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We give a short review of old and recent results on scatterers with
transmission eigenvalues of infinite multiplicity, including
transparent scatterers. Our examples include potentials from the
Schwartz class and multipoint potentials of Bethe - Peierls type.

This talk is based, in particular, on the works:
Grinevich P.G., Novikov R.G. “Transparent Potentials at Fixed
Energy in Dimension Two. Fixed-Energy Dispersion Relations for
the Fast Decaying Potentials” - Commun. Math. Phys., 1995,
v.174, pp. 409-446.
Grinevich P.G., Novikov R.G. “Transmission eigenvalues for
multipoint scatterers” - Eurasian Journal of Mathematical and
Computer Applications, 2021, v.9:4, pp. 17-25.
Grinevich P.G., Novikov R.G. “Spectral inequality for Schrödinger’s
equation with multipoint potential” - Russian Mathematical
Surveys, 2022, v.77:6, pp. 1021-1028.
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Basic definitions

We consider the stationary Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd , d = 1, 2, 3, (1)

We assume that potential v(x) decays sufficiently fast as |x | → ∞.

The scattering at potential v(x) is described by the following
solutions of Equation (1):

ψ+ = e ikx + f +
(
k , |k | x

|x |

)
e i |k||x |

|x |(d−1)/2
+ O

(
1

|x |(d+1)/2

)
, (2)

as |x | → ∞, for a priori unknown f + = f +(k, l) . Here k, l ∈ Rd ,
k2 = l2 = E > 0.

The functions f + = f +(k , l) is called the scattering amplitude.
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Basic definitions

It is also convenient to rewrite f +(k, l) as:

f +(k, l) = c(d , |k |)f (k , l), where (3)

c(d , |k |) = −πi(−2πi)(d−1)/2|k |(d−3)/2, where
√
−2πi =

√
2πe−iπ/4.

The scattering operator Ŝ = ŜE at a fixed energy level E = κ2 is
defined by:

(ŜEu)(θ) = u(θ)− iπκd−2
∫
Sd−1

f (κθ′,κθ)u(θ′)dθ′, (4)

where u(θ) is a test function, Sd−1 is the unit sphere in Rd ,
θ, θ′ ∈ Sd−1, dθ′ is the standard volume element at Sd−1.
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Transparent potentials

Definition
Potential v = v(x) is called transparent at a fixed energy E > 0
if

ŜE ≡ 1̂,

that is

f (k , l) = 0, for all k , l ∈ Rd such that k2 = l2 = E .

Historically, studies on transparent potentials in multidimensions go
back to
Regge, T.,“Introduction to complex orbital moments”, Nuovo
Cimento, 1959, v.14, pp. 951-976.

For the case d = 1, these studies go back to multisoliton
ponentials, see, for example, review paper:
Faddeev L.D., “The inverse problem in the quantum theory of
scattering. II”, J. Soviet Math.,, 1976, v. 5:3, 334-396.
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Transparent potentials

In particular, in works of Tulio Regge (1959), Roger Newton
(1962), and Pierre Sabatier (1966), spherically symmetric
ponentials transparent at a fixed positive energy E were
constructed for d = 3. These potentials decay at infinity as |x |−3/2.

In turn, for d = 1, N-soliton potentials are reflectionsless for all
positive energies, and are transparent for N − 1 energies. These
potentials decay at infinity exponentially.

More recently, in our work Grinevich, Novikov (CMP, 1995),
mentioned at the beginning, spherically symmetric ponentials
transparent at a fixed positive energy E were constructed for
d = 2. These potentials belong to the Schwartz class.

All these works were fulfilled before more recent studies on
invisibility using cloaking!
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Transparent potentials

The Regge-Newton-Sabatier construction is based on
Gelfand-Levitan type equations for spherically symmetric potentials
at fixed energy.
The construction used in our work (Grinevich, Novikov, 1995) also
goes back historically to Gelfand-Levitan type equations. More
precisely, this construction is based on the ∂̄-method for the
complex geometric optics Faddeev’s solutions of the Schrödinger
equation at fixed energy.

Note that inverse scattering for the two-dimensional Schrödinger
equation at fixed energy was essentially developed in the framework
of the soliton theory in dimension 2+1. This connection was
discovered in (Dubrovin, Krichever, S.P. Novikov, 1976) and
(Manakov, 1976).
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Transmission eigenvalues

Definition
Energy level E is called transmission eigenvalue, if the operator

ŜE − 1̂

has nontrivial kernel in L2(Sd−1). Dimension of this kernel is called
multiplicity of the transmission eigenvalue. Here 1̂ denotes the
identity operator.

We also consider interior transmission eigenvalues for potentials
v = v(x) such that

supp v ⊂ D.

where D is a connected bounded domain in Rd with C 2 boundary,
such that Rd\D is also connected.
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Transmission eigenvalues

Definition
Energy level E is called interior transmission eigenvalue for
equation (5) if the exists a pair of non-zero functions ψ(x), φ(x)
such that

−∆ψ(x) + v(x)ψ(x) = Eψ(x), x ∈ D, (5)

−∆φ(x) = Eφ(x), x ∈ D,

and

ψ(x) ≡ φ(x),
∂

∂ν
ψ(x) ≡ ∂

∂ν
φ(x) for all x ∈ ∂D,

where ∂
∂ν denotes the normal derivative.
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Transmission eigenvalues

Historically, studies on transmission eigenvalues for scatterers with
compact support go back to
Kirsch, A., “The denseness of the far field patterns for the
transmission problem”, IMA J. Appl. Math., 1986, v.37, pp.
213-223.
Colton, D., Monk, P., “Transmission eigenvalues”, Q. J. Mech.
Appl. Math., 1988, v.41, pp. 97-125.
In connection with more recent results in this direction, see, e.g.
Cakoni, F., Haddar, H., “Transmission eigenvalues in inverse
scattering theory”, Inside Out II, MSRI Publications, 2012, v.60, pp.
529-580.
Cakoni, F., Haddar, H., “Transmission eigenvalues”, Inverse
Problems, 2013, v.29, 100201 (3pp).
Nguyen, H-M., Nguyen, Q-H. “Discreteness of interior transmission
eigenvalues revisited”, Calculus of Variations and Partial Differential
Equations, 56:2, article: 51 (38pp) (2017).
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Transmission eigenvalues

A typical result of these studies is as follows

Theorem: For sufficiently regular compactly supported isotropic
scatterers the transmission eigenvalues are discrete and have finite
multiplicity.

This result is not valid for potentials from the Schwartz class
in view of our aforementioned result (Grinevich, Novikov, 1995)!
The energy of transparency for 2D potentials in (Grinevich,
Novikov, 1995) is a transmission eigenvalue of infinite multiplicity,
moreover, the kernel of ŜE − 1̂ coincides with the full space L2(S1).

In addition, recently in (Grinevich, Novikov, 2021) we
observed that the result about discreetness and finite
multiplicity of transmission eigenvalues is not valid also for
some physically relevant compactly supported singular
scatterers!
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Multipoint scatterers

More precisely, in (Grinevich, Novikov, 2021) we consider the
multipoint scatterers of the Bethe-Peierls-Thomas-Fermi type in
dimensions d = 2 and d = 3. We show that for these scatterers:

Each positive energy E is a transmission eigenvalue (in the
strong sense) of infinite multiplicity!
Each complex E is an interior transmission eigenvalue of
infinite multiplicity for domains D containing support of v !
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Point scatterers

For the first time the point scatterers in question were introduced in
(Bethe, Peierls, 1935) and (Thomas, 1935) for d = 3, to describe
the interaction between neutrons and protons. Subsequently, point
and multipoint scatterers were considered by many authors,
including (Fermi, 1936), (Zel’dovich, 1960), (Berezin and Faddeev,
1961); also see the monograph (Albeverio, Gesztesy, Høegh-Krohn,
Holden, 1988). In particular, Fermi used such a model to explain
strong interaction of slow neutrons with nuclei, Nobel prize 1938.

The most intuitive definition of point scatterers is as follows.
Consider a sequence of regular compactly supported potentials

vN(x), N ∈ N,

such that for N →∞:
Diameter of supp vN(x) converges to 0;
at any compact interval of energies the scattering amplitude
f +N (k , l) converges to well-defined non-trivial limit f +∞(k , l).
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Point scatterers

The simplest scatterers of such a type are the
Bethe-Peierls-Thomas-Fermi scatterers.

For d = 1 these scatterers are standard δ-functions with some
coefficients.
For d = 2, 3 the sequence vN(x) converges to 0 in the sense of
distributions.

One can start with

vN(x) = φ(N)v1(Nx),

v1(r) is the characteristic function of unit ball in Rd , d = 1, 2, 3.

Then to obtain a good limit one has to assume, in particular, that

φ(N) ∼


N, d = 1,
N2/ log(N), d = 2,
N2 d = 3,

up to coefficients and lower terms.
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Point scatterers

By specifying properly the behavior of φ(N) we obtain for each
d = 1, 2, 3 a family of Bethe-Peierls-Thomas-Fermi scatterers
δα(x), supported at x = 0 and parameterized by α ∈ R ∪∞. The
number 1/α can be interpreted as the strength of the scatterer.

Sometimes, for d = 2, 3, these δα(x) are called “renormalized
δ-functions”.
For d ≥ 4 the point potentials are not defined.

In addition, ψ satisfies the stationary Schrödiger equation

−∆ψ + v(x)ψ = Eψ,

with

v(x) =
n∑

j=1

δαj (x − yj)

iff
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Multipoint scatterers

I

−∆ψ = Eψ, for all x 6= yj , j = 1, . . . , n,
II and near the points y1,. . . ,yn:

1 If d = 1, then ψ(x) is continuous at x = yj , and its first
derivative has a jump

−αj [ψ′(yj + 0)− ψ′(yj − 0)] = ψ(yj);

2 If d = 2, then

ψ(x) = ψj,−1 ln |x − yj |+ ψj,0 + O(|x − yj |) as x → yj ,

and
[−2παj − ln 2 + γ]ψj,−1 = ψj,0,

where γ = 0.577 . . . is the Euler’s constant.
3 If d = 3, then

ψ(x) =
ψj,−1

|x − yj |
+ ψj,0 + O(|x − yj |) as x → yj ,

and
4παjψj,−1 = ψj,0.
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Exact solvability

The Schrödinger equation (1) with multipoint potentials as
above is exactly solvable! In particular, it is known that

ψ+(x , k) = e ikx +
n∑

j=1

qj(k)G+(x − yj , |k |2),

f (k , l) =
1

(2π)d

n∑
j=1

qj(k)e−ilyj ,

where
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Exact solvability

G+(x ,E ) =
e i |k||x |

2i |k |
, d = 1,

G+(x ,E ) = − i

4
H1
0 (|x ||k|), d = 2,

where H1
0 is the Hankel function of the first kind,

G+(x ,E ) =
1
2π

[
ln |x |+ ln |k| − ln 2 + γ − πi

2

]
+ O(|x |2| ln |x ||),

as |x | → 0, γ = 0.577 . . . is the Euler constant,

G+(x , k) = −e i |k||x |

4π|x |
, d = 3,

(6)
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Exact solvability

The vector of constants q(k) = (q1(k), . . . , qn(k))t is defined as
the solution of the linear system:

A(|k |)q(k) = b(k),

with the n × n matrix A:

Aj ,j(|k |) = αj − i(4π)−1|k|, d = 3,

Aj ,j(|k |) = αj − (4π)−1(πi − 2 ln(|k |)), d = 2,

Aj ,j(|k|) = αj + (2i |k|)−1, d = 1,

Aj ,j ′(|k |) = G+(yj − yj ′ , |k |2), j ′ 6= j ,

and the right-hand side vector b(k):

bj(k) = −e ikyj .
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Transmission eigenvalues for multipoint scatterers

Already the formula

f (k , l) =
1

(2π)d

n∑
j=1

qj(k)e−ilyj ,

implies that each positive energy E for the aforementioned
multipoint potentials is a transmission eigenvalue of infinity
multiplicity, since the operator

ŜE − 1̂,

has rank at most n.
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Multipoint scatterers

We continued studies on multipoint scatterers in (Grinevich,
Novikov, 2022) by considering Schrödinger’s equation with
potential that is a sum of a regular function and a finite number of
point scatterers of Bethe-Peierls-Thomas-Fermi type.
For this equation we considered the spectral problem with
homogeneous linear boundary conditions, which covers the
Dirichlet, Neumann, and Robin cases.
We showed that if the energy E is an eigenvalue with multiplicity m
for the regular potential, it remains an eigenvalue with multiplicity
at least m − n after adding n < m point scatterers.
As a consequence, because for the zero potential all energies are
transmission eigenvalues with infinite multiplicity, this property also
holds for n-point scatterings as we mentioned above.
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Multipoint scatterers

Very recently we also observed that a converse inequality also holds.

We showed that if the energy E is an eigenvalue with multiplicity m
for a sum of a regular potential and a n-point potential, n < m,
then this energy is an eigenvalue with multiplicity at least m− n for
the regular potential.

These spectral inequalities are our most recent contributions into
the direct and inverse eigenvalue problems.

Thank you for your attention!
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