of R vectors
137over all members of the library provides a cumulated
138responsibility vector (CRV), a “baseline” representation of
139the library/mixture as a whole. Different refinements of this
140vector are introduced here:
141(i) Normalized CRV (Φ), as a library-size independent
142library descriptor
143(ii) Library-modulated CRV (Λ)�representing a library
144with respect to its overlap with a reference collection
145(iii) Property-modulated CRV (Ω)�introducing property-
146centered library representation considering both chemo-
147type and property distributions over the chemical space.
148In the present article, these vectors were used to encode the
149previously generated 2.5k different DELs.10 The ability of each
150of the vectors to accurately represent and identify DELs closest
151to the reference library was evaluated and compared to
152previous results obtained using responsibility patterns (RPs).10

153Based on the values from each of the introduced library vectors
154(Φ, Λ and Ω), GTM landscapes (described in detail in the
155Methods section) were created enabling visualization of the
156chemical space of a particular library from different
157perspectives�either from structural or property point of
158view and which allowed us to chemically interpret the
159similarity ranking results.
160In more general terms, this work showcases how to exploit
161the flexibility of GTM technology to define inter-library
162similarity metrics based on different criteria�from those based
163on plain library overlap to scores that are fine-tuned by external
164information specific to each library’s space zone, as captured in
165the herein proposed CLS vectors. Including this external
166information (such as the mean of calculated or measured
167property values) is easy and computationally efficient, because
168it is assigned to the “intrinsic” zones of the chemical space (the
169GTM nodes), not to the individual molecules of each library.
170This methodology allows one to quickly decide how much a
171pair of libraries specif ically overlap within their chemical space
172zones characterized by desired physicochemical parameters,
173rather than how well they overlap “in general”.

2. DATA
1742.1. ChEMBL. The ChEMBL dataset (version 28) was used
175here as a reference library. It was downloaded and standardized
176in our previous work10 according to the approach implemented
177on the Virtual Screening Web Server of the Laboratory of
178Chemoinformatics at the University of Strasbourg, using the
179ChemAxon Standardizer.11 This procedure included dearoma-
180tization and final aromatization (heterocycles like pyridone are
181not aromatized), dealkalization, conversion to canonical
182SMILES, removal of salts and mixtures, neutralization of all
183species except nitrogen(IV), and generation of the major
184tautomer according to ChemAxon. It resulted in 1,853,565
185unique ChEMBL compounds. This set is extremely diverse: for
186example, molecular mass spans a range between 7 (Li+, a
187normorhythmic agent) and 2255 g/mol. In principle, there is



188 no limitation in size or complexity for molecules in DELs. In
189 practice, however, given the peculiar constraints of the
190 synthesis which may not work with arbitrarily complex BBs,
191 it is clear that a part of the chemical space spanned by
192 ChEMBL is out of the scope of any practicably achievable
193 DEL. Hence, ChEMBL was filtered to exclude such molecules.
194 The following filtering rules were deduced (herein tentatively
195 named DEL-likeness rules), with cutoffs chosen to encompass
196 more than 90% of all compounds in all 2497 herein considered
197 DELs:

198 • 250 ≤ MW ≤ 750;
199 • log P ≤ 7;
200 • number of H-bond acceptors ≤ 15;
201 • number of H-bond donors ≤ 8;
202 • number of rotatable bonds ≤ 15.

203 After filtering, 13% of ChEMBL compounds were discarded.
204 The remaining 1,605,370 molecules were used as a reference
205 collection in this analysis.
206 2.2. DNA-Encoded Libraries. 1M representative subsets
207 for all 2497 DELs were generated in our previous work10 with
208 the help of the eDesigner tool.12 This was done using
209 commercially available BBs from eMolecules and Enamine that
210 satisfy the Ro213 and eDesigner built-in DNA-compatibility
211 filters. The enumerated compounds were standardized in the
212 same way as the ChEMBL dataset.

3. METHODS
213 3.1. Generative Topographic Mapping. In chemo-
214 informatics, each molecule can be represented as a data
215 point defined by a vector of numerical values called
216 descriptors. Molecules populate a chemical space, which is a
217 high-dimensional vector space. To analyze and comprehen-
218 sively visualize it, dimensionality reduction methods are
219 needed. GTM14−16 was the herein-used dimensionality
220 reduction tool. It works by fitting a manifold (flexible
221 hypersurface) into the multidimensional descriptor space
222 populated by “frame” items, followed by the projection of
223 the data points onto the thereupon defined 2D latent space
224 grid.
225 The manifold is defined by a grid of Gaussian radial basis
226 functions. It is fitted to the data so as to approximate the data
227 distribution of the training set and to maximize its likelihood
228 (i.e., minimize the distance between the manifold and training
229 data “frame” points). In more detail, the GTM algorithm
230 training process proceeds by “bending” the manifold to pass
231 through the densest regions of the data cloud formed by the
232 frame set. Items are then projected from the multidimensional
233 space onto the manifold by association to several closest grid
234 nodes. Next, the manifold is unfolded to obtain a 2D map. The
235 degree of association of each item (molecule or reaction, in
236 chemoinformatics) to a node of the map is called a
237 “responsibility”. Each item is described by a responsibility
238 vector (real number vector summing up to 1 over all nodes)
239 that is used to define a projection of the molecule on the map.
240 Summing up the responsibility values in each node over all
241 molecules in the analyzed collection produces a cumulated
242 responsibility vector (CRV) characterizing a whole library.
243 Different types of GTM landscapes can be created for the
244 same library, where properties of the compounds projected
245 onto each node are rendered using a color code. Three major
246 types of landscapes were used in this study:

247(1) Density landscape�created by coloring the GTM in
248accordance with the quantitative distribution of
249compounds over the nodes
250(2) Library-comparative landscape�obtained by coloring
251the GTM by a proportion of compounds of the analyzed
252library in the node’s overall population (populated by
253both analyzed and reference library molecules)
254(3) Property landscape�obtained by coloring the GTM by
255responsibility weighted average of compound property
256values for each node
257Using these landscapes, GTM can be applied for chemical
258space analysis, library comparison, or even virtual screen-
259ing.15,17

260In the present work, the first Universal GTM (UGTM)14,17

261was used for the analysis of the 2497 DELs and filtered
262ChEMBL28. It was built using ISIDA atom sequence counts
263with the length of 2−3 atoms labeled by CVFF force field types
264and formal charge status as descriptors.18 Since this map was
265trained to predict the biological activity of molecules against
266236 targets, it is suitable for the analysis of biologically relevant
267chemical space. It can serve not only for predictions of
268bioactivity but also for the analysis of large chemical libraries in
269the context of medicinal chemistry.15

2703.2. Chemical Library Space. The conventional way of
271library analysis consists of a detailed investigation of its
272compound space where each compound is defined by
273molecular descriptors�in our case ISIDA fragment counts.18

274These fragments composed of elements of the molecule and
275their combinations define molecular properties. However, the
276structural fragment level is too detailed for characterizing the
277whole library. It makes little sense to build a cumulated count
278of all fragments seen in the members of a library because this
279vector loses the key information on how those fragments were
280initially distributed in individual compounds. In order to
281generalize the structural information of the library, one way
282would be to somehow encode the “chemotype” counts�the
283number of compounds of a particular “chemotype” present in a
284library. However, the detailed structural analysis of the large
285compound collection can be very computationally demanding,
286and the notion of “chemotype” is intrinsically vague and
287context-dependent.
288Hence, in this work, we propose several methods of chemical
289library encoding derived using GTM. Since the latter preserves
290the topology of the initial space upon the dimensionality
291reduction, it is considered for the analyzed library:
292(i) zones of the map are associated with predominant
293“chemotypes”15,19 as implicitly defined by the highly
294relevant fuzzy clustering mechanism of the GTM
295approach
296(ii) cumulated density for those zones implicitly reflect the
297chemotype distribution, without the need to explicitly
298predefine “chemotypes”.
2993.3. Chemical Library Encoding Methods. Several ways
300to use GTM responsibilities for library encoding are described
301in more detail below�responsibility pattern fingerprints (Γ),
302responsibility pattern count vectors (Γw), and several types of
303modified CRVs (Φ, Λ and Ω).
3043.3.1. Responsibility Pattern Fingerprints (Γ) and Vectors
305(Γw). Due to the probabilistic nature of GTM, a position of a
306compound on the map is defined by a probability distribution
307over the nodes, which, in turn, could be encoded by a
308responsibility vector. Therefore, two different yet similar



309 compounds may not have exactly the same responsibility
310 vector. However, similar compounds still are projected onto
311 the map in a similar manner�according to a RP20

312 representing discretized responsibility vector according to eq 1

= [ × + ]rrp 10 0.9ik ik313 (1)

314 where [] means truncation, rpik is the RP value for compound i
315 in the node k, and rik is responsibility value for compound i in
316 the node k
317 It follows from eq 1 that responsibility values smaller than
318 0.01 are reassigned to zero, and all others�to integer numbers
319 from 1 to 10. Molecules situated close to each other in N-
320 dimensional descriptor space and having slightly different
321 responsibility vectors may have the same RP. These
322 compounds usually share the same scaffold or substantial
323 (connected or disconnected) maximum common substructure,
324 or pharmacophore.21 Thus, in a way, an RP could be associated
325 with a prevalent “chemotype”.
326 To encode a compound library using RPs, a library
327 responsibility pattern fingerprint (Γ) and RP count vector
328 (Γw) are suggested. Γ is a binary vector encoding the presence
329 or absence of a particular reference RP in the analyzed library,
330 and Γw is a vector with numerical values corresponding to the
331 number of reference library compounds associated with each
332 common RP present in both libraries. A schematic

f1 333 representation of the Γ and Γw calculation is given in Figure 1.
334 3.3.2. Normalized CRVs (Φ). A CRV = (c1,c2,...,ck) is the
335 vector encoding a library by the sum of responsibility values
336 over all molecules of the library in each node of the map, as
337 shown in eq 2. In other words, to some degree, this vector
338 allows the encoding of a library by the number of compounds
339 associated with each node of the corresponding GTM plot.
340 Thus, the CRV mathematically describes compound distribu-
341 tion over the 2D map and consequently over the chemical
342 space of the library that this map visualizes. Considering that
343 each area of the map is populated by a particular prevailing
344 chemotype, the CRV is a crude indirect way of assessing the
345 occurrences of different chemotypes in the library without
346 actually defining them.

=c rk
i

N

ik
347(2)

348where rik is responsibility value of the molecule i in the node k
349The CRV is intrinsically dependent on the size of the library
350it encodes. Therefore, when collections of different sizes are
351compared in a context in which size differences are not
352relevant, ck must be normalized by library size N according to
353eq 3. The resulting normalized CRV (Φ) encodes relative
354compound distribution over the chemical space of the analyzed
355collection.

= c
Nk

k

356(3)

3573.3.3. Library-Modulated CRV (Λ). So far, the CRV and Φ
358consider all the chemical space zones (nodes) to be equally
359important in describing the library. However, some nodes may
360be more important�for example, the ones found to be highly
361populated by reference library compounds. For this purpose,
362the CRV of the analyzed library (a) can be modulated with
363respect to the compound distribution of another reference
364collection (r). The resulting library-modulated CRV (Λ) can
365be computed from the Φ of both collections, by calculating the
366fraction of compounds of the analyzed library in the total
367population of each node, as shown in eq 4. In Λ, a value Λk = 0
368is assigned to all empty nodes in both analyzed and reference
369libraries, whereas for all non-empty nodes 1 ≤ Λk ≤ 2 vary as a
370function of the fraction of compounds from the analyzed
371library in a given node. Nodes populated exclusively by
372compounds from r and a have value = 1 and 2k ,
373respectively, whereas mixed nodes containing compounds
374from both libraries have values in the range 1 < Λk < 2.

= +
+

a
a r

1
( )

( ) ( )k
k

k k 375(4)

376where Λk is Λ value in a given non-empty node k for analyzed
377library a, whereas Φk(a) and Φk(r) are normalized cumulated
378responsibilities in the node k for the analyzed and reference
379library, respectively.

Figure 1. Summary of the RP-based library representations. The Γ values for a particular library are assigned based on the presence or absence of a
certain RP in the reference library, and the Γw values represent the counts of reference library compounds covered by this RP.
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380 When aiming to maximize representation and coverage of
381 the reference collection by the analyzed library, the ideal case
382 would be an Λ with = 0k for the fully empty nodes and
383 = 1.5k (corresponding to equal representation of both
384 reference and analyzed libraries) in all occupied ones. This
385 “ideal” vector can thus be used as a reference in Tanimoto
386 calculations for ranking libraries based on Λ.
387 3.3.4. Property-Modulated CRV (Ω). If the analysis of CLS
388 should be performed in the context of some property or
389 biological activity of underlying compounds for each library,
390 the property-modulated CRV (Ω) can be used. Ω is composed
391 of the mean property values for each node calculated according
392 to eq 5.

=
•= P r

ck
i
N

i ik

k

1

393 (5)

394 where Ωk is the mean property value in the node k and Pi is the
395 property value for the compound i

f2 396 Figure 2 shows a simplified scheme describing links between
397 modified CRVs and related GTM landscapes. As soon as the
398 compounds are projected on the map, the three types of
399 landscapes�density, library comparative, and property land-
400 scapes�are generated, followed by preparation of related
401 vectors Φ, Λ, and Ω using, respectively, the density, libraries
402 ratio or mean property value in each node. Each of these
403 vectors allows encoding a chemical library as an object in the
404 high-dimensional CLS.
405 3.4. Similarity Relationships between Libraries in the
406 CLS. To define similarity relationships between libraries in the

407CLS, various scores based on RP-based representation can be
408suggested. A score assessing the coverage of a reference library
409r by a candidate library a can be defined in terms of the binary
410Γ as the fraction of RPs of a reference library also present in a.
411Considering the binary nature of Γ, the coverage score is the
412number of on-bits common for two libraries divided by the
413total number of on-bits in the reference collection; see eq 6.

=a r
a r

r
Coverage( , )

( ) ( )

( )
i i i

i i 414(6)

415where the denominator simply stands for the total number of
416RPs encountered in the reference and Γi(a) is a value (1 or 0)
417in the Γ of the analyzed library corresponding to the i-th RP.
418However, this coverage score does not account for the
419number of compounds corresponding to each RP, although
420different RPs can be populated differently. This means that the
421high RP coverage does not necessarily imply high compound
422coverage. To solve this problem, a weighted RP coverage score
423can be defined as the fraction of compounds of a reference
424library that corresponds to the RPs present in both analyzed
425and reference libraries.

=a r
r a

N
wCoverage( , )

( ) ( )i i i

r

w

426(7)

427where Γwi(r) is the number of compounds from the reference
428library r corresponding to i-th RP and Nr is the total number of
429compounds in the reference library r.

Figure 2. Scheme depicting how each of the introduced herein library encodings (Φ, Λ, and Ω) are derived from the GTM for a particular
compound library.
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430 Notice that both coverage and weighted coverage scores
431 were used in our previous work10 for the comparison of virtual
432 DEL collections with the ChEMBL database.
433 For the CRV-based representations (Φ, Λ, Ω), a pairwise
434 Tanimoto coefficient is a reasonable estimation of libraries’
435 similarity

=
+ ·

Tc a r
v a v r

v a v r v a v r
( , )

( ) ( )

( ) ( ) ( ) ( )
k
K

k k

k
K

k k
K

k k
K

k k
2 2

436 (8)

437 Here, v is a chosen CRV-based representation (v = Φ, Λ, Ω),
438 and K is the total number of nodes.

4. RESULTS AND DISCUSSION
439 The herein proposed library encoding vectors Φ, Λ, Ω,
440 ,and iw provide different views of the CLS. To investigate
441 their usefulness, the pool of 2.5k previously generated DELs10

442 was used. Three case studies were performed. First, we
443 analyzed how proposed encodings and similarity metrics
444 handle the comparison of a large 88 M DEL with its 1 M
445 representative subset. The second case study addresses the
446 selection of the “optimal” DEL for the primary screening when
447 no or little information about the biological target is known.
448 The goal was to identify a DEL that covers “biologically
449 relevant” space (represented by ChEMBL) to the highest
450 extent. For this purpose, 2.5k DELs were compared to
451 ChEMBL (as a reference collection) in the CLS defined by
452 Γ, Γw, Φ, and Λ. In the third case study, the property-focused
453 analysis of the libraries was performed using the Ω encodings.
454 4.1. Representative DEL Subset vs Its Parent Library:
455 A Test Study of Expected Near-Perfect Overlap. In our
456 previous study,10 representative sets of each of the 2.5k DELs
457 were generated using random sampling of BBs in the
458 eDesigner12 tool and not the full libraries. Such a sub-library
459 should be very similar to the entire DEL and cover virtually all
460 of its chemical space. Therefore, overlap analysis of a
461 representative DEL subset with respect to its parent library is
462 a baseline case for illustrating how well each of the encodings
463 reflects its close relationship.
464 For this purpose, a 3BB DEL2568 based on the aldehyde
465 reductive amination, Migita thioether synthesis, and amine
466 guanidinylation was selected. The coverage of the entire 88M
467 DEL2568 by its representative subset or its similarity was
468 calculated using each of the selected encodings (Γ, Γw, Φ, and

f3 469 Λ). Figure 3 provides a visualization of the chemical space of
470 those two libraries. Relative compound distribution over the
471 maps is almost identical, which backs up the claim of
472 representation of the subset.

473 t1From Table 1, it appears that coverage based on Γ is very
474low�only 9% of RPs present in the entire DEL library are

475covered by the 1M representative set. However, Γw coverage
476shows that those 9% of RPs correspond to 87% of molecules,
477which means that the subset lacks very rare (but numerous)
478RPs, all while covering “mainstream” chemotypes from the full
479collection. It is interesting to witness a combinatorial library
480(sharing a common “scaffold” defined by the underlying
481chemistry) concentrating 87% of its members into 9% of the
482spanned chemical space. This is not unexpected�combina-
483tions of relatively “exotic” and rare BBs result in “exotic” but
484rare products.
485The similarity between those two collections was also
486calculated using CRV-based representations�Φ and Λ. In the
487latter case, the Λ vector of the 1M subset was created by
488calculating the ratio of molecules from the representative
489subset with respect to the reference (full 88M collection) in
490each node of the map. It was then compared to the “ideal” Λ
491where each node occupied by the reference 88M library has a
492value Λk = 1.5, which corresponds to the perfect representation
493of the full library by the subset (see details in the Methods
494section). Tanimoto coefficients calculated for CRV-based
495representations are given in Table 1. Those values being
496close to the maximum illustrate expected (and observed in
497Figure 3) high similarity between compound distribution in
498the chemical spaces of those libraries.
499Both CRV-based representations provide close to the
500maximum similarity values between the library and its
501representative subset, as expected. RP-based representations,
502on the other hand, provide a stricter comparison with an
503accent on the missing reference RPs (chemotypes) in the
504analyzed library. This example demonstrates the importance of
505using both the Γ- and Γw-based coverage scores. While the first
506one shows how many “chemotypes” are covered, the second
507one puts this number into the perspective of their compound
508population and provides a compound-weighted coverage of the
509chemical space.
5104.2. ChEMBL vs DEL Comparison in the CLS Defined
511by Different GTM-based Encodings. As in our previous
512work,10 here we focused on the case of primary screening
513where the selected DEL needs to cover the biologically
514relevant chemical space to the highest extent. Technically, such
515a task consists of ranking the 2.5k DELs by their similarity (or
516coverage) to a reference collection�here, the ChEMBL
517database.
5184.2.1. Library Comparison by Responsibility Distribution.
519Coverage and Tanimoto similarity coefficients for each of the
5202.5k DELs were calculated with respect to the ChEMBL library
521using each of the encodings (Γ, Γw, Φ, and Λ). The results are
522 f4combined in Figure 4. Two libraries�DEL2568 and DEL271
523having the highest and the lowest weighted ChEMBL coverage

Figure 3. Density landscapes of the entire 88M DEL2568 and its 1M
representative subset.

Table 1. Coverage and Similarity of the Full DEL2568 by Its
Representative Subset

CLS encoding coverage of the full DEL2568 by the 1M subset

Γ 0.09
Γw 0.87

CLS
encoding

Tanimoto similarity between the full DEL2568 and 1M
subset

Φ 0.99
Λ 0.98
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524 based on Γw�were selected as points of reference, to trace
525 their scoring with other representations. Both Γ-based
526 coverage (Figure 4A) and Φ-based Tc (Figure 4C) adopt
527 values within a similar and rather low value range: from 0.01 to
528 0.4. This highlights that DEL compound distribution is quite
529 different from that of ChEMBL, and the likelihood of finding
530 the ChEMBL RPs in DELs is rather low. However, the Γw-
531 based coverage shows that those RPs that are covered by DELs
532 in fact correspond to the prevailing compound population of
533 ChEMBL because observed values of coverage almost doubled
534 with respect to Γ-based coverage (Figure 4B). In all three
535 cases, the two “marker” libraries, nevertheless, keep their
536 relative rank: DEL2568 is always ranked in the top 5−10% of
537 libraries and DEL271�in the last 10−15%. As expected,
538 tuning the overlap criterion by means of the usage of different
539 CLS vectors should never override the fundamental “core”
540 library similarity, distinguishing between libraries containing
541 closely related molecules from those which do not.
542 In the case of Λ-based similarity, the Tc values are spread
543 within a narrow range: from 0.8 to 0.92 (Figure 4D). The Λ-
544 based similarity spectrum is intrinsically different from those
545 calculated using other encodings. Since vectors for all libraries
546 are modulated with the CRV of the same reference collection,
547 the similarity value between two Λ is always higher than that in
548 the case of Φ, for example. However, the position of DEL2568
549 and DEL271 in Figure 4D is similar to the other three cases.

550Thus, even though being shifted toward higher values,
551similarity distribution in the CLS defined by Λ follows the
552same trends as in other library spaces.
553For further analysis of the similarity relationships in the four
554proposed representations of CLS, all DELs were ranked with
555respect to the coverage of (or similarity to) ChEMBL. To
556simplify the analysis, here we analyze only five DELs: ranked
557the first, 50th, 100th, 1000th, and 2497th with respect to
558ChEMBL. For each of these five DELs, a density landscape
559showing compound distribution in the chemical space of the
560 f5library was created (see Figure 5). This figure shows that each
561of the representations ranks libraries differently�none of the
562libraries were selected as the best one by more than one
563representation. However, DELs having the same rank in
564different spaces (landscapes forming columns in Figure 5) still
565have very similar compound distribution over the map. Failure
566to consensually score one DEL as the best match for ChEMBL,
567in any CLS, is due to the fact that there are several DELs that
568might claim this title, and no single one is undoubtedly
569outstanding in terms of sharing related chemotypes with
570ChEMBL. Looking at the problem through the prism of
571multiple CLS definitions is evidencing this important aspect,
572that is, allowing for more flexibility in experimental setups. In
573this scenario, there is no particular reason to pick either of the
574DELs of column no 1 in Figure 5�a case in which extraneous
575parameters (availability, facility of synthesis, and cost) may be

Figure 4. Pairwise comparison of 2.5k DELs with ChEMBL using different representations and metrics: distribution of ChEMBL coverage scores
calculated using Γ (A) and Γw (B), and distribution of Tc between ChEMBL and each DEL calculated using Φ (C) and Λ (D).
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576 applied by the user to select either of these. Should a
577 consensual winner emerge from this analysis, selecting it at
578 higher costs over the others may make sense. Practically,
579 however, visual inspection shows that the first few hundred
580 DELs have similar density landscapes to the top-ranked
581 landscapes corresponding to the 100th or even 500th-ranked
582 library still match the landscapes in column 1 quite well.
583 Finally, yet importantly, within the top 100 DELs chosen by
584 each of the encodings, there are 32 DELs common to all four
585 encodings; within the top 500, this value rises to 273, and for
586 the top 1000 DELs, it reaches 713, which shows how well the
587 ranking by coverage or Tc based on four encodings correspond
588 to each other. For more details, see Figure S1 of Supporting
589 Information.
590 Even though each of the analyzed representations offers a
591 different DEL as the closest to ChEMBL (DEL2970,
592 DEL2568, DEL1847, and DEL845), they all appear to be
593 quite similar. Interestingly, all these libraries are three-cycled
594 DELs that were designed exclusively based on robust coupling
595 reactions�aldehyde reductive amination (all four libraries),
596 Ullmann-type N-aryl coupling (DEL2970 and DEL845),

597Migita thioether synthesis from thiophenols and arylbromides
598(DEL1847 and DEL2568), and carboxylic acid/amine
599condensation (DEL1847 and DEL845) (see Figure S2 of
600Supporting Information). The size of the full DELs is also very
601similar for those four libraries�slightly above 80M com-
602pounds. The reason for the high diversity of those collections
603and thus high coverage of (and similarity to) ChEMBL is due
604to the abundance and diversity of the purchasable BBs required
605for those reactions�amines, aldehydes, arylhalides, and
606carboxylic acids.10,22

607Libraries with the lowest rank�DEL1216, DEL271,
608DEL2266, and DEL3703�also have some design features in
609common. Their full size is much lower (between 1M and 5M),
610and they all have at least two heterocyclization steps in their
611design�aminothiazole and Larock indole synthesis were
612combined to form DEL1216, imidazole and Larock indole
613synthesis were used in DEL271 generation, and three
614heterocyclization steps (oxadiazole, triazole, and aminothiazole
615synthesis) were used both in DEL2266 and DEL3703 (see
616Figure S3 of Supporting Information). As is visible from Figure
6175, those collections have one (maximum two) density peak,

Figure 5. Density GTM landscapes of ChEMBL28 and selected DELs ranging from the most similar to the least similar to ChEMBL. DELs were
selected and ranked either by coverage scores (in the case of Γ and Γw) or Tanimoto similarity coefficients (in the case of Φ and Λ). Values of
either coverage or Tc are provided in red on each landscape. For all landscapes, the same color scale corresponding to the density distribution of
ChEMBL was used.
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618 which means that their diversity is much lower, and those
619 DELs can be considered as focused libraries containing very
620 similar compounds. This is explainable by the fact that
621 employing two heterocyclization steps in DEL synthesis means
622 that all compounds possess at least two identical hetero-
623 cycles�a consequently large scaffold�with diversity being
624 introduced only via their “ornaments”, by contrast to, say, an
625 amide formation in which everything but the −C(�O)NH−
626 moiety is variable.
627 The use of only heterocyclizations is convenient for
628 “focused” DEL synthesis, as the common scaffold generated
629 by the reaction represents a common signature of all library
630 members, which vary in terms of scaffold substituents only.23

631 This provides an excellent library for extracting structure−
632 activity relations and fine-tuning lead molecules, provided, of
633 course, that the focus around the chosen heterocyclic core
634 matches the actual chemical space zone favored by the target.
635 However, if the goal is to produce general-purpose DELs, it is a
636 safer option to use building-block-rich coupling reactions
637 instead because abundant BB classes exist. Many BBs already
638 contain necessary heterocyclic moieties,24 albeit not necessarily
639 connected to each other in a same way as they would be linked

640up in a heterocyclization synthesis-based DEL. Another option
641might be to use only one heterocyclization step combined with
642two coupling synthetic cycles. In this way, the diversity coming
643from coupling reactions can partially compensate for the
644presence of the same heterocycle in each molecule. An example
645of such design is DEL2806 (1000th library by Γ)�it combines
646imidazole synthesis with guanidine group formation from
647amines and Ullmann-type N-aryl coupling. All other DELs
648featuring from 1st to 500th in Figure 5 are based only on
649coupling reactions.
6504.2.2. In-Depth Analysis and Interpretability of Library
651Overlap. Overlap scores are useful for the rapid processing and
652ranking of large sets of candidate libraries, but a real
653understanding of overlap must go down to individual
654compound structure levels. The strength of this protocol is
655that the mapping used to define CLS vectors can implicitly
656support this approach. To illustrate that, the density landscape
657for DEL1847 that is the closest to ChEMBL according to Φ
658ranking was compared to the density landscape of ChEMBL
659 f6(Figure 6). DEL1847 is a three-step library based on aldehyde
660reductive amination with the NH2 group of the headpiece
661(2652 aldehydes), followed by the condensation of the same

Figure 6. Interpretation of the similarity between ChEMBL and DEL1847 via structural analysis of the density landscapes of those libraries. Areas
A1−A8 (labeled in white) correspond to the peaks of high density in ChEMBL space that were reproduced in DEL1847. Areas A9−A12 (labeled in
red) represent mismatched zones.
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662 amino-group with 21 bifunctional carboxylic acids containing
663 thiol group that on the third cycle reacts with 1630
664 arylbromides to form thioether bonds. The total size of the
665 library is around 90M.
666 In Figure 6, most of the density peaks of ChEMBL (A1−A8)
667 were reproduced in DEL1847. These areas contribute to the
668 similarity of those two libraries and make DEL1847 the most
669 highly scored by the Tanimoto coefficient (Tc = 0.38)
670 calculated based on Φ. Indeed, areas A1−A4 are covered by
671 both libraries, containing molecules of similar structural
672 features, even though DEL1847 compounds also have
673 thioether and amide groups in their structures. Nevertheless,
674 this similarity value is far from perfect, which can be explained
675 by mismatched density peaks between ChEMBL and
676 DEL1847. Namely, areas A9 and A11 are heavily populated
677 in the ChEMBL landscape, but rather moderately occupied in
678 DEL1847. The former area is populated by 2-aminothiazole-
679 containing compounds and is expectedly underrepresented in
680 DEL1847, as only 14 BBs used for its enumeration contain this
681 structural moiety (0.3% of all BBs). The same applies to area
682 A11, which is highly populated by pyridazinone/oxadiazolone-
683 containing amides in ChEMBL and underpopulated in the case
684 of DEL1847. Regions A10, A12 in ChEMBL are empty in
685 DEL1847. This is because these areas are populated by
686 complex natural products,10 and thus cannot be reproduced by
687 herein considered DELs.
688 The same analysis was performed for the most dissimilar one
689 to the ChEMBL library by Φ�DEL2266. This library is based
690 on three heterocyclization reactions�oxadiazole, triazole, and
691 aminothiazole synthesis�that provide 1.3M compounds in
692 total. As a result, each compound of the library contains the
693 same three cycles, which makes this library structurally highly
694 focused. However, there are no molecules in filtered

f7 695 ChEMBL28 of similar chemotypes. In Figure 7, highly
696 populated areas A1 and A2 in the DEL2266 landscape are
697 almost empty on the ChEMBL map, and the two libraries
698 almost do not overlap at all, which explains close to zero
699 similarity between them.

700Thus, by analyzing density landscapes for the selected pairs
701of libraries, it is possible to explain the similarity behavior in
702the CLS defined by Φ. The interpretation of the CLS defined
703by Λ can be performed by analyzing pairwise comparative
704landscapes featuring reference collection against each of the
705analyzed libraries.
7064.2.3. Property-Sensitive Library Comparison. A conven-
707tional way to analyze compound collections in terms of a
708particular physicochemical property is to build a frequency plot
709(histogram) showing the distribution of this property for all
710library molecules.25−28 This approach though has several
711drawbacks. First of all, there is a complete disconnection of
712such plots from the chemotype composition of the analyzed
713 f8collection. Figure 8 shows that both libraries closest and
714farthest to ChEMBL according to Γw ranking (DEL2568 and
715DEL271, respectively) have a very similar distribution of log P
716values, even though they strongly diverge in terms of
717composition. Moreover, compounds with a given property
718value (e.g., log P = 4) may be spread all over the map�they do
719not have to be similar simply because they share the same
720property value (Figure 8 on the right).
721By contrast, property-modulated Ω has two key advantages:
722being focused on specific chemical space zones populated by
723similar chemotypes, it does account for the chemistry “behind”
724the property values. The second key feature is that property-
725related information is provided via GTM property landscapes,
726thus it is directly associated with chemical space zones. In this
727way, Ω representation allows for dual libraries’ analysis and
728comparison where the most similar to the reference library
729collection simultaneously demonstrates both chemotype and
730property similarity.
731To further illustrate the advantages of Ω over the property
732histograms, the DELs most similar to ChEMBL were selected
733and compared using both approaches. First, each classical bar
734chart for H-bond acceptor count was encoded by a n-
735component vector, whose length corresponded to the number
736of bars in the property histogram. Then, based on these
737vectors, Tanimoto coefficients were calculated between each
738DEL and ChEMBL, and the most similar DEL2189 was
739 f9selected (see Figure 9A) with Tc = 0.95. The same was done
740by calculating the Tanimoto coefficient between each DEL and
741ChEMBL using the respective Ω, which led to the selection of
742DEL630 as the most similar one (Figure 9C) with Tc = 0.78.
743The Tc values for both DEL2189 and DEL630 calculated
744either based on the Ω or H-bond acceptor counts distribution
745vectors with respect to the filtered ChEMBL database are given
746 t2in Table 2.
747From Figure 9 it is visible that even though having similar
748global property distributions (illustrated in histograms), the
749local distribution of H-bond acceptor counts in each area of
750the chemical space of DEL2189 (Figure 9A) is dissimilar
751compared to the ChEMBL property landscape (Figure 9B)�
752there are almost no zones containing compounds with more
753than eight hydrogen bond acceptor atoms on the DEL2189
754landscape. Moreover, there are lots of ChEMBL areas that are
755empty on the DEL2189 landscape, thus the chemotype
756similarity of this library to ChEMBL is low (Tc(Φ) = 0.13).
757In contrast, DEL630 (Figure 9C) selected as the most similar
758to ChEMBL using HAC-Ω representation has a significantly
759larger colored surface which means higher chemotype
760similarity to ChEMBL (Tc(Φ) = 0.34). Furthermore, the
761local property distribution in this collection is much closer to
762ChEMBL than that in DEL2189. Indeed, there are many areas

Figure 7. Interpretation of the similarity between ChEMBL and
DEL2266 via structural analysis of the density landscapes of these
libraries.
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763 colored in the same way in both ChEMBL and DEL630

764 collections, which means that the average number of H-bond
765 acceptors in compounds populating these zones is very close.
766 Thus, Ω encoding allows us to take into consideration both
767 property and chemotype distribution in the chemical space of

768analyzed libraries. Different Ω can be created using any

769measured or calculated property if it is provided for every

770compound in analyzed libraries. Figure S4 renders the

771distribution of the similarity of DELs with respect to ChEMBL
772in six Ω-encoded CLS: MW, log P, H-bond acceptors and

Figure 8. (Left) Density landscapes of filtered ChEMBL, DEL2568, and DEL271; (center) classical bar chart visualization of calculated log P
distribution for all compounds from analyzed libraries; (right) compounds with log P = 4 (black dots) projected on the corresponding density
landscapes.

Figure 9. Hydrogen bond acceptor count (HAC) landscapes for (A) DEL2189 (selected by property distribution similarity), (B) reference library-
filtered ChEMBL28, and (C) DEL630 [selected by Tc(HAC-Ω) similarity].
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773 donors, number of rotatable bonds, and quantitative estimate
774 of drug-likeness (QED score). Using these values libraries can
775 be ranked according to their property-focused similarity to

f10 776 ChEMBL. As an example, in Figure 10 six QED landscapes of
777 DELs ranging from the most similar to the least similar to
778 ChEMBL in the CLS defined by QED-Ω are provided. As we
779 go from the first to the last DEL, there is a decrease in the
780 similarity between each of their QED landscapes and the QED
781 map of ChEMBL. The top-ranked collection�DEL45 is based
782 on only two reaction steps (aldehyde reductive amination
783 followed by imidazole synthesis reaction) and thus expectedly
784 contains a lot of drug-like compounds (97% of the whole
785 library). Thus, the QED values for this library are also higher
786 than for molecules enumerated via a combination of three BBs
787 in three cycle DELs, which we can see on the landscapes.
788 Figure 10 also shows that there are a lot of areas on the
789 ChEMBL and DEL45 QED landscapes that are colored in the
790 same way. This means, that DEL45 is reproducing not only
791 global but also local QED distribution observed in the
792 ChEMBL chemical space. The Tanimoto coefficient value
793 calculated in the Φ-based CLS (Tc = 0.25, DEL45 is 167th
794 most similar to ChEMBL by Φ among 2497 DELs in total)
795 and visual similarity between the density landscapes of those
796 libraries prove that QED-modulated Ω encodes not only global
797 and local property distribution but also chemotype distribution
798 for the analyzed libraries.

5. CONCLUSIONS
799In this work, we reported the development of several types of
800vector-based encodings for characterizing libraries of various
801sizes and compositions as a function of the relative distribution
802of molecules in the GTM-based chemical space. These
803representations constitute a new way of the analysis of
804combinatorial mixtures, such as DELs, that should be
805considered not only as an ensemble of compounds, but also
806as unified entities�mixtures whose composition cannot be
807easily changed once synthesized. Of course, the methodology
808generally applies in contexts where any library�cherry-
809pickable or not�needs to be regarded as a stand-alone entity,
810rather than a collection of individual molecules. With the
811encodings introduced here, it becomes possible to clearly
812define CLS where each collection is considered as a data point.
813Classical chemoinformatics allows for the management of a
814portfolio of compounds forming a core library (comparison to
815other compound sets, directed enrichment in new compounds,
816focused subset extraction for screening, etc.), whereas this
817methodology enables the management of a portfolio of libraries
818(selection of the best suited one for a screening campaign,
819enrichment with novel libraries�overlapping or not, etc.).
820From the example of ChEMBL vs DEL comparison, it was
821shown that all proposed CLS representations�responsibility
822pattern fingerprints (Γ), responsibility count vectors (Γw),
823normalized CRVs (Φ), library-modulated CRVs (Λ), and
824property-modulated CRVs (Ω)�are able to efficiently encode
825key information about the “chemotype” distribution of
826analyzed libraries, where “chemotypes” are implicitly defined
827by the intrinsic neighborhood compliance of GTMs. “chemo-
828types”, in this sense, may be common scaffolds including or not
829common key “ornaments”, common topological pharmaco-
830phores, or more loosely defined compound clusters of
831molecules with a specific global charge or outstanding size,
832etc. Similarity relationships in all five CLSs seem reasonable
833and chemically meaningful and allow adequate sorting of DELs

Table 2. Tanimoto Values for DEL2189 and DEL630
Calculated Either Using HAC-Ω or H-Bond Acceptor Count
Distribution Vectors with Respect to the Filtered
ChEMBL28 Database

Tc(HAC-Ω) Tc(property distribution)

DEL2189 0.34 0.95
DEL630 0.78 0.67

Figure 10. First row: On the left: QED landscape of filtered ChEMBL28. On the right: QED landscapes of DELs ranging from the most similar to
the least similar to ChEMBL sorted by their Tanimoto coefficients calculated based on their QED-Ω with respect to ChEMBL (in black). Second
row: On the left: density landscape of the filtered ChEMBL. On the right: corresponding density landscapes for selected DELs with their Φ
similarity values with respect to ChEMBL (in red).
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834 with respect to their similarity to ChEMBL. Therefore, any of
835 the proposed representations can be used for selecting an
836 optimal DEL for a particular task if the reference collection can
837 be defined. Here, ChEMBL was used to represent the drug-
838 relevant chemical space, and it was assumed that the ultimate
839 goal in general diversity library design is mimicking the
840 chemical space covered by it. This is of course debatable�in
841 real applications, experts may define reference libraries based
842 on much stricter and project-specific criteria. The present work
843 outlines a novel methodology for library selection and
844 comparison, which was shown to be senseful in all respects
845 concerning the analysis of herein considered DELs, but must
846 yet be proven useful in prospective library design�a goal
847 unfortunately way beyond the resources of many academic
848 research teams.
849 To analyze libraries with respect to the featured chemotypes
850 without paying attention to their population the best choice
851 would be Γ. If the population of the matched chemotypes in
852 only one of the libraries (reference collection) is important�
853 the coverage score based on the Γw should be used, thereby
854 ensuring that the candidate library matches the often-seen
855 patterns in the reference collection, and not its atypical
856 “singletons”. In case the compound distribution over the
857 chemical space of all analyzed collections is important, CLS
858 should be defined by the Φ, whereas Tanimoto similarity
859 should be used for library ranking. This strategy can also be
860 used in order to select a library that maximally reproduces
861 compound distribution from the chemical space of the
862 reference collection (e.g., selection of the optimal representa-
863 tive subset). Λ-based encoding is particularly useful when one
864 wants to compare a coverage of a reference dataset by some
865 other libraries. In this case, each library is encoded considering
866 its relative compounds distribution with respect to the
867 reference collection, so a special accent is placed on the
868 differences between the relative proportion of compounds
869 coming from analyzed and reference libraries without taking
870 into consideration the absolute popularity of each node.
871 Moreover, in case the accent of the analysis is placed on the
872 particular calculated or measured property, Ω can be used to
873 encode libraries with respect to both chemotype and property
874 distribution in the chemical spaces of these collections. In
875 contrast to classical property histograms that describe the
876 global distribution of the property values among compounds of
877 the whole library, Ω encodes local property distribution among
878 compounds belonging to different chemotypes and populating
879 particular areas of the chemical space.
880 The interpretability of the proposed vectors merits a special
881 mention here. Being GTM-based, Φ, Ω, and Λ can be
882 visualized as compound density, property, or comparative
883 landscapes for each library on a separate plot. By analyzing
884 landscapes of the selected pairs of libraries, the similarity
885 behavior in particular CLS can be investigated and interpreted.
886 For example, in the case of Φ-defined CLS, by comparing the
887 highest peaks on the density landscapes of two libraries it is
888 easy to identify which common chemotypes positively
889 contributed to the similarity, and which mismatched areas of
890 the chemical space decreased the Tanimoto value.
891 Now, when the performance of the proposed encodings and
892 the similarity behavior of libraries (objects) in corresponding
893 CLS are analyzed and described, it should be last but not least
894 noted that this CLS may also be visualized, like any “classical”
895 chemical space. In perspective, the meta-GTM approach29 is

896perfectly suited for the dimensionality reduction and visual-
897ization of CLS.
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