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The adiabatic connection formalism, usually based on the first-order pertur-

bation theory, has been generalized to an arbitrary order. The generalization

stems from the observation that the formalism can be derived from a properly

arranged Taylor expansion. The second-order theory is developed in detail

and applied to the description of two electrons in a parabolic confinement

(harmonium). A significant improvement relative to the first-order theory

has been obtained.
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1. INTRODUCTION

The adiabatic connection is used in quantum mechanics to express corrections to

models by progressively approaching the system of interest.7 Usually, this is formally

obtained by using for each infinitesimal step the first-order perturbation theory. This

paper generalizes the idea of adiabatic connection (as used in quantum mechanics)

by applying it at higher orders of perturbation theory [see eq. (28)]. Mathematically,

it corresponds to using the integral remainder in Taylor’s formula. We thus expect

improvement by going to higher orders.

The advantage of such an approach originates from using operators that require

reduced information about the wave function. In our case, we exploit the short-

range behavior of the wave function.17 As the short-range behavior has features

independent of a specific (electronic) systems, it can be applied "universally", that
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is, in a system-independent way, in the spirit of density functional theory (DFT).

The approach retains the fundamental role of the adiabatic connection in DFT

where it was used not only for explaining what the exchange-correlation density

functional should do6,8,13,21, but also as a guide in constructing density functional

approximations (see, e.g., refs. 1 and 2). As in DFT, we need to complement by

information provided by the model system. Our approach avoids certain of the

limitations present in density functional theory: it is valid for any state, and it needs

no fitting to systems such as the uniform electron gas. No use of the Hohenberg-

Kohn theorem9, is made. Thus, the method presented here is not restricted to

ground states.

Although generally applicable, we illustrate our method by applying it to a system of

two electrons in a parabolic confinement (harmonium), as it is sufficient to illustrate

the aspects mentioned above.

2. THEORY

2.1. Adiabatic connection

Mathematically, the idea of adiabatic connection relies on the equation

f(b) = f(a) +

∫ b

a

dλ f ′(λ) (1)

where f ′(λ) is the first derivative of the function f(λ). In quantum mechanics, the

function f(λ) is often associated to an energy. For this, let us consider some model

Hamiltonian, H(µ), and the corresponding Schrödinger equation,

H(µ)Ψ(µ) = E(µ)Ψ(µ). (2)

Note that to simplify the notation, we drop the designations of coordinates and

quantum numbers whenever this does not lead to misunderstandings. The quantity

of interest is not the energy of the model system, E(µ), but E, the energy produced

by the Schrödinger equation of the physical Hamiltonian, H. We write

H(λ, µ) = H(µ) + λ (H −H(µ)) (3)

and

H(λ, µ)Ψ(λ, µ) = E(λ, µ)Ψ(λ, µ) (4)
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Note that for λ = 0 we have the model system, and for λ = 1 the physical system.

Furthermore (by first-order perturbation theory, the Hellmann-Feynman theorem),

∂λE(λ, µ) = ⟨Ψ(λ, µ)|H −H(µ)|Ψ(λ, µ)⟩ (5)

Applying eq. (1), we have an expression for E(λ, µ),

E(λ, µ) = E(µ) +

∫ λ

0

dλ ⟨Ψ(λ, µ)|H −H(µ)|Ψ(λ, µ)⟩. (6)

In particular, for λ = 1, we have the correction that added to E(µ) produces the

physical energy, E

E(µ) = E − E(µ) (7)

=

∫ 1

0

dλ ⟨Ψ(λ, µ)|H −H(µ)|Ψ(λ, µ)⟩ (8)

Eq. (8) seems useless, as it requires the knowledge of the wave function for λ ∈ [0, 1].

However, one can exploit eq. (8), if the behavior of these wave functions is known

for the specific domain probed by the operator H−H(µ). In this paper we consider

H(µ) = T + V +W (µ) (9)

where T is the kinetic energy operator, V =
∑N

i=1 v(ri), and W (µ) =
∑

i<j w(|ri −

rj|, µ) are one- and two-particle potential energy operators. Note that only the two-

particle operator is model-dependent. We choose w(r;µ) as a long-range operator,

in order to have

W (µ) = H −H(µ), (10)

a short-range operator to show up in eq. (8), and exploit the short-range properties

of the wave function. All the numerical examples below are produced with

w(r;µ) =
erf(µr)

r
(11)

w(r;µ) =
erfc(µr)

r
(12)

2.2. Second-order adiabatic connection

Eq. (1) is only a particular case of the Taylor’s expansion with the integral form of

the remainder,
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f(b) =

(
K−1∑
k=0

1

k!
(b− a)kf (k)(a)

)
+

∫ b

a

dλ
1

(K − 1)!
(b− λ)K−1f (K)(λ) (13)

where f (k) is the kth derivative of f ; eq. (1) is obtained for K = 1. We consider

below the case K = 2,

E = E(µ) + ∂λE(λ, µ)|λ=0 +

∫ 1

0

dλ (1− λ) ∂2
λE(λ, µ) (14)

In order to make the distinction between the variants of adiabatic connection, we

call the usual one, eq. (8) first-order adiabatic connection, AC1, and that given

by eq. (14) second-order adiabatic connection, AC2. Using higher-order adiabatic

connections is possible, but they are not explored in this paper. We would like to

stress that eqs. (8) and (14) are both rigorous, as long as the derivatives exist.

Note that neglecting the integral on the right-hand side of eq. (14) gives the first-

order perturbation theory expression, and making the approximation ∂2
λE(λ, µ) ≈

∂2
λE(λ, µ)|λ=0 gives the second-order perturbation theory expression,

E ≈ E(µ) + ∂λE(λ, µ)|λ=0 +
1

2
∂2
λE(λ, µ)

∣∣∣∣
λ=0

(15)

Using ∂λE(λ, µ)|λ=0 in eq. (14) requires only using eq. (5) at λ = 0, that is, the

model wave function, Ψ(µ),

∂λE(λ, µ) = ⟨Ψ(µ)|W (µ)|Ψ(µ)⟩ (16)

For obtaining the second-derivative in eq. (14), we use eq. (6),

∂2
λE(λ, µ) = ∂λ⟨Ψ(λ, µ)|W (µ)|Ψ(λ, µ)⟩ (17)

2.3. Exploiting the short-range behavior of the wave function

In order to avoid the need of knowing Ψ for all λ in eqs. (16) and (17), we use

a short-range operator W , and exploit the "universal" features of the wave func-

tion. The behavior of the model wave function approaching the physical system

can be analyzed by considering the limit of large µ.3 In this limit, the difference be-

tween the model and physical wave function is dominated by the behavior at short

electron-electron distances (as w(r;µ) differs from the Coulomb potential only in
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this domain). For r = |r1 − r2| → 0,

Ψ(λ, µ) =
∑
ℓ

Nℓ φℓ(r;λ, µ), (18)

where ℓ is an angular quantum number related to r1 − r2, and Nℓ depends on all

variables except r.

Below, we use φℓ(r;λ, µ) that is correct to order µ−1. It satisfies the generalization

of Kato’s cusp condition to w(r;µ) + λw(r;µ).10,11,15,19. Its explicit form is derived

in Appendix:

φℓ(r;λ, µ) ∝ rℓ

[
1 +

λ r

2ℓ+ 2
+

1− λ

2ℓ+ 2

(
r erf(µr) +

2ℓ+ 2

2ℓ+ 1

e−µ2r2

µ
√
π

(19)

+
Γ(ℓ+ 3/2)− Γ(ℓ+ 3/2, µ2r2)√

π(2ℓ+ 1)µ2ℓ+2r2ℓ+1

)]
where the incomplete Γ function is:

Γ(a, z) =

∫ ∞

z

dt ta−1e−t

and Γ(a) = Γ(a, 0).

In most quantum-chemical methods one considers the natural singlet and triplet

pairing, corresponding to ℓ = 0, and ℓ = 1, respectively. The non-natural singlets

and triplets, as they are called by Kutzelnigg and Morgan 12, correspond to ℓ > 1.

If ℓ > 1 then the centrifugal force keeps electrons apart. As a consequence, for

r → 0 the prefactor rℓ in eq. (19) decreases with increasing ℓ. Consequently,

the terms with small ℓ dominate in expansion (18). For the system treated in this

paper (harmonium), due to separability, the sum is exactly reduced to one term

and, in principle, one can study the behavior of the wave function corresponding to

an arbitrary ℓ. In the remaining part of this Section the ℓ-dependence is marked

explicitly: Ψ(λ, µ) is denoted as Ψℓ(λ, µ), and E(λ, µ) - as Eℓ(λ, µ).

2.4. The model system

All numerical results presented hereafter are obtained for a system of two electrons

in a parabolic confinement (harmonium) with v = 1
2
ω2r2. If not specified otherwise,

ω = 1/2 a.u. The interaction between electrons is generalized to w, eq. (11). The
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Schrödinger equation is separable, and we have to consider only the one-dimensional

radial equation(
−∂2

r −
2

r
∂r +

ℓ(ℓ+ 1)

r2
+

1

4
ω2r2 + w(r;µ) + λw(r;µ)− Eℓ(λ, µ)

)
φℓ(r;λ, µ) = 0

(20)

It can be solved to arbitrary accuracy, and this allows us to judge the errors made

to approximations. Furthermore, there is no need to take into account the other

coordinates in the prefactor Nℓ showing up in eq. (18).

2.5. Working equations

In first-order adiabatic connection we approximate

∂λEℓ(λ, µ) = ⟨Ψ(λ, µ)|W (µ)|Ψ(λ, µ)⟩ ≈ cℓ I(1)
ℓ (λ, µ), (21)

where cℓ = N 2
ℓ and

I(1)
ℓ (λ, µ) =

∫ ∞

0

dr r2 |φℓ(r;λ, µ)|2w(r;µ). (22)

In second-order adiabatic connection we approximate

∂2
λEℓ(λ, µ) ≈ cℓ I(2)

ℓ (λ, µ) (23)

where

I(2)
ℓ (λ, µ) = ∂λI(1)

ℓ (λ, µ). (24)

As φℓ(r;λ, µ) is explicitly known (in the given limit: r → 0, µ → ∞), the integrals

IK
ℓ are computed to be (for ℓ = 0 and ℓ = 1),

I(1)
ℓ=0 ∝

1

µ2
+

a1 + a2(1− λ)

µ3
+

a3 + a4(1− λ) + a5(1− λ)2

µ4
(25)

I(1)
ℓ=1 ∝

1

µ4
+

b1 + b2(1− λ)

µ5
+

b3 + b4(1− λ) + b5(1− λ)2

µ6
(26)

where the constants ak and bk are collected in table I.

The proportionality constant, c, is related to the physical system and can be deter-

mined by using eqs. (21) and (23) for the model system (at λ = 0). We thus get the

following working equations:

Eℓ ≈ Eℓ(µ) + α
(1)
ℓ (µ) ∂λEℓ(λ, µ)|λ=0 (27)
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k 1 2 3 4 5

ak 0.75225 0.62319 0.18750 0.19331 0.10700

bk 0.60180 0.07301 0.10417 0.01647 0.00198

TABLE I. Constants in eqs. (25) and (26) rounded up to five decimals.

and

Eℓ ≈ Eℓ(µ) + ∂λEℓ(λ, µ)|λ=0 + α
(2)
ℓ (µ) ∂2

λEℓ(λ, µ)
∣∣
λ=0

(28)

with

α
(K)
ℓ (µ) =

∫ 1

0
dλ (1− λ)(K−1) I(K)

ℓ (λ, µ)

I(K)
ℓ (λ = 0, µ)

(29)

The integrals over λ are trivial, and not shown. Eq. (27) corresponds to the first-

order adiabatic connection, while eq. (28) corresponds to second-order adiabatic

connection. Note that expressions (27) and (28) require the same effort as the first-

and second-order perturbation theory, respectively, namely computing ∂λEℓ(λ, µ)λ=0

and ∂2
λEℓ(λ, µ)|λ=0. Only the weight of the last term is changed by α

(K)
ℓ , K = 1 or 2.

Two more remarks on these equations. First, note that by squaring φℓ in eq. (22) we

introduce terms in µ−2, although a further term to this order may be present in an

exact theory, because φℓ is constructed to order µ−1 only. Second, higher orders in

the adiabatic connection do not improve over perturbation theory with the present

form of φℓ: in our first-order expression in 1/µ, only terms linear in λ show up. The

second derivative is just a constant, and α
(3)
ℓ = 1.

Eq. (27) can be rewritten as

Eℓ ≈ ⟨Ψ(µ)|H|Ψ(µ)⟩+
(
α
(1)
ℓ (µ)− 1

)
∂λEℓ(λ, µ)|λ=0 (30)

The last term on the r.h.s. appears as approximation for the correlation energy.

One can also write eq. (28), as

Eℓ ≈ ⟨Ψ(µ)|H|Ψ(µ)⟩+ E
(2)
ℓ (µ) +

(
α
(2)
ℓ (µ)− 1

2

)
∂2
λEℓ(λ, µ)

∣∣
λ=0

(31)

where E
(2)
ℓ (µ) = 1/2 ∂2

λEℓ(λ, µ)|λ=0 is the second-order energy correction to Eℓ(µ).

The last term on the r.h.s. appears as approximation for the remaining correlation

energy.
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3. NUMERICAL RESULTS

3.1. General considerations

By construction, the approximations leading to the working equations (27) and (28)

become exact in the limit of the model system approaching the physical system

(µ → ∞). However, the cost of performing the calculation of the model system also

increases with µ. We are thus interested to use models with small µ, ideally even

totally turn off the interaction (µ = 0). The derivation does not tell us how well the

approximations used work for small µ. The figures shown in this paper present the

errors of the approximation (the difference between the energy obtained using it and

that of the physical system) for different models µ. As µ can vary continuously, the

plots of the errors show up as curves. We consider µ ∈ [0, 3], as E(µ) approaches

anyhow the physical energy E for large µ.

With these approximations, we aim to reach the so-called chemical accuracy, i.e.,

1 kcal/mol.16 The region of chemical accuracy is marked in the plots by horizontal

dashed lines.

3.2. Discussion of the figures

Fig. 1 shows the general trends of the approximations. One can see, that by the

choice of using the bare field, v, for all values of µ, cf. eq. (9), the error of the model

in the limit of small µ is catastrophic (0.5 hartree). First-order perturbation theory

leads to the expectation value of the physical Hamiltonian, and thus gives an upper

bound to the exact energy. In spite of using a bad wave function, the improvement

is important: the error is decreased by an order of magnitude to ≈ 0.06 hartree.

Hartree-Fock, the best value that can be obtained for the non-interacting wave

function, is in error by ≈ 0.04 hartree. Second-order perturbation theory further

improves the result.

The range of chemical accuracy cannot be distinguished on the scale of the plot

shown in fig. 1. In order to discuss the suitability of the results, we have to zoom

in (see fig. 2, top). We notice that for the ground state (a singlet state, ℓ = 0), the

model does not reach chemical accuracy for the whole range of µ shown in the plot.
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FIG. 1. Errors of different approximations for the two-electron harmonium (ω = 1/2).

The full black curve indicates the error of the model, E(µ). Blue curves correspond to

first-order: dashed curve for perturbation theory, ⟨Ψ(µ)|H|Ψ(µ)⟩, full curve for first-order

adiabatic connection, eq. (27). Green curves correspond to second-order: dashed curve for

perturbation theory, eq. (15), full curve for second-order adiabatic connection, eq. (28).

The result of the first-order perturbation theory is improved by using the correction

established for µ → ∞, eq. (27). Surprisingly, in spite of using an expansion in 1/µ,

the error remains negligible even for some range of µ < 1 bohr−1 (to ≈ 0.5 bohr−1).

However, at smaller µ it worsens dramatically. Going over to the second-order

perturbation theory improves over the first-order perturbation theory. Correcting

asymptotically, eq. (28) improves the result over the whole range of values. However,

chemical accuracy is not yet reached for all models.

Let us now apply the method to excited states. The model works much better for

first triplet excited state (ℓ = 1), see fig. 2 (middle panel). This improves the results

for all approximations.

Considering the first singlet excited state with ℓ = 0, fig. 2 (bottom), we notice that

the quality of the model is worse than for the ground state. The corresponding curve

does not even show up in the plot. However, the approximations show a behavior

that roughly follows that of the ground state. We would like to stress that the

corrections for the ground state and for the first excited state with ℓ = 0 use the

same factors α(K)
ℓ , eq. (29). The corrections are, of course, different, as the system-

specific information enters through the model-specific quantities, ∂KEℓ(λ, µ)|λ=0.
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FIG. 2. Errors of different approximations for the two-electron harmonium (ω = 1/2).

The full black curve indicates the error of the model, E(µ). Blue curves correspond to

first-order: dashed curve for perturbation theory, ⟨Ψ(µ)|H|Ψ(µ)⟩, full curve for first-order

adiabatic connection, eq. (27). Green curves correspond to second-order: dashed curve for

perturbation theory, eq. (15), full curve for second-order adiabatic connection, eq. (28).

Top panel: ground state; middle panel: first excited state with ℓ = 1; bottom panel: first

excited state with ℓ = 0.
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4. CONCLUSION

The integral form of the remainder in Taylor’s expansion, eq. (13) provides a formula

that generalizes the adiabatic connection. We use it to construct approximations

to correct energies produced by model Hamiltonians with long range interaction,

eqs. (27) and (28). They are inspired by approximations used in density functional

theory. However, they do not use the Hohenberg-Kohn theorem, and are valid for

the ground and excited states. Instead, they are constructed to be valid for the

short-range interaction, as one approaches the physical system.

Results are shown only for harmonium. One can notice an improvement with in-

creasing order of the adiabatic connection. No comparison is made with analogous

density functional approximations. These can be found in ref. 17.

Of course, one would like to apply the method not only to harmonium. In other

systems the sum in eq. (18) is extended over all values of ℓ. An explicit treatment

of the higher terms is difficult, may be too expensive computationally, and is maybe

not needed – as it was alredy discussed, these terms are usually much smaller than

the leading one. Thus, techniques such as described in refs. 14, and 20 could be

applied.

A strength of the method presented here is the stability of the result for large µ.

Once the stability is lost, it may indicate a worsening of the approximation.

A weakness of the method presented here is that it does not work sufficiently well

(within chemical accuracy) for the non-interacting system (µ = 0). This makes the

method more expensive. This feature is also present in range-separated density func-

tional methods which possess a striking similarity with the one presented here. One

may wonder if the experience gained by constructing density functional approxima-

tions cannot be exploited here, too. In particular, a properly constructed effective

one-body potential in the model Hamiltonian can reduce the energy error of the

physical (interacting) system (see, e.g., figs. 11 and 12 in ref. 17). Alternatively, the

method presented here could be used to improve density functional approximations.

Finally, we would like to point out that eq. (28) can be seen as a theoretical justifi-

cation for spin-component-scaled methods5.

12



5. ACKNOWLEDGEMENT

We dedicate this paper to John P. Perdew who transformed the adiabatic connection

to a useful tool not only in understanding DFT, but also for constructing approxi-

mations that changed the impact of computational chemistry and physics.

Appendix: A derivation of equation (19)

We generalize for an arbitrary ℓ the results obtained for ℓ = 0 in Section III of ref.

3, and in Appendix of ref. 18. We consider the behavior at the limit of large µ of the

radial wave function φ(r;λ, µ) which is a solution of the radial Schrödinger equation

(20)

[tℓ(r) + vint(r;λ, µ) +R(r)]φℓ(r;λ, µ) = 0, (A.1)

where

tℓ(r) = −∂2
r −

2

r
∂r +

ℓ(ℓ+ 1)

r2
, (A.2)

is the radial part of the kinetic energy operator corresponding to a given ℓ,

vint(r;λ, µ) = w(r;µ) + λw(r;µ) =
(1− λ) erf(µ r) + λ

r
, (A.3)

is the interaction potential, and R(r) is finite at r = 0.

After changing variable r to x = µ r and defining

uℓ(x;λ, µ) = φℓ(x/µ;λ, µ) (A.4)

eq. (A.1) becomes

tℓ(x)uℓ(x;λ, µ) =

[
1

µ
vint(x;λ, 1) +O

(
µ−2
)]

uℓ(x;λ, µ). (A.5)

To solve eq. (A.5) we use the first-order perturbation theory with perturbation

parameter 1/µ. We set

uℓ(x;λ, µ) = u
(0)
ℓ (x) +

1

µ
u
(1)
ℓ (x;λ) +O(µ−2), (A.6)

where u
(0)
ℓ (x) and u

(1)
ℓ (x;λ) are solutions of the zeroth and the first order perturba-

tion equations:

tℓ(x)u
(0)
ℓ (x) = 0, (A.7)

tℓ(x)u
(1)
ℓ (x;λ) = F (x;λ), (A.8)
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and

F (x;λ) = vint(x;λ, 1)u
(0)
ℓ (x). (A.9)

The general solution of the second-order homogeneous differential equation (A.7) is a

linear combination of its two independent solutions: f1(x) = xℓ, and f2(x) = x−(l+1):

u
(0)
ℓ (x) = A(1)

ℓ f1(x) +A(2)
ℓ f2(x). (A.10)

The inhomogeneous equation (A.8) is solved in quadratures:

u
(1)
ℓ (x;λ) = f1(x)

[
B(1)
ℓ (λ)−

∫
f2(x)

W(x)
F (x;λ) dx

]
(A.11)

+ f2(x)

[
B(2)
ℓ (λ) +

∫
f1(x)

W(x)
F (x;λ) dx

]
,

where

W(x) = f1(x)
df2(x)

dx
− f2(x)

df1(x)

dx
= −2ℓ+ 1

x2

is the Wronskian of solutions of the homogeneous equation.

According to eqs. (A.3) and (A.9),

F (x;λ) = (1− λ)F (x; 0) + λF (x; 1). (A.12)

Consequently, from eq. (A.11) we have

u
(1)
ℓ (x;λ) = (1− λ)u

(1)
ℓ (x; 0) + λu

(1)
ℓ (x; 1). (A.13)

Notice that also

B(i)
ℓ (λ) = (1− λ)B(i)

ℓ (0) + λB(i)
ℓ (1), i = 1, 2, (A.14)

where B(i)
ℓ (0) and B(i)

ℓ (1) depend on neither λ nor µ.

The integration constants A(i)
ℓ and B(i)

ℓ , i = 1, 2, are determined from the require-

ment that the wave function fulfills the coalescence conditions11,18. In particular,

neither u(0)
ℓ (x) nor u(1)

ℓ (x;λ) can be singular at x = 0. The last requirement implies

that A(2) = 0.

The evaluation of λ = 1 contribution is straightforward. We have

u
(1)
ℓ (x; 1) =

1

2ℓ+ 1

[
B(1)
ℓ (1)xℓ +

B(2)
ℓ (1)

xℓ+1

]
+

A(1)
ℓ xℓ+1

2ℓ+ 2
. (A.15)
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On the other hand, according to eq. (26) of ref. 18,

u
(1)
ℓ (x; 1) ∝ rℓ+1

2ℓ+ 2

(the Kato’s cusp condition10). Therefore, in order to recover the correct behavior

of the Coulomb radial function at small x, we have to set B(1)
ℓ (1) = B(2)

ℓ (1) = 0.

Finally, according to eqs. (A.6), (A.10), and (A.15),

uℓ(x; 1, µ) = A(1)
ℓ xℓ

[
1 +

x

µ (2ℓ+ 2)

]
+O(µ−2). (A.16)

The second contribution, corresponding to λ = 0, is more difficult to calculate. At

the limit of large µ, and for sufficiently large r, φ(r; 0, µ) → φ(r; 1, µ)3 To meet this

condition we have to set B(1)
ℓ (0) = 0. By fixing

B(2)
ℓ (0) = −A(1)

ℓ

Γ(ℓ+ 3/2)

(2ℓ+ 2)
√
π
, (A.17)

and using properties of the incomplete gamma function (see, for example, ref. 4, or

https://functions.wolfram.com/GammaBetaErf/Erf/21/01/02/01/01/01/) we

get an explicit, non-singular, expression

u
(1)
ℓ (x; 0) =

A(1)
ℓ xℓ

√
π

[√
π x erf(x)

2ℓ+ 2
+

e−x2

(2ℓ+ 1)
+

Γ(ℓ+ 3/2)− Γ(ℓ+ 3/2, x2)

(2ℓ+ 1)(2ℓ+ 2)x2ℓ+1

]
.

(A.18)

By expanding the right-hand side of eq. (A.18) to a power series of x, we get

u
(1)
ℓ (x; 0) =

A(1)
ℓ xℓ

√
π

∑
n=0

(−1)n+1 x2n

(2n− 1)(2n+ 2ℓ+ 1)n!
. (A.19)

Alternatively, eq. (A.19) can be obtained by the expansion of F (x, 0) and subsequent

evaluation of integrals in eq. (A.11). Notice, that the integration constants in both

approaches are different.

For ℓ = 0, 1, 2, . . . eq. (A.18) can be simplified using the recurrence relation given

in ref. 4:

Γ(1/2, x2) =
√
(π) (1− erf(x)), Γ

(
a+ 1, x2

)
= aΓ

(
a, x2

)
+ x2a e−x2

. (A.20)

u
(1)
0 (x; 0) =

A(1)
ℓ

2

[(
x+

1

2x

)
erf(x) +

e−x2

√
π

]
, (A.21)

u
(1)
1 (x; 0) =

A(1)
ℓ x

4

[(
x+

1

4x3

)
erf(x) +

e−x2

√
π

(
1− 1

2x2

)]
, (A.22)

u
(1)
2 (x; 0) =

A(1)
ℓ x2

6

[(
x+

3

8x5

)
erf(x) +

e−x2

√
π

(
1− 1

2x2
− 3

4x4

)]
. (A.23)
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Combining eqs. (A.6), (A.10), (A.13), (A.15), and (A.19) we get, at the limit of

r → 0,

φℓ(r;λ, µ) ∝ rℓ
[
1 +

1− λ

µ
√
π(2ℓ+ 1)

+
λ r

2ℓ+ 2

]
. (A.24)
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