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ABSTRACT: The development of DNA-encoded library (DEL)
technology introduced new challenges for the analysis of chemical
libraries. It is often useful to consider a chemical library as a stand-
alone chemoinformatic object—represented both as a collection of
independent molecules, and yet an individual entity—in particular,
when they are inseparable mixtures, like DELs. Herein, we
introduce the concept of chemical library space (CLS), in which
resident items are individual chemical libraries. We define and
compare four vectorial library representations obtained using

(0]
olele ]
A
DB

T
Property.

= — Te (libl, lib2)

Chemical library Library similarity

evaluation

GTM landscapes Library representative

vectors

generative topographic mapping. These allow for an effective comparison of libraries, with the ability to tune and chemically
interpret the similarity relationships. In particular, property-tuned CLS encodings enable us to simultaneously compare libraries with
respect to both property and chemotype distributions. We apply the various CLS encodings for the selection problem of DELs that
optimally “match” a reference collection (here ChEMBL28), showing how the choice of the CLS descriptors may help to fine-tune
the “matching” (overlap) criteria. Hence, the proposed CLS may represent a new efficient way for polyvalent analysis of thousands of
chemical libraries. Selection of an easily accessible compound collection for drug discovery, as a substitute for a difficult to produce
reference library, can be tuned for either primary or target-focused screening, also considering property distributions of compounds.
20 Alternatively, selection of libraries covering novel regions of the chemical space with respect to a reference compound subspace may

serve for library portfolio enrichment.

1. INTRODUCTION

Chemical library design and evaluation have always been one
of the central aspects of computer-aided drug design. Over the
last decades, the main efforts in chemoinformatics were
directed toward different ways of chemical structure encoding,
various approaches for chemical space representation, visual-
ization, and eflicient ways to characterize the chemical
composition of analyzed collections. Considering that at the
time medicinal chemists were operating with only a few
compound collections, a given library (in-house stock or
preferable supplier catalog) was a space of exploration, and
underlying compounds were the objects in this analysis. Later
on, advances in organic chemistry (eg, parallel synthesis)
increased significantly the number of distinct chemical
collections, and the compound population in those libraries
exploded, especially so for tangible libraries. However, the
association of a given molecule to a “classical” compound
library was still somewhat arbitrary—one collection could be
enhanced using compounds from the other or even a new
library could be created by cherry-picking compounds from
numerous different collections. Moreover, considering that
each compound was synthesized and biologically tested
separately, it was logical to only evaluate libraries at the level
of individual molecules.

With time, combinatorial chemistry has advanced to the
point that it is now possible to simultaneously synthesize a

mixture containing millions of compounds in a few simple and
easily automatable steps. A variety of encoding methods have
been developed, enabling the recording of specific reaction
rules and building block (BB) combinations defining a
mixture." Affinity selection combined with decoding techni-
ques allowed for the simultaneous biological screening of ultra-
large compound collections contained within a single
Eppendorf tube. It is from the background of these
advancements that DNA-encoded library (DEL) technology
emerged and recently became an attractive tool for hit s6
identification successfully applied at the early stages of drug s7
discovery.”® DEL technology enables much faster and cheaper ss
identification of potential hits as opposed to widely used but s9
quite expensive high-throughput screening. DEL technology is 60
associated with various challenges—both experimental and 61
computational. One of them is related to the fact that a library 62
of DNA-encoded molecules is synthesized and tested as a 63
whole. It can, of course, be designed by thorough choice of its 64
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BBs or pooling multiple DELs together—but, once the mixture
is produced, it cannot be broken down to individual molecules
any longer. This means, it is impossible to exclude or replace
some of the compounds from the DEL once the synthesis is
completed. Hence, it is no longer sufficient to analyze it only
on the level of individual molecules, but a global representation
of a compound library is needed.

Here, we wish to formalize the concept of chemical library
space (CLS)—a vector space in which residing items are entire
chemical libraries. The key point here is the chemically
meaningful definition of libraries as mappable objects—a
generalization of standard chemical cartography. Several
approaches of the representation and comparison of chemical
libraries were proposed so far. For example, in the approach of
Fourches et al,” each library was represented as a similarity
graph (chemical space network) where two nodes—individual
compounds—are connected if the similarity between them is
higher than a given threshold. To compare two libraries,
connectivity indices are calculated for the corresponding graphs,
allowing discrimination between similar versus dissimilar pairs
of datasets. However, the explicit pairwise compound-to-
compound similarity calculations limit the application of this
approach to rather small datasets. To solve this problem,
modification of the fingerprint-based similarity metrics for
library comparison, avoiding calculation of the entire similarity
matrix, was introduced by Miranda-Quintana et al.’ Proposed
extended similarity coefficients were then applied for the
visualization of the similarity relationships between libraries via
chemical library networks’ by analogy to above-mentioned
chemical space networks.

The aforementioned methods, however, do not intuitively
explain why some libraries are said to be similar. Indeed, a
visual pairwise inspection of compounds in the connected
nodes of chemical space networks answers the question for
individual molecules, but not for compound libraries. One of
the methods that address this problem is a consensus diversity
plot where library position in the CLS is defined by the pair of
diversity values—(i) the median of the pairwise Tanimoto
scores over intra-library compound pairs and (ii) the fraction
of scaffolds retrieving 50% of the library.” The relative size of
the collection is represented by the size of the circle
representing a data point, while its color is defined by the
third diversity metric—the mean of the intra-set Euclidean
distance of six physicochemical properties. Such plots are easily
interpretable, as each of the values in the vector has a particular
chemical meaning. However, the comparison of the internal
diversity of libraries instead of the similarity between them is
much less informative: a library can be internally highly diverse
but have a very similar chemical composition to another
equally diverse library. In another library representation by a
Database Fingerprint (DFP), proposed by Fernandez-de
Gortari et al,” the on-bits correspond to the most frequent
fragments occurring in numerous molecules from the analyzed
library. Even though the DFP allows the incorporation of the
main structural information of the library, it ignores finer
differences between the collections that might lie in the
distribution of the less frequent structural fragments or mutual
occurrence and rearrangements of several fragments in
different groups of compounds. There is also no possibility
to include property information along with the structural one
into the comparison using DFPs.

To solve the foregoing limitations of existing methods, here
we introduce and test several more complex vector-based

representations for compound libraries that allow us to
compare numerous large collections (in our case DELs)
from different perspectives and produce intuitive visualizations
of the CLS. They all are based on generative topographic
mapping (GTM)—a probabilistic dimensionality reduction
method.” For each mapped item of the initial, high-
dimensional descriptor space, GTM provides a vector R
(“responsibility vector”) rendering its fuzzy levels of assign-
ment to the k nodes of the 2D map grid. The sum of R vectors
over all members of the library provides a cumulated
responsibility vector (CRV), a “baseline” representation of
the library/mixture as a whole. Different refinements of this
vector are introduced here:

(i) Normalized CRV (®), as a library-size independent
library descriptor
(ii) Library-modulated CRV (A)—representing a library
with respect to its overlap with a reference collection
(iii) Property-modulated CRV (£2)—introducing property-
centered library representation considering both chemo-
type and property distributions over the chemical space.

In the present article, these vectors were used to encode the
previously generated 2.5k different DELs.'® The ability of each
of the vectors to accurately represent and identify DELs closest
to the reference library was evaluated and compared to
previous results obtained using responsibility patterns (RPs)."?
Based on the values from each of the introduced library vectors
(®, A and Q), GTM landscapes (described in detail in the
Methods section) were created enabling visualization of the
chemical space of a particular library from different
perspectives—either from structural or property point of
view and which allowed us to chemically interpret the
similarity ranking results.

In more general terms, this work showcases how to exploit
the flexibility of GTM technology to define inter-library
similarity metrics based on different criteria—from those based
on plain library overlap to scores that are fine-tuned by external
information specific to each library’s space zone, as captured in
the herein proposed CLS vectors. Including this external
information (such as the mean of calculated or measured
property values) is easy and computationally efficient, because
it is assigned to the “intrinsic” zones of the chemical space (the
GTM nodes), not to the individual molecules of each library.
This methodology allows one to quickly decide how much a
pair of libraries specifically overlap within their chemical space
zones characterized by desired physicochemical parameters,
rather than how well they overlap “in general”.

2. DATA

2.1. ChEMBL. The ChEMBL dataset (version 28) was used
here as a reference library. It was downloaded and standardized
in our previous work'® according to the approach implemented
on the Virtual Screening Web Server of the Laboratory of
Chemoinformatics at the University of Strasbourg, using the
ChemAxon Standardizer.'" This procedure included dearoma-
tization and final aromatization (heterocycles like pyridone are
not aromatized), dealkalization, conversion to canonical
SMILES, removal of salts and mixtures, neutralization of all
species except nitrogen(IV), and generation of the major
tautomer according to ChemAxon. It resulted in 1,853,565
unique ChEMBL compounds. This set is extremely diverse: for
example, molecular mass spans a range between 7 (Li*, a
normorhythmic agent) and 2255 g/mol. In principle, there is
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no limitation in size or complexity for molecules in DELs. In
practice, however, given the peculiar constraints of the
synthesis which may not work with arbitrarily complex BBs,
it is clear that a part of the chemical space spanned by
ChEMBL is out of the scope of any practicably achievable
DEL. Hence, ChEMBL was filtered to exclude such molecules.
The following filtering rules were deduced (herein tentatively
named DEL-likeness rules), with cutoffs chosen to encompass
more than 90% of all compounds in all 2497 herein considered
DELs:

e 250 < MW < 750;

e logP <7

e number of H-bond acceptors < 15;
e number of H-bond donors < §;

e number of rotatable bonds < 15.

After filtering, 13% of ChEMBL compounds were discarded.
The remaining 1,605,370 molecules were used as a reference
collection in this analysis.

2.2. DNA-Encoded Libraries. 1M representative subsets
for all 2497 DELs were generated in our previous work'® with
the help of the eDesigner tool.'” This was done using
commercially available BBs from eMolecules and Enamine that
satisfy the Ro2'> and eDesigner built-in DNA-compatibility
filters. The enumerated compounds were standardized in the
same way as the ChEMBL dataset.

3. METHODS

3.1. Generative Topographic Mapping. In chemo-
informatics, each molecule can be represented as a data
point defined by a vector of numerical values called
descriptors. Molecules populate a chemical space, which is a
high-dimensional vector space. To analyze and comprehen-
sively visualize it, dimensionality reduction methods are
needed. GTM'*™'® was the herein-used dimensionality
reduction tool. It works by fitting a manifold (flexible
hypersurface) into the multidimensional descriptor space
populated by “frame” items, followed by the projection of
the data points onto the thereupon defined 2D latent space
grid.

The manifold is defined by a grid of Gaussian radial basis
functions. It is fitted to the data so as to approximate the data
distribution of the training set and to maximize its likelihood
(i.e., minimize the distance between the manifold and training
data “frame” points). In more detail, the GTM algorithm
training process proceeds by “bending” the manifold to pass
through the densest regions of the data cloud formed by the
frame set. Items are then projected from the multidimensional
space onto the manifold by association to several closest grid
nodes. Next, the manifold is unfolded to obtain a 2D map. The
degree of association of each item (molecule or reaction, in
chemoinformatics) to a node of the map is called a
“responsibility”. Each item is described by a responsibility
vector (real number vector summing up to 1 over all nodes)
that is used to define a projection of the molecule on the map.
Summing up the responsibility values in each node over all
molecules in the analyzed collection produces a cumulated
responsibility vector (CRV) characterizing a whole library.

Different types of GTM landscapes can be created for the
same library, where properties of the compounds projected
onto each node are rendered using a color code. Three major
types of landscapes were used in this study:

(1) Density landscape—created by coloring the GTM in

247

accordance with the quantitative distribution of 248

compounds over the nodes

(2) Library-comparative landscape—obtained by coloring
the GTM by a proportion of compounds of the analyzed
library in the node’s overall population (populated by
both analyzed and reference library molecules)

(3) Property landscape—obtained by coloring the GTM by
responsibility weighted average of compound property
values for each node

Using these landscapes, GTM can be applied for chemical
space ;analysis, library comparison, or even virtual screen-
ing.

%n the present work, the first Universal GTM (UGTM)'*"”
was used for the analysis of the 2497 DELs and filtered
ChEMBL28. It was built using ISIDA atom sequence counts
with the length of 2—3 atoms labeled by CVFF force field types
and formal charge status as descriptors.'® Since this map was
trained to predict the biological activity of molecules against
236 targets, it is suitable for the analysis of biologically relevant
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chemical space. It can serve not only for predictions of 267

bioactivity but also for the analysis of large chemical libraries in
the context of medicinal chemistry."®

268
269

3.2. Chemical Library Space. The conventional way of 270

library analysis consists of a detailed investigation of its
compound space where each compound is defined by
molecular descriptors—in our case ISIDA fragment counts.'®
These fragments composed of elements of the molecule and
their combinations define molecular properties. However, the
structural fragment level is too detailed for characterizing the
whole library. It makes little sense to build a cumulated count
of all fragments seen in the members of a library because this
vector loses the key information on how those fragments were
initially distributed in individual compounds. In order to
generalize the structural information of the library, one way
would be to somehow encode the “chemotype” counts—the
number of compounds of a particular “chemotype” present in a
library. However, the detailed structural analysis of the large
compound collection can be very computationally demanding,
and the notion of “chemotype” is intrinsically vague and
context-dependent.

Hence, in this work, we propose several methods of chemical
library encoding derived using GTM. Since the latter preserves
the topology of the initial space upon the dimensionality
reduction, it is considered for the analyzed library:

(i) zones of the map are associated with predominant
“chemotypes”'>'” as implicitly defined by the highly
relevant fuzzy clustering mechanism of the GTM
approach

(ii) cumulated density for those zones implicitly reflect the
chemotype distribution, without the need to explicitly
predefine “chemotypes”.

3.3. Chemical Library Encoding Methods. Several ways
to use GTM responsibilities for library encoding are described
in more detail below—responsibility pattern fingerprints (I'),
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responsibility pattern count vectors (I',,), and several types of 302

modified CRVs (®, A and Q).

3.3.1. Responsibility Pattern Fingerprints (') and Vectors
(T'y). Due to the probabilistic nature of GTM, a position of a
compound on the map is defined by a probability distribution
over the nodes, which, in turn, could be encoded by a
responsibility vector. Therefore, two different yet similar
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Figure 1. Summary of the RP-based library representations. The I" values for a particular library are assigned based on the presence or absence of a
certain RP in the reference library, and the I';, values represent the counts of reference library compounds covered by this RP.

compounds may not have exactly the same responsibility
vector. However, similar compounds still are projected onto
the map in a similar manner—according to a RP”°
representing discretized responsibility vector according to eq 1

rp, = [10 X ;. + 0.9] (1)
where [] means truncation, rpy is the RP value for compound i
in the node k, and r; is responsibility value for compound i in
the node k

It follows from eq 1 that responsibility values smaller than
0.01 are reassigned to zero, and all others—to integer numbers
from 1 to 10. Molecules situated close to each other in N-
dimensional descriptor space and having slightly different
responsibility vectors may have the same RP. These
compounds usually share the same scaffold or substantial
(connected or disconnected) maximum common substructure,
or pharmacophore.”' Thus, in a way, an RP could be associated
with a prevalent “chemotype”.

To encode a compound library using RPs, a library
responsibility pattern fingerprint (I') and RP count vector
(T,,) are suggested. I is a binary vector encoding the presence
or absence of a particular reference RP in the analyzed library,
and I',, is a vector with numerical values corresponding to the
number of reference library compounds associated with each
common RP present in both libraries. A schematic
representation of the I" and I',, calculation is given in Figure 1.

3.3.2. Normalized CRVs (®). A CRV = (c1,cy...,c;) is the
vector encoding a library by the sum of responsibility values
over all molecules of the library in each node of the map, as
shown in eq 2. In other words, to some degree, this vector
allows the encoding of a library by the number of compounds
associated with each node of the corresponding GTM plot.
Thus, the CRV mathematically describes compound distribu-
tion over the 2D map and consequently over the chemical
space of the library that this map visualizes. Considering that
each area of the map is populated by a particular prevailing
chemotype, the CRV is a crude indirect way of assessing the
occurrences of different chemotypes in the library without
actually defining them.

N

G = Z Tk
i ) 347
where ry is responsibility value of the molecule i in the node k 348
The CRYV is intrinsically dependent on the size of the library 349
it encodes. Therefore, when collections of different sizes are 3s0
compared in a context in which size differences are not 3s1
relevant, ¢, must be normalized by library size N according to 352
eq 3. The resulting normalized CRV (®) encodes relative 353
compound distribution over the chemical space of the analyzed 354
collection. 3ss

%k
D, = —

N (3) 356

3.3.3. Library-Modulated CRV (A). So far, the CRV and @ 357
consider all the chemical space zones (nodes) to be equally 3s8
important in describing the library. However, some nodes may 359
be more important—for example, the ones found to be highly 360
populated by reference library compounds. For this purpose, 361
the CRV of the analyzed library (a) can be modulated with 362
respect to the compound distribution of another reference 363
collection (r). The resulting library-modulated CRV (A) can 364
be computed from the @ of both collections, by calculating the 365
fraction of compounds of the analyzed library in the total 366
population of each node, as shown in eq 4. In A, a value A, = 0 367
is assigned to all empty nodes in both analyzed and reference 368
libraries, whereas for all non-empty nodes 1 < A, < 2 vary as a 369
function of the fraction of compounds from the analyzed 370
library in a given node. Nodes populated exclusively by 371
compounds from r and a have value A, =1land2, 3n
respectively, whereas mixed nodes containing compounds 373

from both libraries have values in the range 1 < A < 2. 374
A, = ‘Dk(a)
L= _
@ (a) + D(r) (4) 375

where A is A value in a given non-empty node k for analyzed 376
library a, whereas @,(a) and ®,(r) are normalized cumulated 377
responsibilities in the node k for the analyzed and reference 378
library, respectively. 379


https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf

Generative Topographic Mapping

Vectors for library
representation in CLS

GTM landscapes
for a full DEL

}N '\ Gaussian
HN — .
N OF Functions Density landscape ()
D .
oy 2 a0k # (Equation 3)
F )
30K T |
d L] —> D, D, D Dy
DEL compound D,  Manifold —> [0 1| @ | @ K
10K
|| |
[T T
0
2D Map DEL  Class landscape A
;‘Eé | (Equation 4)
]
. y
N
—t— [ FLH— A A A Ax
‘ i
) | -y
00.1 ChEMBL
1000000 ° 0'02 Property (logP) landscape Q
Responsibility . 5 o3 7 ] (Equation 5)
6
5
—p W — | Q| Q| O Qx
3
2
1

logP

Value in the node = value in the vector

Figure 2. Scheme depicting how each of the introduced herein library encodings (®, A, and Q) are derived from the GTM for a particular

compound library.

380 When aiming to maximize representation and coverage of
381 the reference collection by the analyzed library, the ideal case
382 would be an A with A, = 0 for the fully empty nodes and
383 A, = 1.5 (corresponding to equal representation of both
384 reference and analyzed libraries) in all occupied ones. This
385 “ideal” vector can thus be used as a reference in Tanimoto
386 calculations for ranking libraries based on A.

387 3.3.4. Property-Modulated CRV (Q). If the analysis of CLS
388 should be performed in the context of some property or
389 biological activity of underlying compounds for each library,
390 the property-modulated CRV (£2) can be used. Q is composed
391 of the mean property values for each node calculated according
392 to eq S.

N
Zi:l P;.rik

C

Q
393 (%)
394 where €, is the mean property value in the node k and P, is the
395 property value for the compound i
396  Figure 2 shows a simplified scheme describing links between
397 modified CRVs and related GTM landscapes. As soon as the
398 compounds are projected on the map, the three types of
399 landscapes—density, library comparative, and property land-
400 scapes—are generated, followed by preparation of related
401 vectors @, A, and Q using, respectively, the density, libraries
402 ratio or mean property value in each node. Each of these
403 vectors allows encoding a chemical library as an object in the
404 high-dimensional CLS.
40s 3.4, Similarity Relationships between Libraries in the
406 CLS. To define similarity relationships between libraries in the

CLS, various scores based on RP-based representation can be 407
suggested. A score assessing the coverage of a reference library 4o0s
r by a candidate library a can be defined in terms of the binary 409
I" as the fraction of RPs of a reference library also present in a. 410
Considering the binary nature of I', the coverage score is the 411
number of on-bits common for two libraries divided by the 412
total number of on-bits in the reference collection; see eq 6. 413

2, L(a)I(r)
2, ()

Coverage(a, r) =
(6) 414

where the denominator simply stands for the total number of 415
RPs encountered in the reference and I',(a) is a value (1 or 0) 416
in the I" of the analyzed library corresponding to the i-th RP. 417

However, this coverage score does not account for the 418
number of compounds corresponding to each RP, although 419
different RPs can be populated differently. This means that the 420
high RP coverage does not necessarily imply high compound 421
coverage. To solve this problem, a weighted RP coverage score 422
can be defined as the fraction of compounds of a reference 423
library that corresponds to the RPs present in both analyzed 424

and reference libraries. 425
T, (r)I(a)
wCoverage(a, r) = M
N, (7) w6

where I',(r) is the number of compounds from the reference 427
library r corresponding to i-th RP and N, is the total number of 428
compounds in the reference library r. 429
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430 Notice that both coverage and weighted coverage scores
431 were used in our previous work'® for the comparison of virtual
432 DEL collections with the ChEMBL database.

433 For the CRV-based representations (@, A, Q), a pairwise
434 Tanimoto coeflicient is a reasonable estimation of libraries’
435 similarity

Te(a, r) = ZkK "k(“)vk(f)
436 ) II: sz(“)"'zf v () - Zf v(a) v (r)  (g)

437 Here, v is a chosen CRV-based representation (v = @, A, ),
438 and K is the total number of nodes.

4. RESULTS AND DISCUSSION

439 The herein proposed library encoding vectors ®, A, €,
440 jand I ; provide different views of the CLS. To investigate
441 their usefulness, the pool of 2.5k previously generated DELs"®
442 was used. Three case studies were performed. First, we
443 analyzed how proposed encodings and similarity metrics
444 handle the comparison of a large 88 M DEL with its 1 M
445 representative subset. The second case study addresses the
446 selection of the “optimal” DEL for the primary screening when
447 no or little information about the biological target is known.
448 The goal was to identify a DEL that covers “biologically
449 relevant” space (represented by ChEMBL) to the highest
450 extent. For this purpose, 2.5k DELs were compared to
451 ChEMBL (as a reference collection) in the CLS defined by
452 T, T, @, and A. In the third case study, the property-focused
453 analysis of the libraries was performed using the Q encodings.
a5+ 4.1. Representative DEL Subset vs Its Parent Library:
4ss A Test Study of Expected Near-Perfect Overlap. In our
456 previous study,'’ representative sets of each of the 2.5k DELs
457 were generated using random sampling of BBs in the
458 eDesigner'” tool and not the full libraries. Such a sub-library
459 should be very similar to the entire DEL and cover virtually all
460 of its chemical space. Therefore, overlap analysis of a
461 representative DEL subset with respect to its parent library is
462 a baseline case for illustrating how well each of the encodings
463 reflects its close relationship.

464  For this purpose, a 3BB DEL2568 based on the aldehyde
465 reductive amination, Migita thioether synthesis, and amine
466 guanidinylation was selected. The coverage of the entire 88M
467 DEL2568 by its representative subset or its similarity was
468 calculated using each of the selected encodings (I, I',, @, and
469 ). Figure 3 provides a visualization of the chemical space of
470 those two libraries. Relative compound distribution over the
471 maps is almost identical, which backs up the claim of
472 representation of the subset.

Full 88M DEL

1M representative set

Figure 3. Density landscapes of the entire 88M DEL2568 and its 1M
representative subset.

From Table 1, it appears that coverage based on I is very 4731
low—only 9% of RPs present in the entire DEL library are 474

Table 1. Coverage and Similarity of the Full DEL2568 by Its
Representative Subset

CLS encoding coverage of the full DEL2568 by the 1M subset

r 0.09
T, 0.87
CLS Tanimoto similarity between the full DEL2568 and 1M
encoding subset
0] 0.99
A 0.98

covered by the 1M representative set. However, I',, coverage 475
shows that those 9% of RPs correspond to 87% of molecules, 476
which means that the subset lacks very rare (but numerous) 477
RPs, all while covering “mainstream” chemotypes from the full 478
collection. It is interesting to witness a combinatorial library 479
(sharing a common “scaffold” defined by the underlying 4s0
chemistry) concentrating 87% of its members into 9% of the 4s1
spanned chemical space. This is not unexpected—combina- 482
tions of relatively “exotic” and rare BBs result in “exotic” but 483
rare products. 484

The similarity between those two collections was also 4ss
calculated using CRV-based representations—® and A. In the 4s6
latter case, the A vector of the 1M subset was created by 487
calculating the ratio of molecules from the representative 488
subset with respect to the reference (full 88M collection) in 489
each node of the map. It was then compared to the “ideal” A 490
where each node occupied by the reference 88M library has a 491
value A = 1.5, which corresponds to the perfect representation 492
of the full library by the subset (see details in the Methods 493
section). Tanimoto coefficients calculated for CRV-based 494
representations are given in Table 1. Those values being 495
close to the maximum illustrate expected (and observed in 496
Figure 3) high similarity between compound distribution in 497
the chemical spaces of those libraries. 498

Both CRV-based representations provide close to the 499
maximum similarity values between the library and its soo
representative subset, as expected. RP-based representations, so1
on the other hand, provide a stricter comparison with an so2
accent on the missing reference RPs (chemotypes) in the so3
analyzed library. This example demonstrates the importance of s04
using both the I'- and I -based coverage scores. While the first sos
one shows how many “chemotypes” are covered, the second s06
one puts this number into the perspective of their compound so07
population and provides a compound-weighted coverage of the sos
chemical space. 509

4.2. ChEMBL vs DEL Comparison in the CLS Defined sio
by Different GTM-based Encodings. As in our previous si1
work,'” here we focused on the case of primary screening si2
where the selected DEL needs to cover the biologically s13
relevant chemical space to the highest extent. Technically, such s14
a task consists of ranking the 2.5k DELs by their similarity (or sis
coverage) to a reference collection—here, the ChEMBL si6
database. 517

4.2.1. Library Comparison by Responsibility Distribution. sis
Coverage and Tanimoto similarity coefficients for each of the s19
2.5k DELs were calculated with respect to the ChREMBL library s20
using each of the encodings (I, I, @, and A). The results are s21
combined in Figure 4. Two libraries—DEL2568 and DEL271 s22 4
having the highest and the lowest weighted ChEMBL coverage 523
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Pairwise coverage (or similarity) of the reference (ChEMBL) chemical space
by the analyzed libraries (2.5K DELs)
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Figure 4. Pairwise comparison of 2.5k DELs with ChEMBL using different representations and metrics: distribution of ChEMBL coverage scores
calculated using I' (A) and I, (B), and distribution of Tc between ChEMBL and each DEL calculated using @ (C) and A (D).

524 based on I',—were selected as points of reference, to trace
525 their scoring with other representations. Both I'-based
526 coverage (Figure 4A) and ®-based Tc (Figure 4C) adopt
527 values within a similar and rather low value range: from 0.01 to
528 0.4. This highlights that DEL compound distribution is quite
529 different from that of ChEMBL, and the likelihood of finding
530 the ChEMBL RPs in DELs is rather low. However, the I',-
531 based coverage shows that those RPs that are covered by DELs
532 in fact correspond to the prevailing compound population of
533 ChEMBL because observed values of coverage almost doubled
s34 with respect to [-based coverage (Figure 4B). In all three
535 cases, the two “marker” libraries, nevertheless, keep their
s36 relative rank: DEL2568 is always ranked in the top 5—10% of
537 libraries and DEL271—in the last 10—15%. As expected,
538 tuning the overlap criterion by means of the usage of different
539 CLS vectors should never override the fundamental “core”
s40 library similarity, distinguishing between libraries containing
s41 closely related molecules from those which do not.

s42  In the case of A-based similarity, the Tc values are spread
543 within a narrow range: from 0.8 to 0.92 (Figure 4D). The A-
s44 based similarity spectrum is intrinsically different from those
s4s calculated using other encodings. Since vectors for all libraries
s46 are modulated with the CRV of the same reference collection,
s47 the similarity value between two A is always higher than that in
s48 the case of @, for example. However, the position of DEL2568
s49 and DEL271 in Figure 4D is similar to the other three cases.

Thus, even though being shifted toward higher values, sso
similarity distribution in the CLS defined by A follows the ssi
same trends as in other library spaces. 552
For further analysis of the similarity relationships in the four ss3
proposed representations of CLS, all DELs were ranked with ss4
respect to the coverage of (or similarity to) ChEMBL. To sss
simplify the analysis, here we analyze only five DELs: ranked ss6
the first, 50th, 100th, 1000th, and 2497th with respect to ss7
ChEMBL. For each of these five DELs, a density landscape sss
showing compound distribution in the chemical space of the sso
library was created (see Figure S). This figure shows that each seo fs
of the representations ranks libraries differently—none of the se1
libraries were selected as the best one by more than one se
representation. However, DELs having the same rank in se3
different spaces (landscapes forming columns in Figure S) still se4
have very similar compound distribution over the map. Failure s6s
to consensually score one DEL as the best match for ChEMBL, s66
in any CLS, is due to the fact that there are several DELs that s¢7
might claim this title, and no single one is undoubtedly ses
outstanding in terms of sharing related chemotypes with seo
ChEMBL. Looking at the problem through the prism of s7
multiple CLS definitions is evidencing this important aspect, s71
that is, allowing for more flexibility in experimental setups. In s72
this scenario, there is no particular reason to pick either of the 573
DELs of column no 1 in Figure 5—a case in which extraneous s74
parameters (availability, facility of synthesis, and cost) may be s7s
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ChEMBL Density landscape

Density landscapes of DELs ranked by their coverage and similarity to ChREMBL
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Figure S. Density GTM landscapes of ChEMBL28 and selected DELs ranging from the most similar to the least similar to ChEMBL. DELs were
selected and ranked either by coverage scores (in the case of I" and I',) or Tanimoto similarity coefficients (in the case of ® and A). Values of
either coverage or Tc are provided in red on each landscape. For all landscapes, the same color scale corresponding to the density distribution of

ChEMBL was used.

576 applied by the user to select either of these. Should a
577 consensual winner emerge from this analysis, selecting it at
s78 higher costs over the others may make sense. Practically,
579 however, visual inspection shows that the first few hundred
sso DELs have similar density landscapes to the top-ranked
s81 landscapes corresponding to the 100th or even 500th-ranked
sg2 library still match the landscapes in column 1 quite well.
ss3 Finally, yet importantly, within the top 100 DELs chosen by
ss4 each of the encodings, there are 32 DELs common to all four
sgs encodings; within the top 500, this value rises to 273, and for
ss6 the top 1000 DELSs, it reaches 713, which shows how well the
ss7 ranking by coverage or Tc based on four encodings correspond
sgs to each other. For more details, see Figure S1 of Supporting
589 Information.

so0  Even though each of the analyzed representations offers a
so1 different DEL as the closest to ChEMBL (DEL2970,
so2 DEL2568, DEL1847, and DEL84S), they all appear to be
503 quite similar. Interestingly, all these libraries are three-cycled
s94 DELs that were designed exclusively based on robust coupling
s9s reactions—aldehyde reductive amination (all four libraries),
596 Ullmann-type N-aryl coupling (DEL2970 and DELS84S),

Migita thioether synthesis from thiophenols and arylbromides s97
(DEL1847 and DEL2568), and carboxylic acid/amine sos
condensation (DEL1847 and DEL845) (see Figure S2 of so9
Supporting Information). The size of the full DELs is also very 600
similar for those four libraries—slightly above 80M com- 601
pounds. The reason for the high diversity of those collections 602
and thus high coverage of (and similarity to) ChEMBL is due 603
to the abundance and diversity of the purchasable BBs required o4
for those reactions—amines, aldehydes, arylhalides, and cos
carboxylic acids.'”** 606

Libraries with the lowest rank—DEL1216, DEL271, 607
DEL2266, and DEL3703—also have some design features in 608
common. Their full size is much lower (between 1M and 5M), 609
and they all have at least two heterocyclization steps in their 610
design—aminothiazole and Larock indole synthesis were 611
combined to form DELI1216, imidazole and Larock indole 612
synthesis were used in DEL271 generation, and three 613
heterocyclization steps (oxadiazole, triazole, and aminothiazole 614
synthesis) were used both in DEL2266 and DEL3703 (see 615
Figure S3 of Supporting Information). As is visible from Figure 616
S, those collections have one (maximum two) density peak, 617
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Figure 6. Interpretation of the similarity between ChEMBL and DEL1847 via structural analysis of the density landscapes of those libraries. Areas
A1-AS8 (labeled in white) correspond to the peaks of high density in ChREMBL space that were reproduced in DEL1847. Areas A9—A12 (labeled in

red) represent mismatched zones.

which means that their diversity is much lower, and those
DELs can be considered as focused libraries containing very
similar compounds. This is explainable by the fact that
employing two heterocyclization steps in DEL synthesis means
that all compounds possess at least two identical hetero-
cycles—a consequently large scaffold—with diversity being
introduced only via their “ornaments”, by contrast to, say, an
amide formation in which everything but the —C(=O)NH-—
moiety is variable.

The use of only heterocyclizations is convenient for
“focused” DEL synthesis, as the common scaffold generated
by the reaction represents a common signature of all library
members, which vary in terms of scaffold substituents only.”
This provides an excellent library for extracting structure—
activity relations and fine-tuning lead molecules, provided, of
course, that the focus around the chosen heterocyclic core
matches the actual chemical space zone favored by the target.
However, if the goal is to produce general-purpose DELs, it is a
safer option to use building-block-rich coupling reactions
instead because abundant BB classes exist. Many BBs already
contain necessary heterocyclic moieties,”* albeit not necessarily
connected to each other in a same way as they would be linked

up in a heterocyclization synthesis-based DEL. Another option
might be to use only one heterocyclization step combined with
two coupling synthetic cycles. In this way, the diversity coming
from coupling reactions can partially compensate for the
presence of the same heterocycle in each molecule. An example
of such design is DEL2806 (1000th library by I')—it combines
imidazole synthesis with guanidine group formation from
amines and Ullmann-type N-aryl coupling. All other DELs
featuring from 1st to S00th in Figure S are based only on
coupling reactions.
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4.2.2. In-Depth Analysis and Interpretability of Library eso

Overlap. Overlap scores are useful for the rapid processing and
ranking of large sets of candidate libraries, but a real
understanding of overlap must go down to individual
compound structure levels. The strength of this protocol is
that the mapping used to define CLS vectors can implicitly
support this approach. To illustrate that, the density landscape
for DEL1847 that is the closest to ChREMBL according to ®
ranking was compared to the density landscape of ChEMBL
(Figure 6). DEL1847 is a three-step library based on aldehyde
reductive amination with the NH, group of the headpiece
(2652 aldehydes), followed by the condensation of the same
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662 amino-group with 21 bifunctional carboxylic acids containing
663 thiol group that on the third cycle reacts with 1630
664 arylbromides to form thioether bonds. The total size of the
665 library is around 90M.

666  In Figure 6, most of the density peaks of ChEMBL (A1—A8)
667 were reproduced in DEL1847. These areas contribute to the
668 similarity of those two libraries and make DEL1847 the most
669 highly scored by the Tanimoto coefficient (Tc = 0.38)
670 calculated based on @. Indeed, areas A1—A4 are covered by
671 both libraries, containing molecules of similar structural
672 features, even though DEL1847 compounds also have
673 thioether and amide groups in their structures. Nevertheless,
674 this similarity value is far from perfect, which can be explained
675 by mismatched density peaks between ChEMBL and
676 DEL1847. Namely, areas A9 and All are heavily populated
677 in the ChEMBL landscape, but rather moderately occupied in
678 DEL1847. The former area is populated by 2-aminothiazole-
679 containing compounds and is expectedly underrepresented in
680 DEL1847, as only 14 BBs used for its enumeration contain this
681 structural moiety (0.3% of all BBs). The same applies to area
682 Al1, which is highly populated by pyridazinone/oxadiazolone-
683 containing amides in ChEMBL and underpopulated in the case
684 of DEL1847. Regions Al0, A12 in ChEMBL are empty in
68s DEL1847. This is because these areas are populated by
686 complex natural products,'’ and thus cannot be reproduced by
687 herein considered DELs.

688  The same analysis was performed for the most dissimilar one
689 to the ChEMBL library by ®—DEL2266. This library is based
690 on three heterocyclization reactions—oxadiazole, triazole, and
691 aminothiazole synthesis—that provide 1.3M compounds in
692 total. As a result, each compound of the library contains the
693 same three cycles, which makes this library structurally highly
694 focused. However, there are no molecules in filtered
695 ChEMBL28 of similar chemotypes. In Figure 7, highly
696 populated areas Al and A2 in the DEL2266 landscape are
697 almost empty on the ChEMBL map, and the two libraries
698 almost do not overlap at all, which explains close to zero
699 similarity between them.
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Figure 7. Interpretation of the similarity between ChEMBL and

DEL2266 via structural analysis of the density landscapes of these
libraries.

Thus, by analyzing density landscapes for the selected pairs 700
of libraries, it is possible to explain the similarity behavior in 701
the CLS defined by ®. The interpretation of the CLS defined 702
by A can be performed by analyzing pairwise comparative 703
landscapes featuring reference collection against each of the 704
analyzed libraries. 705

4.2.3. Property-Sensitive Library Comparison. A conven- 706
tional way to analyze compound collections in terms of a 707
particular physicochemical property is to build a frequency plot 708
(histogram) showing the distribution of this property for all 700
library molecules.””™** This approach though has several 710
drawbacks. First of all, there is a complete disconnection of 711
such plots from the chemotype composition of the analyzed 712
collection. Figure 8 shows that both libraries closest and 7138
farthest to ChEMBL according to I, ranking (DEL2568 and 714
DEL271, respectively) have a very similar distribution of log P 715
values, even though they strongly diverge in terms of 716
composition. Moreover, compounds with a given property 717
value (e.g., log P = 4) may be spread all over the map—they do 718
not have to be similar simply because they share the same 719
property value (Figure 8 on the right). 720

By contrast, property-modulated Q has two key advantages: 721
being focused on specific chemical space zones populated by 722
similar chemotypes, it does account for the chemistry “behind” 723
the property values. The second key feature is that property- 724
related information is provided via GTM property landscapes, 725
thus it is directly associated with chemical space zones. In this 726
way, £ representation allows for dual libraries’ analysis and 727
comparison where the most similar to the reference library 728
collection simultaneously demonstrates both chemotype and 729
property similarity. 730

To further illustrate the advantages of € over the property 731
histograms, the DELs most similar to ChEMBL were selected 732
and compared using both approaches. First, each classical bar 733
chart for H-bond acceptor count was encoded by a n- 734
component vector, whose length corresponded to the number 735
of bars in the property histogram. Then, based on these 736
vectors, Tanimoto coefficients were calculated between each 737
DEL and ChEMBL, and the most similar DEL2189 was 738
selected (see Figure 9A) with Tc = 0.9S. The same was done 739 o
by calculating the Tanimoto coefficient between each DEL and 740
ChEMBL using the respective €2, which led to the selection of 741
DELG630 as the most similar one (Figure 9C) with Tc = 0.78. 742
The Tc values for both DEL2189 and DEL630 calculated 743
either based on the Q or H-bond acceptor counts distribution 744
vectors with respect to the filtered ChEMBL database are given 74s
in Table 2. 746 2

From Figure 9 it is visible that even though having similar 747
global property distributions (illustrated in histograms), the 74s
local distribution of H-bond acceptor counts in each area of 749
the chemical space of DEL2189 (Figure 9A) is dissimilar 7s0
compared to the ChREMBL property landscape (Figure 9B)— 751
there are almost no zones containing compounds with more 752
than eight hydrogen bond acceptor atoms on the DEL2189 753
landscape. Moreover, there are lots of ChREMBL areas that are 7s4
empty on the DEL2189 landscape, thus the chemotype 7ss
similarity of this library to ChEMBL is low (Tc(®) = 0.13). 756
In contrast, DEL630 (Figure 9C) selected as the most similar 7s7
to ChEMBL using HAC-£ representation has a significantly 758
larger colored surface which means higher chemotype 759
similarity to ChEMBL (Tc(®) = 0.34). Furthermore, the 760
local property distribution in this collection is much closer to 761
ChEMBL than that in DEL2189. Indeed, there are many areas 762
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763 colored in the same way in both ChEMBL and DEL630
-64 collections, which means that the average number of H-bond

765 acceptors in compounds populating these zones is very close.
266 Thus, Q encoding allows us to take into consideration both

767 property and chemotype distribution in the chemical space of

analyzed libraries. Different € can be created using any -4
measured or calculated property if it is provided for every -4
compound in analyzed libraries. Figure S4 renders the ;5
distribution of the similarity of DELs with respect to ChEMBL -,
in six Q-encoded CLS: MW, log P, H-bond acceptors and 772
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Table 2. Tanimoto Values for DEL2189 and DEL630
Calculated Either Using HAC-Q or H-Bond Acceptor Count
Distribution Vectors with Respect to the Filtered
ChEMBL28 Database

Tc(HAC-Q) Tc(property distribution)
DEL2189 0.34 0.95
DEL630 0.78 0.67

773 donors, number of rotatable bonds, and quantitative estimate
774 of drug-likeness (QED score). Using these values libraries can
775 be ranked according to their property-focused similarity to
776 ChEMBL. As an example, in Figure 10 six QED landscapes of
777 DELs ranging from the most similar to the least similar to
778 ChEMBL in the CLS defined by QED-Q are provided. As we
779 go from the first to the last DEL, there is a decrease in the
780 similarity between each of their QED landscapes and the QED
781 map of ChEMBL. The top-ranked collection—DEL4S is based
752 on only two reaction steps (aldehyde reductive amination
783 followed by imidazole synthesis reaction) and thus expectedly
784 contains a lot of drug-like compounds (97% of the whole
785 library). Thus, the QED values for this library are also higher
786 than for molecules enumerated via a combination of three BBs
787 in three cycle DELs, which we can see on the landscapes.
788 Figure 10 also shows that there are a lot of areas on the
780 ChEMBL and DEL4S5 QED landscapes that are colored in the
790 same way. This means, that DEL4S is reproducing not only
791 global but also local QED distribution observed in the
792 ChEMBL chemical space. The Tanimoto coeflicient value
793 calculated in the ®-based CLS (Tc = 0.25, DEL4S is 167th
794 most similar to ChEMBL by ® among 2497 DELs in total)
795 and visual similarity between the density landscapes of those
796 libraries prove that QED-modulated Q encodes not only global
797 and local property distribution but also chemotype distribution
798 for the analyzed libraries.

—

et

5. CONCLUSIONS

In this work, we reported the development of several types of 799
vector-based encodings for characterizing libraries of various 800
sizes and compositions as a function of the relative distribution so1
of molecules in the GTM-based chemical space. These so2
representations constitute a new way of the analysis of 803
combinatorial mixtures, such as DELs, that should be so4
considered not only as an ensemble of compounds, but also sos
as unified entities—mixtures whose composition cannot be 806
easily changed once synthesized. Of course, the methodology so7
generally applies in contexts where any library—cherry- sos
pickable or not—needs to be regarded as a stand-alone entity, 809
rather than a collection of individual molecules. With the 810
encodings introduced here, it becomes possible to clearly si1
define CLS where each collection is considered as a data point. s12
Classical chemoinformatics allows for the management of a 813
portfolio of compounds forming a core library (comparison to si4
other compound sets, directed enrichment in new compounds, s1s
focused subset extraction for screening, efc.), whereas this si6
methodology enables the management of a portfolio of libraries 817
(selection of the best suited one for a screening campaign, sis
enrichment with novel libraries—overlapping or not, etc.). 819

From the example of ChREMBL vs DEL comparison, it was 820
shown that all proposed CLS representations—responsibility s21
pattern fingerprints (I"), responsibility count vectors (T',,), s22
normalized CRVs (®), library-modulated CRVs (A), and s23
property-modulated CRVs (£2)—are able to efficiently encode s24
key information about the “chemotype” distribution of s2s
analyzed libraries, where “chemotypes” are implicitly defined s26
by the intrinsic neighborhood compliance of GTMs. “chemo- 827
types”, in this sense, may be common scaffolds including or not s28
common key “ornaments”, common topological pharmaco- s29
phores, or more loosely defined compound clusters of s30
molecules with a specific global charge or outstanding size, 831
etc. Similarity relationships in all five CLSs seem reasonable 832
and chemically meaningful and allow adequate sorting of DELs 833

QED landscape
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QED landscapes of DELs selected by Tc(QED-2) similarity

1st 50th 100th 500th 1000th 2497th
. . § r= - 0.8
06
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Figure 10. First row: On the left: QED landscape of filtered ChREMBL28. On the right: QED landscapes of DELs ranging from the most similar to
the least similar to ChEMBL sorted by their Tanimoto coefficients calculated based on their QED-Q with respect to ChEMBL (in black). Second
row: On the left: density landscape of the filtered ChEMBL. On the right: corresponding density landscapes for selected DELs with their ®

similarity values with respect to ChEMBL (in red).
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834 with respect to their similarity to ChEMBL. Therefore, any of
83s the proposed representations can be used for selecting an
836 optimal DEL for a particular task if the reference collection can
837 be defined. Here, ChEMBL was used to represent the drug-
838 relevant chemical space, and it was assumed that the ultimate
839 goal in general diversity library design is mimicking the
840 chemical space covered by it. This is of course debatable—in
841 real applications, experts may define reference libraries based
842 on much stricter and project-specific criteria. The present work
843 outlines a novel methodology for library selection and
844 comparison, which was shown to be senseful in all respects
84s concerning the analysis of herein considered DELs, but must
846 yet be proven useful in prospective library design—a goal
847 unfortunately way beyond the resources of many academic
848 research teams.

840  To analyze libraries with respect to the featured chemotypes
8so without paying attention to their population the best choice
8s1 would be I'. If the population of the matched chemotypes in
852 only one of the libraries (reference collection) is important—
8s3 the coverage score based on the I', should be used, thereby
gs4 ensuring that the candidate library matches the often-seen
gss patterns in the reference collection, and not its atypical
8s6 “singletons”. In case the compound distribution over the
857 chemical space of all analyzed collections is important, CLS
8s8 should be defined by the @, whereas Tanimoto similarity
859 should be used for library ranking. This strategy can also be
860 used in order to select a library that maximally reproduces
gs1 compound distribution from the chemical space of the
se2 reference collection (e.g., selection of the optimal representa-
863 tive subset). A-based encoding is particularly useful when one
864 wants to compare a coverage of a reference dataset by some
g6s other libraries. In this case, each library is encoded considering
866 its relative compounds distribution with respect to the
867 reference collection, so a special accent is placed on the
868 differences between the relative proportion of compounds
869 coming from analyzed and reference libraries without taking
870 into consideration the absolute popularity of each node.
871 Moreover, in case the accent of the analysis is placed on the
872 particular calculated or measured property, £ can be used to
873 encode libraries with respect to both chemotype and property
874 distribution in the chemical spaces of these collections. In
87s contrast to classical property histograms that describe the
876 global distribution of the property values among compounds of
877 the whole library, Q encodes local property distribution among
878 compounds belonging to different chemotypes and populating
879 particular areas of the chemical space.

gs0  The interpretability of the proposed vectors merits a special
gs1 mention here. Being GTM-based, ®, €, and A can be
8s2 visualized as compound density, property, or comparative
883 landscapes for each library on a separate plot. By analyzing
gs4 landscapes of the selected pairs of libraries, the similarity
88s behavior in particular CLS can be investigated and interpreted.
886 For example, in the case of ®-defined CLS, by comparing the
887 highest peaks on the density landscapes of two libraries it is
gss easy to identify which common chemotypes positively
889 contributed to the similarity, and which mismatched areas of
890 the chemical space decreased the Tanimoto value.

891 Now, when the performance of the proposed encodings and
892 the similarity behavior of libraries (objects) in corresponding
893 CLS are analyzed and described, it should be last but not least
894 noted that this CLS may also be visualized, like any “classical”
895 chemical space. In perspective, the meta-GTM approach® is

-

perfectly suited for the dimensionality reduction and visual-
ization of CLS.
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