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ABSTRACT

We address the problem of efficiently compressing video
for conferencing-type applications. We build on recent ap-
proaches based on image animation, which can achieve good
reconstruction quality at very low bitrate by representing
face motions with a compact set of sparse keypoints. How-
ever, these methods encode video in a frame-by-frame fash-
ion, i.e., each frame is reconstructed from a reference frame,
which limits the reconstruction quality when the bandwidth
is larger. Instead, we propose a predictive coding scheme
which uses image animation as a predictor, and codes the
residual with respect to the actual target frame. The resid-
uals can be in turn coded in a predictive manner, thus remov-
ing efficiently temporal dependencies. Our experiments indi-
cate a significant bitrate gain, in excess of 70% compared to
the HEVC video standard and over 30% compared to VVC,
on a dataset of talking-head videos. Our code is available at
github.com/animation-based-codecs.

Index Terms— Video compression, image animation,
generative models, video conferencing, predictive coding

1. INTRODUCTION

Recent work on learning-based video coding for videoconfer-
encing applications has shown that it is possible to compress
videos of talking heads with extremely low bitrate, without
significant losses in visual quality [1, 2, 3, 4, 5, 6]. The basic
tenet of these methods is that face motion can be represented
through a compact set of sparse keypoints [7], which can be
transmitted and used at the decoder side to animate a refer-
ence video frame.

However, despite the impressive coding performance of
these methods at very low bitrates, existing animation-based
codecs for videoconferencing still have several bottlenecks.
Firstly, when the available bitrate increases, the reconstruc-
tion quality quickly reaches saturation, and conventional cod-
ing tools such as HEVC or VVC perform better. Secondly, bi-
trate variability in current schemes is complex, unlike conven-
tional coding methods where a simple quantization param-
eter can be used to regulate bitrate. Finally, animation-based
codecs operate on a frame-by-frame basis, which is inefficient
for eliminating temporal redundancy in the video.

This paper addresses these limitations by proposing a pre-
dictive coding scheme for videoconferencing applications.
Specifically, we interpret the keypoint-based image anima-
tion used in previous codecs [1] as a spatial predictor of the
current (target) frame, as depicted in Figure 1. The resid-
ual between the animated and the target frame is then coded
and used at the decoder side to correct the animated target
frame. Since animation residuals exhibit temporal correla-
tion, we also encode them in a predictive manner, i.e., we
predict the current animation residual based on the previously
decoded residual and encode the prediction difference. It is
worth noting that this approach is similar in principle to the
classic video coding prediction loop, with the important dis-
tinction that residual coding and animation are jointly learned
in an end-to-end fashion. We name our method RDAC, for
Residual Deep Animation Codec. Our results demonstrate
significant rate-distortion improvements compared to stan-
dard codecs such as HEVC and VVC, as measured by several
classical and learning-based perceptual quality metrics. Fur-
thermore, the proposed technique has the additional advan-
tage of reducing temporal drift compared to previous frame-
by-frame approaches.

2. RELATED WORK

Image animation models have been applied to compress talk-
ing head videos at ultra-low bitrates in conferencing-type ap-
plications [1, 2, 3, 4, 5, 6]. Different from other learning-
based compression frameworks [8, 9, 10, 11, 12, 13, 14], the
animation-based codecs in [3] and [4] propose architectures
that use a variable number of motion keypoints to change the
reconstruction quality within a small range of low bitrates.
The deep animation codec (DAC) in our previous work [1]
offers the possibility to vary the bitrate by creating a list of
reference frames from which the best reconstruction is com-
puted. Specifically, a new reference frame is added to the
decoder buffer if all the available frames give reconstruction
below a predefined threshold. However, this approach may
introduce temporal jittering when adjacent animated frames
are predicted from different reference frames. Using second-
order motion coherence [6] introduces spatio-temporal stabil-
ity in the decoded video, hence reducing the jittering. How-
ever, this architecture is still limited in terms of quality vari-

https://github.com/Goluck-Konuko/animation-based-codecs
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Fig. 1: Proposed RDAC framework. From a single reference frame, motion keypoints and a compact residual layer, our
framework reconstructs a video with high perceptual and pixel fidelity. Note that when previously decoded frame information
is available, it is used to improve the prediction accuracy of the next target residual through temporal correlation learning.

ability since it relies only on face animation. In our recent
work [2], we proposed a hybrid coding architecture (HDAC)
that uses a low-quality HEVC bitstream as side information
to enhance the final result of the animation codec. While im-
proving on previous methods, the use of this low-quality aux-
iliary stream limits in practice the possibility to reconstruct
high-frequency details.

In this work, we propose a residual deep animation codec
(RDAC) that learns a compact representation of the residual
between a frame and its animation-based prediction, and en-
codes this residual using temporal prediction.

3. PROPOSED METHOD

A general scheme of the proposed residual deep animation
codec is depicted in Fig. 1. The components of the proposed
system are detailed as follows: Section 3.1 introduces the
frame prediction and residual coding and Section 3.2 presents
temporal learning in the residual space.

3.1. Deep Image Animation Prediction and Residual
Coding

We leverage the principles developed in the First Order
Model [7] for image animation and our prior works [1, 2]
for animation-based prediction. The image animation process
works by estimating a sparse set of motion landmarks using
a keypoint detector (KPD) which is a UNet-like architecture
from [7]. The keypoints are used by a motion transfer network
(MTN) that generates the optical flow between a decoded ref-
erence image X̃0 and the desired target Xt. Subsequently, the
optical-flow map is applied to the feature space representation

of the reference frame derived by the encoder of an autoen-
coder network. The deformed source features are assumed to
be a close approximation of the target frame’s feature repre-
sentation and are used by a decoder network to produce the
final animation X̂t.

We build on this animation framework by including an
encoder network that learns a latent representation of Rt =
Xt − X̂t i.e. the residual after animation as illustrated in
Fig. 1. We start with the architecture of the variational au-
toencoder network [9] used for learned image compression
frameworks. However, since the residual images have very
sparse features we mitigate the potential encoding of a noisy
latent representation by increasing the number of downsam-
pling convolutional layers from 3 to 5 and symmetrically in-
crease the number of upsampling layers.

3.2. Using Temporal Correlation in the Residual Layer

For a sequence of target frames X1 → XT animated from
a single reference frame, X0, we observe that the residual
differences R1 → RT have a high temporal correlation. In
this paper, we use a simple differential coding scheme to ex-
ploit this temporal correlation. Specifically, we compute the
temporal difference signal between consecutive frame resid-
uals, Dt = Rt − R̂t−1, as shown in Fig. 1. Note that, in
general, more sophisticated prediction schemes are possible,
that could bring additional temporal decorrelation, e.g., any
dense or block-based motion compensated scheme. In this
work, we demonstrated coding gains even with a suboptimal
zero-motion temporal predictor, leaving the study of more ad-
vanced prediction schemes to future work.

The difference signal Dt is coded using an additional



autoencoder network, which is trained together with the
animation-based predictor and the reconstruction network.
The decoding process consists in reconstructing the residual
R̃t = D̃t + R̃t−1. The reconstructed residual is then con-
catenated to the animation-based predictor X̂t and passed as
input to a reconstruction network that produces the final de-
coded frame X̃t. The reconstruction network consists of 2
convolution layers and 3 ResNet blocks.

3.3. Model Training

We initialize the animation module with pre-trained models
from [1]. The loss terms for image animation are the same
as in [1, 7], while the rate-distortion loss LRD is derived as
described in [9]:

LRD = λ · MSE(Rt, R̂t) + Rate (1)

where the bitrate cost in bits-per-pixel (bpp) is computed from
the entropy estimate of the residual latent representation.

4. EXPERIMENTS AND RESULTS

4.1. Evaluation Protocol

We randomly select 30 video sequences from the VoxCeleb
test set with minimum lengths of 128 frames. We note that
chaning the GOP size affects the average reconstruction qual-
ity of the video sequences. Therefore, we encode the se-
quences with GOP sizes 16, 32, 64, and 128 and select the
best reconstruction point at each bitrate from a union of the
computed metrics i.e. the convex hull of all the GOP config-
urations. The reference frame is encoded with QP 30 using
the BPG codec (HEVC intra) and the motion keypoints as
well as the compressed residuals are entropy coded using a
context-adaptive arithmetic coder with a Prediction by Partial
Match (PPM) model [15]. HEVC and VVC (VTM-11) met-
rics are computed under low-delay configurations with high
QP values to minimize bitrate. We also compare against the
LPIPS-VGG metrics reported for BeyondKP [5] and Face-
Vid2Vid [3] since they use comparable test conditions. Notice
that for these last two methods, we only have a single bitrate
point, since they do not support bitrate variability beyond 10
kbps. MSE loss is used at training time for residual learn-
ing. However, the other loss terms used in training the net-
work optimize for perceptual quality. Therefore, we restrict
our evaluation to use only perceptual metrics and multi-scale
pixel fidelity metrics.

4.2. RD Evaluation

In Tab. 1, we note over 70% bitrate savings for perceptual-
based metrics i.e. LPIPS [16], msVGG [17] and DISTS [18]
as well as over 40% bitrate savings for pixel-based metrics
over HEVC. In Fig. 2 we make a visual comparison of our

proposed framework with HEVC and VVC in the low bitrate
range.

Table 1: Bitrate savings (% BD-BR) computed over 30
video sequences with 128 frames from VoxCeleb test set.
The bitrate savings are measured with HDAC [2], HEVC and
VVC codec as anchors

Metrics HDAC VVC HEVC

msVGG -55.10 -66.65 -74.99
DISTS -48.46 -63.01 -82.62

LPIPS-VGG -38.43 -48.73 -78.96
LPIPS -6.45 -33.11 -75.96
FSIM -42.89 -16.02 -63.10

MS-SSIM -56.97 -20.11 -52.05

Fig. 3 illustrates the rate-distortion performance using the
LPIPS metric. RDAC significantly improves performance of
conventional video codecs over a wide range of bitrates, and
it outperforms previous animation-based codecs which do not
employ predictive coding.

4.3. Ablation study and temporal drift

An advantage of using a closed-loop prediction scheme for
temporal coding of residuals is that it avoids the temporal
drifting affecting previous open-loop schemes such as DAC.
This is supported by Fig. 4, where we show the temporal re-
construction quality (measured with MS-SSIM) of our frame-
work and DAC.

We also investigate to which extent the temporal pre-
diction contributes to the RD gains, over a frame-by-frame
scheme to code the prediction residuals Rt. To this end, we
remove the temporal feedback loop in Fig. 1, encoding the
residuals as all Intra. Tab. 2 reports the gains of our proposed
RDAC (with temporal prediction) over this simpler solution,
demonstrating that reducing temporal correlation has a signif-
icant impact on coding performance.

Table 2: Bitrate Savings (% BD-BR) from our framework
with temporal residual learning versus no temporal residual
(10 sequences/64 frames)

DISTS LPIPS msVGG FSIM MS-SSIM

-9.35 -14.32 -5.65 -9.20 -6.86

4.4. Computational complexity

In Tab. 3, we make a complexity evaluation by comparing
the coding or decoding time for a single interframe. The
animation-based models DAC, HDAC, and our framework
are evaluated on a CPU and GPU while the HEVC and VVC
codecs are only evaluated on a CPU since they do not have
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Fig. 2: Visual Comparison of coding results. A qualitative comparison of our proposed coding framework shows significant
quality improvement over HEVC and VVC at low bitrates. We observe fewer smoothing and blocking artifacts as well as better
color and style preservation in the reconstructed frames with our framework.

Fig. 3: RD Performance: Our method achieves consider-
able bitrate gains over a wider range of bitrates relative to
both state-of-the-art video compression tools and the previ-
ously proposed frameworks.

GPU acceleration capability. We note that our proposal adds
only a moderate level of complexity relative to HEVC. How-
ever since we achieve bitrate savings greater than VVC, we
consider this additional complexity as an acceptable tradeoff
for the target application.

Table 3: Computational Complexity: Time to en-
code/decode 1 frame (in seconds). The computation time is
estimated for the highest RD point of our framework.

CPU (Intel Corei7) GPU (RTX 3090)
Enc. Dec. Enc. Dec.

HEVC 0.09 0.005 - -
VVC 13.5 0.01 - -

DAC 0.04 0.35 0.03 0.02
HDAC 0.10 0.35 0.12 0.02

RDAC (Ours) 0.52 0.50 0.21 0.02

Fig. 4: Reconstruction quality as a function of time:
RDAC temporal prediction avoids temporal drift, in contrast
with open-loop schemes such as DAC, where quality degrades
as the target frames get farther from the reference.

5. CONCLUSIONS

Animation-based compression offers the possibility to trans-
mit videos with very low bitrate. However, it is often lim-
ited to reconstructing the outputs at a fixed quality level, can-
not scale efficiently when higher bandwidth is available, and
does not compress efficiently temporal redundancies in the
signal. In this paper, we propose a coding scheme that inte-
grates image animation (re-interpreted as a frame predictor)
with classical predictive coding principles, where we exploit
both spatial and temporal dependencies to achieve a coding
gain. Our RDAC codec outperforms previous methods and
standard codecs by a large margin on a dataset of talking head
videos, despite the very simple temporal prediction approach
employed.
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[2] Goluck Konuko, Stéphane Lathuilière, and Giuseppe
Valenzise, “A hybrid animation codec for low bitrate
video conferencing,” in IEEE ICIP, 2022.

[3] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu,
“One-shot free-view neural talking-head synthesis for
video conferencing,” in CVPR, 2021.

[4] Maxime Oquab, Pierre Stock, Oran Gafni, Daniel Haz-
iza, Tao Xu, Peizhao Zhang, Onur Celebi, Yana Has-
son, Patrick Labatut, Bobo Bose-Kolanu, et al., “Low
bandwidth video-chat compression using deep genera-
tive models,” arXiv preprint arXiv:2012.00328, 2020.

[5] Bolin Chen, Zhao Wang, Binzhe Li, Rongqun Lin, Shiqi
Wang, and Yan Ye, “Beyond keypoint coding: Temporal
evolution inference with compact feature representation
for talking face video compression,” in DCC, 2022.

[6] Zhehao Chen, Ming Lu, Hao Chen, and Zhan Ma, “Ro-
bust ultralow bitrate video conferencing with second or-
der motion coherency,” in 2022 IEEE 24th International
Workshop on Multimedia Signal Processing (MMSP),
2022, pp. 1–6.

[7] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey
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[12] Johannes Ballé, Valero Laparra, and Eero P Simoncelli,
“End-to-end optimized image compression,” Neurips,
2016.

[13] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang,
Chunlei Cai, and Zhiyong Gao, “Dvc: An end-to-end
deep video compression framework,” in IEEE CVPR,
2019.

[14] Fabian Mentzer, George Toderici, David Minnen, Sung-
Jin Hwang, Sergi Caelles, Mario Lucic, and Eirikur
Agustsson, “Vct: A video compression transformer,”
in NeurIPS, 2022.

[15] J. Cleary and I. Witten, “Data compression using adap-
tive coding and partial string matching,” IEEE Transac-
tions on Communications, vol. 32, no. 4, pp. 396–402,
1984.

[16] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli
Shechtman, and Oliver Wang, “The unreasonable ef-
fectiveness of deep features as a perceptual metric,” in
CVPR, 2018.

[17] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large scale image recogni-
tion,” in ICLR, 2015.

[18] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simon-
celli, “Image quality assessment: Unifying structure
and texture similarity,” in IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2022, vol. 44,
pp. 2567–2581.


	 Introduction
	 Related Work
	 PROPOSED METHOD
	 Deep Image Animation Prediction and Residual Coding
	 Using Temporal Correlation in the Residual Layer
	 Model Training

	 Experiments and Results
	 Evaluation Protocol
	 RD Evaluation
	 Ablation study and temporal drift
	 Computational complexity

	 Conclusions
	 References

