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Phase Noise of Optical Pulse Trains Generated by
Talbot Effect in Frequency Shifting Loops
Vincent Billault, Vincent Crozatier, Ghaya Baili, Loı̈c Morvan, Daniel Dolfi, Fellow, OSA,

Nithyanadan Kanagaraj, Member, OSA, and Hugues Guillet de Chatellus

Abstract—High repetition rate optical pulse trains are essential
for a wide range of applications, including photonic-assisted
sampling. Among the different solutions proposed so far, Talbot
lasers, based on the generation of an optical frequency comb in
a frequency shifting loop, are a simple yet efficient source of
short transform-limited pulses. By controlling the comb spectral
phase, the repetition rate is reconfigurable. It can be set to a
(possibly large) multiple of the comb spacing and reach the
GHz range, while only requiring a low bandwidth synthesizer
(typ. 100 MHz). The noise characteristics of this pulse trains
is a key factor for its application. Therefore, we investigate the
phase noise properties of Talbot lasers. In particular, we prove
theoretically and demonstrate experimentally that the phase noise
at high offset frequency from the carrier, does not depend on
the multiplication factor q. We also demonstrate that the phase
noise at low offset frequencies, which increases as 20 log q, can
be strongly reduced by a simple locking technique. Finally, we
show that in addition to their reconfigurability, Talbot lasers can
provide timing jitters at 8.2 GHz as low as 350 fs (integrated
from 105 Hz to the Nyquist frequency), making them suitable
candidates for time metrology applications.

I. INTRODUCTION

The growing need for real-time processing of broadband
analog signals is driven by numerous applications, ranging
from radar and telecommunications to intelligence systems,
especially for highly demanding security applications. To
meet these challenges, the performance of analog-to-digital
converters (ADCs) is a critical issue [1]. Recall that analog-
to-digital conversion consists of time sampling followed by
signal quantization. The performance of the ADC is directly
set by the purity of the clock signal: any time jitter of the
sampling clock will result in erroneous values of the digitized
signal. If the clock jitter is assumed to be the only noise
source of the ADC unit, then one can define the sampler SNR
as: SNR = −20 log(2πσJBW), where σJ is the clock jitter
integrated up to the Nyquist frequency and BW is the analog
bandwidth of the input signal [2]. Therefore, considering an
ideal quantization device, the fidelity of the overall analog-
to-digital conversion (defined by the effective number of bits,
ENOB) is directly set by the sampler SNR, i.e., by the clock
jitter. As the instantaneous bandwidth gets larger, the jitter
requirement gets stronger to keep the ENOB constant [3]. For
several years, electronic solutions have struggled to overcome
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the 100 fs jitter barrier [4], limiting the potential BW to 3 GHz
for an ENOB of 8, or equivalently the ENOB to 6.5 for a 10
GHz BW. Until now, only photonic-assisted solutions have
been able to produce multi GHz clock signals, with temporal
jitter lower than a hundred of fs. Different architectures for
RF signals ADC involving photonics have been proposed over
the last twenty years [5], all based on mode-locked (ML)
lasers [6]. The latter generate combs of mutually phase-locked
optical frequencies, whose spacing (or free spectral range,
FSR) is set by the length of the cavity. In the temporal
domain, this corresponds to pulses at a repetition rate equal to
the cavity free spectral range. However, reaching multi-GHz
repetition rates in ML lasers requires specific technologies.
In conventional passive ML lasers, in spite of remarkable
purity of the pulse train [7], the repetition rate is set by
the length of the laser cavity, rendering it challenging to go
beyond the GHz range [8]. A first approach to multiply the
repetition rate is based on spectral filtering, where the ML
frequency comb is filtered by a Fabry-Perot cavity [9], [10].
Only comb lines matching the resonance condition of the
Fabry-Perot are transmitted, resulting in a multiplication of
the repetition rate, but at the price of a significant decrease
of the output power and imperfect rejection of the unwanted
lines. A different technique that preserves the output average
power, makes use of pulse interleaving [11]. But none of
these approaches enables simple tunability of the repetition
rate. To circumvent this limitation, active harmonic mode-
locking (HML) has been proposed, where multiple short pulses
circulate in the laser cavity, enabling the multiplication of the
repetition rate of the laser up to several tens of GHz [12],
[13]. HML is achieved by modulating the intracavity light
at a frequency equal to a large multiple of the cavity FSR.
HML offers both reconfigurability of the repetition rate and
low timing jitter. However, this technique utilizes an RF signal
at the same frequency as the pulse train. Additionally, it has
been shown that at low offset frequency from the carrier,
the phase noise of the pulse trains follows the one of the
RF synthesizer [13], which sets a strong requirement on the
spectral purity of the synthesizer. Moreover, the spectral purity
of the pulse train is degraded by supermode fluctuations [14],
an effect that can be minimized by inserting a resonator in the
laser cavity, again to the detriment of tunability [15].

An attractive approach to multiply the repetition rate of
a ML pulse train without involving a multi-GHz RF signal
source, is to make use of the temporal Talbot effect [16],
[17]. A ML pulse train traveling through a transparent medium
exhibiting group velocity dispersion, acquires a quadratic spec-
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tral phase. Provided the total group-delay dispersion (slope
of the linear group delay as a function of radial frequency)
experienced by the pulse trains matches D2 = 1

2π
p
qT

2, where
T is the laser repetition rate, p and q are mutually prime
integers, the repetition rate of the pulse train at the output
of the dispersive line is multiplied by q (i.e. is equal to q/T ),
a phenomenon called temporal fractional Talbot effect [17],
[18]. Since Talbot effect is a pure phase modulation process in
the spectral domain, the laser power is conserved. Regarding
the purity of the pulse train, it has been shown that in the
case of input pulses with fluctuating times of arrival, Talbot
effect shows an intrinsic improvement of the pulses regularity,
in both integer and fractional conditions [19], [20], [21], [22],
[23], [24]. However, an important technical limitation of pulse
multiplication by temporal Talbot effect is the lack of highly
dispersive transparent media. For example, multiplying by a
factor of 25 the repetition rate of a 10 GHz ML laser at 1550
nm would require the use of 20 km of single mode fiber (SMF
28). The same multiplication factor for a 100 MHz-repetition
rate ML laser, would imply an unrealistic fiber length of
200000 km. Therefore, in practice, Talbot effect can be applied
to pulse trains with multi-GHz repetition rates. Moreover,
the tunability of conventional temporal Talbot effect is very
limited, since a given propagation length is associated to a
definite multiplication factor. Notice that several techniques
can be used to allow tunability of the repetition rate, but at
the expense of significant additional complexity of the system
[25], [26].

Recently, a new concept of laser sources with a tunable
repetition rate, also based on the temporal Talbot effect, has
been demonstrated [27], [28]. In this architecture termed as
Talbot laser and based on a frequency shifting loop (FSL), a
comb of optical frequencies is created by repetitive passes of a
monochromatic CW laser (frequency: f0), in a loop containing
a frequency shifter. The frequencies of the comb teeth (labeled
by n) are equal to f0 + nfs, where fs is the frequency shift
per roundtrip [29]. It can be shown that the spectral phase is
quadratic: the phase of the comb tooth n is equal to πfsτcn2,
where τc is the roundtrip time of the light in the loop [30]. In
this system, contrary to conventional temporal Talbot effect,
the quadratic spectral phase is not set by the propagation in a
dispersive medium, but is directly created by the recirculation
of the CW laser in the FSL, i.e. a device combining a spectral
with a temporal delay. A Talbot laser can be seen as the
equivalent of a ML laser after propagation through a total
group-delay dispersion equal to D2 = 1

2π
τc
fs

, which can be
controlled by adjusting the system’s parameters, fs and τc.
Multiplication factors as large as a few hundreds have already
been reported, demonstrating the capability of these systems as
a simple source of short pulses with a reconfigurable repetition
rate [30]. Moreover, compared to HML lasers, Talbot lasers
only require a low frequency RF synthesizer (typ. 100 MHz).
Therefore Talbot lasers are ultimately an attractive solution
for the generation of ps pulses trains with reconfigurable
multi-GHz repetition rates. However the spectral purity of this
architecture has not been investigated so far.

The objective of this article is to address the question of
the phase noise of Talbot lasers. In the second section, we

consider a generic comb of optical frequencies (FSR: fs),
whose individual lines are subjected to phase fluctuations. In
this specific frame, we express the resulting intensity as a sum
of beatnotes, of frequencies qfs. This enables us to provide
an expression of the phase noise of the pulse train of a ML
laser (q = 1), and of a ML laser with fractional temporal
Talbot effect (q > 1). In the third part, we address the specific
case of the Talbot laser, where the phase fluctuations of the
optical comb lines are not independent, but are related to each
other by the generation process of the comb in the FSL. More
specifically, we obtain a set of two transfer functions, that
relate the phase noise spectral density of the pulse train (i.e.
of the beatnote at frequency qfs), with the power spectral
densities of two different sources of phase fluctuations: one
in the injection arm, and the other one in the FSL itself.
Moreover, we show that, at small offset frequencies from
the carrier, the phase noise increases as 20 log q. On the
contrary, at high offset frequencies, the phase noise does
not depend on q, a result that differs substantially from the
analog frequency multiplication process. In the fourth section,
we provide an experimental characterization of the phase
noise in a Talbot laser, and evidence the agreement of the
experimental data with the theory. In the fifth part, we propose
a simple solution to strongly reduce the phase noise at low
frequency, by implementing a feedback loop. Finally, in the
conclusion section, we discuss the limitations of our approach,
and provide some perspectives of Talbot lasers.

II. PHASE NOISE OF AN OPTICAL FREQUENCY COMB WITH
PHASE FLUCTUATIONS

In this section, we define the general framework of our
study. We consider an optical frequency comb starting at f0
with a free spectral range of fs (Fig. 1). We assume that each
individual comb line (frequency: f0+nfs) experiences a phase
fluctuation characterized by the function φn(t). The complex
electric field writes:

E(t) =

N∑
n=0

Ene
i2π(f0+nfst)eiφn(t), (1)

where En are the complex amplitudes of the comb lines.
The intensity, defined as I(t) = E(t)E∗(t), is given by:

I(t) =

N∑
n,m=0

EnE
∗
me

i2π(n−m)fstei(φn(t)−φm(t)). (2)

The intensity consists of the addition of beatnotes, the
frequencies of which are multiples of fs. More specifically,
for any value of q, the beatnote at frequency qfs writes:
Iq(t) = 2<(Ĩq(t)ei2πqfst). Ĩq(t), the slowly varying envelope
of the beatnote Iq(t), is equal to:

Ĩq(t) =

N∑
n=q

EnE
∗
n−qe

i(φn(t)−φn−q(t)). (3)

At this point, it is noteworthy that a constant phase in the
terms En would cancel in Eq. 3. Moreover, one can also notice
that, if the complex amplitude terms En have a phase term
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that evolves linearly with n, this only results in a phase shift
of the beatnote at qfs, but it does not affect its phase noise.
We assume in the following that the phase fluctuations of the
individual lines φn(t) are much smaller than 2π. Then,

Ĩq(t) =

N∑
n=q

EnE
∗
n−q

(
1 + i(φn(t)− φn−q(t))

)
. (4)

The phase of the beatnote at frequency qfs is simply given
by: ψq(t) = arg(Ĩq(t)), and is directly set by the complex
amplitude of the comb lines En.

In the following, we discuss two common cases: the case of
a ML frequency comb, and the case of a ML frequency comb
in a temporal Talbot condition.

Fig. 1. a: From top to bottom: optical spectrum of a ML frequency comb
(FSR: fs), resulting pulse train (rep. rate: 1/fs), and intensity spectrum
(power spectrum of the photo-current). The spectral phase of the ML fre-
quency comb (dashed line) is flat (or linear). b: Case of an optical frequency
comb set in a fractional Talbot condition. The spectral phase is quadratic (the
phase of the comb line labeled by n is −π p

q
n2, see text). The repetition is

qfs (here, q = 3), similar to the spacing of the intensity spectrum.

A. Phase noise of a mode-locked frequency comb

First, we assume that the input frequency comb is mode-
locked, i.e. all complex amplitudes of the comb lines have a
linear spectral phase (Fig. 1 a). As said, a constant or linear
spectral phase term does not change the phase properties of the
beatnote at qfs. For this reason, without loss of generality, we
can assume that this phase is equal to zero. Therefore the En
terms are real, and the phase noise of the beatnote at frequency
qfs can be written as:

ψq(t) ≈ tan(ψq(t)) =

∑N
n=q EnEn−q(φn(t)− φn−q(t))∑N

n=q EnEn−q
(5)

or, equivalently:

ψq(t) =

N∑
n=0

cnφn(t), (6)

where:

• for: 0 6 n < q, cn = − En+qEn∑N
n=q EnEn−q

• for: q 6 n 6 N − q, cn =
EnEn−q−En+qEn∑N

n=q EnEn−q

• for: N − q < n 6 N , cn =
EnEn−q∑N
n=q EnEn−q

.

In the case where the phase fluctuations of all individual
comb lines are identical, the phase noise of the beating at qfs
reduces to zero, due to the cancellation of the phase terms in
the sum.

In the opposite case where all phase fluctuations of the
comb lines are statistically independent, the power spectral
density (PSD) of the phase noise ψq(t), defined by: |ψ̃q(f)|2 =

limT→∞
|
∫ T
0
ψq(t)e

−i2πftdt|2

T writes:

|ψ̃q(f)|2 =

N∑
n=0

c2n|φ̃n(f)|2, (7)

where |φ̃n(f)|2 is the PSD of φn(t). Here, we use the
property that the PSD of a sum of statistically independent
random processes is equal to the sum of PSD of the individual
processes.

B. Phase noise of a frequency comb in a temporal Talbot
condition

The intensity of a ML frequency comb contains frequency
components multiples of the fundamental frequency fs. Thus,
in principle, a ML laser can be used as a source of RF sine
waves at multiples of fs. However in practice, obtaining a
single tone signal requires to filter out all other frequency
components that appear in the intensity. Moreover, in several
applications like photonic sampling where pulses are needed,
ML lasers provide only pulse trains at the fundamental fre-
quency fs. As discussed in the introduction, this brings an
important limitation to the generation of reconfigurable pulse
trains with high repetition rate, and low phase noise. On the
contrary, fractional Talbot effect is an attractive strategy to
generate pulses at a repetition rate equal to a multiple of the
comb FSR, without resorting to spectral filtering. As said, the
essence of Talbot effect, is to apply a quadratic spectral phase
onto a ML frequency comb. More precisely, it can shown that
when the spectral phase of the comb is set in such a way that:
En = |En|e−iπ

p
q n

2

, then the resulting intensity consists of
a train of transform limited pulses, at the repetition rate qfs
(Fig. 1 b) [16], [17].

In this case, EnE
∗
n−q = |EnEn−q|e−iπ

p
q (2nq−q

2) =
|EnEn−q|eiπpq . Since the phase term is independent of n,
it can be discarded, and the beatnote at frequency qfs simply
writes:

Ĩq(t) =

N∑
n=q

|EnEn−q|
(
1 + i(φn(t)− φn−q(t))

)
. (8)

The expression of Ĩq(t) is similar to the one obtained in the
case of the ML laser, and Eq. 6 is still valid, provided one
replaces En by |En|.
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III. PHASE NOISE OF TALBOT LASERS: THEORETICAL
ASPECTS

In this section, we investigate the specific case of Talbot
lasers. As said, they differ substantially from a mode-locked
frequency comb in a temporal Talbot condition, since the
quadratic spectral phase is induced simultaneously with the
creation of the frequency comb. In these systems, due to
the specific process of the comb generation by successive
roundtrips in a FSL, the relationships between the phase
fluctuations of the comb lines can be described in a closed
form. First, we recall the principle of a Talbot laser. Then we
consider the two sources of phase fluctuations: (i) the phase
fluctuations that occur in the injection arm, and (ii), the phase
fluctuations in the loop itself. In both cases, we obtain a phase
noise transfer function, by proving that the phase noise PSD
of the pulse train at qfs is equal to the product of a frequency-
dependent function, by the PSD of the phase fluctuations.

A. Generalities of Talbot lasers

Recall that a Talbot laser is a cavity (or a loop) containing
a frequency shifter, a gain medium, and seeded by a CW laser
(Fig. 2 a) [27]. In most cases, the frequency shifter is based
on acousto-optic interaction in a Bragg cell (i.e. ensured by an
AOFS, or acousto-optic frequency shifter). Each time a photon
makes a roundtrip in the cavity, it experiences a frequency shift
equal to the frequency of the acoustic wave in the case of a
ring cavity (or a loop), or to twice the acoustic frequency in
the case of a linear cavity. An input coupler enables to seed
the FSL by a monochromatic laser, and a second one to extract
a fraction of the light inside the loop. To compensate for the
losses of the cavity, an optical amplifier is inserted. In practice,
an optical tunable bandpass filter (TBPF) is also added, in
order to control the comb spectral bandwidth, and to limit the
ASE emitted by the gain medium. The spectrum of the light
at the FSL output is a comb of optical frequencies, starting
at f0, the frequency of the seed laser, and spaced by fs, the
frequency shift per roundtrip (Fig. 2 b). Contrary to regular
laser cavities, the cavity does not play any spectral selection
process, and a competition occurs in Talbot lasers, between
the coherent frequency comb, and the ASE [31]. To limit the
ASE and favor the comb regime, Talbot lasers usually operate
just below laser threshold. In practice, it is possible to obtain
more than N = 1000 mutually coherent spectral lines with a
flatness of a few dB [30]. In the absence of phase fluctuations
and neglecting the ASE produced by the gain medium, it can
be shown that the output electric field writes:

E(t) = E0e
i2πf0t

∞∑
n=0

ηnei2πnfste−i2πnf0τce−iπn(n+1)fsτc ,

(9)
where τc is the cavity roundtrip time, and η the transmission

coefficient of FSL per roundtrip. η is set by the gain and losses
of the FSL. As said, in practice, η is slightly smaller than unity,
to remain below the laser threshold. The amplitude of the comb
lines scales as ηn, resulting in an exponential decay of the
spectral envelope. Here, we have assumed for simplicity, that

the expansion of the electric field in frequency components,
can be extended to infinity (rather than N ). The occurrence
of a quadratic term in the spectral phase is at the origin of
a temporal Talbot effect. More precisely, it can be shown
that when fs and τc satisfy the so-called fractional Talbot
condition: fsτc = p/q, where p and q are mutually prime
integers, then the output intensity consists of transform limited
pulses, at repetition rate given by the relation qfs = p/τc.

Fig. 2. a: Sketch of a fiber Talbot laser. A CW monochromatic laser
(frequency: f0) injects a frequency shifting loop (FSL), containing a tunable
bandpass filter (TBPF), an acousto-optic frequency shifter (AOFS) driven at
fs, and an erbium-doped fiber amplifier (EDFA). The output intensity is
detected by means of a photodiode (PD). b: Optical spectrum at the FSL
output. The comb (FSR: fs) shows an exponentially decaying envelope. The
spectral phase (dashed line) is quadratic. The spectral width of the comb,
denoted Nfs, is set by the TBPF.

Talbot lasers (or FSLs) are a simple platform for generating
transform-limited pulses at a repetition rate easily tunable over
several orders of magnitude, by a simple adjustment of one
of the system’s parameters, fs and τc. In the following, we
provide an extensive characterization of the phase noise in
Talbot lasers, and show that under reasonable assumptions, it
is possible to derive analytically a transfer function from the
PSD of the sources of phase noise, to the PSD of the phase
noise at the repetition rate (qfs) set by the Talbot condition.

B. Phase noise transfer function in Talbot lasers
To derive an analytic expression of the noise transfer func-

tion, we broadly divide the noise source into two contributions,
namely, (i) the phase fluctuations on the electric field before
its injection in the loop termed as φ(t), and (ii) the fluctuation
in phase inside the loop represented by ϕ(t). The former
originate from the phase noise of the seed laser itself, or to a
lesser extent, from fluctuations of the injection fiber’s length.
The later is attributed to the length fluctuations of the loop,
as well as the phase fluctuations induced by the frequency
shifter. Its worth noting that φ(t) and ϕ(t) have a different
nature and are expected to play a different role on the phase
noise of the output pulse train, for instance, the first one only
affects the injection electric field (Fig. 3), while the second
one is accumulated by the light at each roundtrip in the FSL.

1) Phase fluctuations in the injection arm: Assuming that
the phase fluctuations in the injection arm can be described
by the function φ(t), the output electric field writes:
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Fig. 3. The phase fluctuations in the injection arm (fiber length, phase noise
of the injection laser) are modeled by a variable phase φ(t).

E(t) = E0e
i2πf0t×

∞∑
n=0

ηnei2πnfste−i2πnf0τce−iπn(n+1)fsτceiφ(t−nτc).
(10)

The calculations derived in the previous section are valid,
provided that En is replaced by ηnE0, and φn(t) by φ(t−nτc).
Then, according to Eq. 3, the phase ψq(t) of the beatnote at
qfs writes:

ψq(t) = (1− η2)
∞∑
n=q

η2n−2q(φ(t− nτc)− φ(t− (n− q)τc)).

(11)
The Fourier transform of the phase noise writes: ψ̃q(f) =∫
ψq(t)e

i2πftdt. Therefore:

ψ̃q(f) = (1− η2)φ̃(f)
∞∑
n=q

η2n−2q(ei2πnfτc − ei2π(n−q)fτc),

(12)
and:

ψ̃q(f) = (1− η2)(1− e−i2πqfτc)φ̃(f)
∞∑
n=q

η2n−2qei2πnfτc .

(13)
Finally,

ψ̃(f) =
(1− η2)(ei2πqfτc − 1)

1− η2ei2πfτc
φ̃(f) = Hq(f)φ̃(f). (14)

The phase noise PSD of the output pulse train at qfs writes:

|ψ̃q(f)|2 = |Hq(f)|2|φ̃(f)|2 (15)

= 4
(1− η2)2 sin2(πqfτc)

1− 2η2 cos(2πfτc) + η4
|φ̃(f)|2.

This relation evidences in a straightforward manner the
transfer function of the FSL, between the phase fluctuations
on the injection arm, and the phase noise of the output pulse
train. The square modulus of the transfer function is plotted
in Fig. 4 for different values of the parameters η and q. The
transfer function shows the following features:
• The transfer function is periodic (spectral period: 1/τc),

and vanishes at frequencies multiples of 1/(qτc) (includ-
ing at null frequency, and at multiples of 1/τc).

• The transfer function vanishes when f → 0. This inter-
prets as the fact that if the phase fluctuations φ(t) are
much slower than the photon lifetime in the loop, one
has, φ(t − nτc) ' φ(t) for any value of n < N . Then
the phase term eiφ(t−nτc) can be replaced with eiφ(t) in
Eq. 10, factorized, and finally discarded, since it is a pure
phase term in the expression of the electric field.

• The system shows a filtering effect of the phase noise
between multiples of 1/τc. The quality of the filtering of
the phase noise increases with η, i.e. with the number of
comb teeth.

• In the vicinity of multiples of 1/τc, i.e. when f ' k/τc
(k integer), one has:

|ψ̃q(f)|2 ' (2πq(fτc − k))2|φ̃(f)|2. (16)

Here, the square modulus of the transfer function in-
creases as f2. For a given offset frequency, it scales
as q2. Therefore, in a logarithmic scale, L(f), defined
by 10 log |ψq(f)|2, increases as 20 log q. This result is
identical to what is encountered in analog frequency mul-
tiplication: ideal analog multiplication of the frequency of
a single tone signal by factor of q leads to an increase of
the phase noise power spectral density (PSD) of 20 log q
(logarithmic scale) 1 [32].

• For offset frequencies far from multiples of 1/τc, since
the sin2(πqfτc) term varies with frequency much faster
than the denominator 1 − 2η2 cos(2πfτc) + η4, one can
average the numerator, and the noise PSD rewrites:

|ψ̃q(f)|2 ' 2
(1− η2)2

1− 2η2 cos(2πfτc) + η4
|φ̃(f)|2, (17)

which proves that the phase noise PSD, on average, does
not depend on q, the multiplicative factor.

This last result differs substantially from analog frequency
multiplication. This specific property directly arises from the
specific relation between the phase fluctuations of the comb
teeth in the FSL, set by the generation process of the comb
itself.

2) Phase noise in the FSL: We now turn to the influence
on the phase noise of the pulse train, of phase fluctuations
occurring inside the loop (Fig. 5). As said, these phase
fluctuations can originate from variations in the length of the
loop (vibrations, thermal drifts), or from phase noise on the
RF signal driving the frequency shifter. Notice that here, we
do not consider the role played by the ASE of the amplifier.
It can be shown that the ASE is not a multiplicative, but an
additive noise [33]. Therefore, it cannot be treated similarly to
the other sources of (multiplicative) noise described here. The
specific role played by the ASE is discussed in section IV.C.

We define ϕ(t), the temporal fluctuations of the phase
occurring inside the loop. Unlike the previous case, the

1Consider a complex signal s(t) at frequency f0, showing phase fluctu-
ations ψ(t). One has: s(t) ∝ ei2πf0t+iψ(t). The phase noise PSD writes
|ψ̃(f)|2. Analog frequency multiplication by q generates a signal sq(t) ∝
ei2πqf0t+iqψ(t), whose phase noise PSD writes: |ψ̃q(f)|2 = q2|ψ̃(f)|2. On
a logarithmic scale, the PSDs are shifted by 20 log q.
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Fig. 4. Square modulus of the noise transfer function (i.e. |ψ̃q(f)|2/|φ̃(f)|2)
as a function of the offset frequency f (in arb. units) for phase fluctuations
in the injection arm. In the simulations, 1/τc = 500, η = 0.95 (resp. 0.99)
in a (resp. b). Black: q = 1, blue: q = 10, red: q = 50.

phase fluctuations in the loop accumulate over the successive
roundtrips, in the phase of the electric field.

Fig. 5. The phase fluctuations in the loop (fiber length, phase noise of the
frequency shifter) are modeled by a random function ϕ(t).

The electric field at the FSL output writes:

E(t) = E0e
i2πf0t×

∞∑
n=0

ηnei2πnfste−i2πnf0τce−iπn(n+1)fsτceiθn(t),
(18)

where :

• θ0(t) = 0,
• θn>0(t) =

∑n−1
k=0 ϕ(t− kτc).

Owing to the previous calculations, the phase fluctuations
ψq(t) of the pulse train at qfs can be expressed, by replacing
formally En by ηnE0, and φn(t) by θn(t). Assuming that the

accumulated phase fluctuations are small (θ(t) � 2π), ψq(t)
writes:

ψq(t) = (1− η2)
∞∑
n=q

η2n−2q(θn(t)− θn−q(t)). (19)

Defining |ϕ(f)|2 = limT→∞
|
∫ T
0
ϕ(t)e−i2πftdt|2

T , calcula-
tions similar to the case of fluctuations occurring in the
injection arm lead to the following expression of the phase
noise PSD of the pulse train at qfs:

|ψ̃q(f)|2 =
(1− η2)2

1− 2η2 cos(2πfτc) + η4
sin2(πqfτc)

sin2(πfτc)
|ϕ̃(f)|2.

(20)

Fig. 6. Square modulus of the noise transfer function (i.e. |ψ̃q(f)|2/|ϕ̃(f)|2)
as a function of the offset frequency f (in arb. units) for phase fluctuations in
the loop. In the simulations, 1/τc = 500, η = 0.95 (resp. 0.99) in a (resp.
b). Black: q = 1, blue: q = 10, red: q = 50.

Similarly to the case of phase fluctuations occurring in the
input arm, the PSD of the phase noise of the output pulse train
is proportional to the PSD of the phase fluctuations occurring
in the FSL. But contrary to the previous case, the transfer
function for phase fluctuations occurring inside the loop does
not vanish at multiples of 1/τc, where it is maximal (Fig.
6). Moreover, its modulus can strongly exceed unity, due to
the fact that depending on their frequency, the fluctuations
can be amplified by the loop. The transfer function displays
other features similar to the case of phase fluctuations on the
injection arm:
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• The noise transfer function vanishes at frequencies mul-
tiples of 1/(qτc) (excepted at multiples of 1/τc).

• In the vicinity of multiples of 1/τc, one has:

|ψ̃q(f)|2 ' q2|ϕ̃(f)|2. (21)

The phase noise PSD increases as q2. In a logarithmic
scale, L(f) increases as 20 log q, a result similar to the
case of phase fluctuations in the injection arm.

• The value of the transfer function at multiples of 1/τc
does not depend of η. Moreover, similarly to the previous
case, the quality of the filtering of the phase noise
increases with η, i.e. with the number of comb teeth.

• In frequency regions far from multiples of 1/τc, similarly
to the previous case, the noise transfer function can be
averaged, so that:

|ψ̃q(f)|2 '
(1− η2)2

1− 2η2 cos(2πfτc) + η4
1

2 sin2(πfτc)
|ϕ̃(f)|2.

(22)
Again, this expression does not depend on q, which shows
that the phase noise PSD, in average, is independent from
q, the multiplicative factor.

IV. PHASE NOISE OF TALBOT LASERS: EXPERIMENTAL
RESULTS

In this section, we experimentally characterize the phase
noise properties of a Talbot laser, submitted to external noise
sources in both the injection arm and in the FSL itself. The
results turn out to show a good agreement with the theoretical
predictions described previously. In particular, we evidence the
fact that the phase noise evolves as 20 log q for low offset
frequencies, and that it is independent of q at high offset
frequencies.

A. Parameters of the Talbot laser

The Talbot laser used in these experiment is based on a
polarization-maintaining fiber loop. It contains an EDFA, a
fiber frequency shifter driven around 80 MHz, and a tunable
optical bandpass filter. The roundtrip time in the loop is found
to be equal to τc = 214.928 ns. (This value can be inferred by
setting the system in an integer Talbot condition, i.e. q = 1.
The value of fs is precisely adjusted, so as to maximize the
peak power of the pulses. Then, the precise value of τc is
obtained by utilizing the Talbot condition: qfs = p/τc.) The
FSL is seeded by a commercial CW fiber laser at 1550 nm (1
kHz linewidth, injected power: ∼ 9 µW) by means of a 3 dB
X-coupler. The other port of the coupler enables to extract a
fraction of the optical field circulating in the loop. The output
intensity is measured by a fast photodiode (18 ps-risetime),
and the photocurrent is sent to a phase noise analyzer.

B. Phase noise of the Talbot laser

In the first set of experiments, we characterize the phase
noise in different Talbot conditions. To do so, the length of
the fiber loop (i.e. τc) is kept constant, and the value of fs
is adjusted, in order to reach fractional Talbot conditions of

the form fsτc = p/q for different values of p and q. We
consider the following sets of values: fs = 80.0267 MHz
(p = 86, q = 5), fs = 81.0199 MHz (p = 504, q = 29), and
fs = 81.3057 MHz (p = 1763, q = 101), among others. The
repetition rates of the pulse trains (i.e. qfs) are respectively
equal to: 400.1 MHz, 2.350 GHz, and 8.211 GHz. In Fig.
7a, we plot the intensity spectra (i.e. the power spectrum of
the photocurrent) recorded at the output of the FSL for each
of these Talbot conditions. Notice that the spectrum contains
harmonics of qfs (according to Fig. 1b), and residual beatnotes
at harmonics of fs [27]. Then, we compare the phase noise
PSD in different Talbot conditions. As said, the phase noise
arises from phase fluctuations in both the injection arm, and in
the loop itself. The results are displayed on Fig. 7b. According
to the theoretical predictions, the phase noise increases with q
at low offset frequencies. However, at higher offset frequencies
(> 100 kHz), the phase noise is almost constant (independent
of q). The optical power at the photodiode is 800 µW. The
responsivity of the photodiode is 0.9 A/W, which results in
a shot noise PSD of -150 dBc/Hz. The slight increase of the
noise floor (< 5 dB) for q = 101 is due to the decrease
of the RF input power at frequency qfs, an effect apparent
in Fig. 7a. As expected, the phase noise show peaks at
offset frequencies multiples of 1/τc (= 4.66 MHz). Moreover,
according to Eq. 15, and Eq. 20, the phase noise PSD shows
dips at offset frequencies multiples of 1/qτc. (In the case
where q = 5, supernumerary dips occur, whose origin is not
clearly understood yet.) Notice also that all PSD curves show
excess noise at low offset frequencies, likely due to the phase
noise of the seed laser.

To clearly evidence the dependence of the phase noise with
q at low- and high- offset frequency, we plot in Fig. 7c
the phase noise PSD averaged from 103 to 104 Hz (i.e.
the low frequency), and from 3.105 to 3.106 Hz (the high
frequency part), for Talbot conditions ranging from q = 5,
to q = 101. The plots clearly shows that the phase noise
at low offset frequencies evolves as 20 log(q), similarly to
analog multiplication, and is then constant at high offset
frequencies. Finally, we plot in Fig. 7d the timing jitter, defined
as σJ = 1/(2πqfs)

√∫ f2
f1
|ψ̃q(f)|2df . For all values of the

repetition rate (i.e. of q), the timing jitter is integrated from
100 kHz to the Nyquist frequency (i.e. qfs/2) [34]. In the
case where q = 101 (rep. rate = 8.211 GHz), the integrated
timing jitter from 10 kHz to the Nyquist frequency is 944
fs, while it is equal to 351 fs from 100 kHz to the Nyquist
frequency. Notice that the timing jitter decreases as a function
of the repetition rate, a feature that differs also from the
process of ideal frequency multiplication, where the timing
jitter (integrated up to the Nyquist frequency) would increase
with the repetition rate.

In a second set of experiments, we evidence the proportion-
ality of the phase noise PSD in Talbot lasers, with the PSD
of the phase fluctuations applied on the injection arm. This is
done in order to verify experimentally Eq. 15, and to justify the
existence of the transfer function. (A similar study, which has
not been done for practical reasons, could have been carried
out for phase fluctuations induced in the FSL).
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Fig. 7. a: Intensity spectra of the Talbot laser in different Talbot conditions
(blue: q = 5, red: q = 29, and yellow: q = 101). The dip around 14 GHz is
due to the photodiode response function. b: Phase noise PSD (in dBc/Hz) as
a function of the offset frequency, measured for different Talbot conditions
(q = 5, 29 and 101). c: Red (resp. blue) dots: Phase noise (in dBc/Hz) at low
(resp. high) offset frequencies for different Talbot conditions (q = 5 to 101).
The dotted and dash lines are respectively a constant PSD at -141 dBc/Hz
(bottom), and the curve PSD(q) = PSD(q = 1)+20 log(q) (top). d: Timing
jitter (in fs) as a function of the repetition rate. σJ is integrated from 100
kHz, to the Nyquist frequency.

For this aim, we artificially degrade the phase noise of the
seed laser, via a phase modulator driven by a white noise sig-
nal. We assume that the mechanical/thermal phase fluctuations
of the injection fiber are negligible as compared to the phase
fluctuations of the seed laser. We measure simultaneously
the optical phase noise PSD on the injection arm and the
corresponding electrical phase noise PSD of the pulse train,

for different Talbot conditions (i.e. different values of q). The
phase modulator is inserted between the seed laser, and the
injection coupler. A measurement bench, based on a delayed
self-heterodyne interferometer has been developed, to measure
the phase noise of the narrow-linewidth laser after the phase
modulation. The spectrum of the white noise signal applied
to the phase modulator ranges from DC to 20 MHz (Fig. 8
a). The level of the PSD of the white noise is controlled by
the peak-to-peak voltage applied to the modulator. The phase
noise of the degraded seed laser measured for different values
of the modulation voltage, is plotted in Fig. 8 b. The phase
noise increases with the applied voltage for offset frequencies
larger than 0.1 to 1 MHz. Below this value, the phase noise
induced by the random phase modulation is smaller than the
intrinsic phase noise of the laser. Then, we measure the phase
noise of the pulse trains in different Talbot conditions (Fig.
8 c: q = 11, Fig. 8 d: q = 37). As expected, the phase
noise PSD is not modified below 0.1 MHz. At higher offset
frequencies, the noise level passes the noise floor and increases
with the modulation voltage. Interestingly, this brings the dips
at multiples of 1/qτc well above the detection noise floor,
making them clearly visible for large modulation voltages.

C. Comparison with the theoretical predictions

The comparison of the experimental results with the theoret-
ical model provides interesting details on the different sources
of noise in FSLs. Recall that the phase fluctuations that occur
in the injection arm, vanish at offset frequency multiples of
1/τc. Therefore the phase noise at these frequencies come only
from the phase fluctuations taking place in the FSL. Mainly,
the phase fluctuations in the FSL itself have three different
origins: the fluctuations of the fiber length, the phase noise
of the synthesizer driving the AOFS, and the ASE emitted by
the amplifier. Regarding the latter noise source, so far, in the
analytical model of the phase noise, we have neglected the
ASE of the amplifier and considered only multiplicative noise
sources. Here, to account for the presence of the ASE in the
experimental system, we assume that in first approximation,
the ASE brings a constant background (white noise) to the
phase noise PSD. We also make the hypothesis that the length
fluctuations of the fiber are due to mechanical variations
(e.g. vibrations), and thermal drifts. We assume that these
fluctuations occur on times scales larger than hundreds of
microsecond, and that they play a negligible role at offset
frequencies larger than 10 kHz. Finally, we suppose that the
dependence of the phase noise of the synthesizer with the
offset frequency is same for all values of fs. This hypothesis
is justified by the fact that, in practice, fs operates on a narrow
frequency range, between 80 MHz and 82 MHz.

Owing to these three hypotheses, one can write the PSD
of the phase fluctuations inside the FSL, as: |ϕ̃(f)|2 = a +
|ϕ̃synth(f)|2, where a and |ϕ̃synth(f)|2 are the phase fluctuations
PSD of the ASE and of the synthesizer respectively. The latter
can readily be measured by means of a phase noise analyzer.
As said, the phase fluctuations in the injection arm play no
role on the phase noise at multiples of 1/τc. Then, for any
positive integer k, one has, from Eq.(21):
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Fig. 8. a: Power spectrum of the noise signal applied to the modulator, for
different values of the peak-to-peak voltage. b: Phase noise of the seed laser
after modulation, measured by a delayed self-heterodyne interferometer. The
coherence of the laser is degraded, owing to a phase modulation by a white
noise, whose power is controlled by the peak-to-peak value of the applied
voltage. The peaks at multiples of 2 MHz are experimental artefacts, due to
the measurement technique itself. c (resp. d): Phase noise of the pulse train at
the output of the Talbot laser for different values of the modulation voltage.
The value of q is 11 (resp. 37), and the repetition rate is 884 MHz (resp.
3.001 GHz).

|ψ̃q(k/τc)|2 = q2(a+ |ϕ̃synth(k/τc)|2). (23)

By measuring the value of the phase noise PSD |ψ̃q(k/τc)|2
for different values of k and q, one can deduce the value of
a, the PSD of the phase fluctuations due to the ASE, and
get knowledge of the phase noise PSD |ϕ̃(f)|2. An important
parameter involved in both transfer functions is η. Since both

transfer functions depend strongly on η, the latter must be
determined accurately. For this aim, recall that in the range 10-
100 kHz, the phase noise of the pulse train is dominated by the
phase fluctuations in the injection arm, i.e. by the (degraded)
phase noise of the seed laser. Since the latter can be measured
experimentally, a precise value of η can be inferred using
Eq. 15. In the experiments described here, one obtains η =
0.9955. Then the knowledge of η gives access to both transfer
functions.

In Fig. 9a, we plot the experimental phase noise PSD (in
blue) measured when q = 37, and with a degradation of
the seed laser phase noise (1 Vpp). The yellow (resp. red)
curve represents the PSD of the phase noise due to the phase
fluctuations occurring inside the FSL (resp. in the injection
arm). We added a noise floor of -145 dBc/Hz, to account
for the thermal floor of the detection process. The addition
of both phase noise PSDs is the purple curve in Fig. 9 a.
Notice the good agreement with the experimental phase noise
(in blue). Still, a slight difference between the theoretical and
the experimental curves is noticeable in the region between
the peaks at multiples of 1/τc. This difference is observed
in different experimental conditions (value of q, phase noise
of the seed laser). Yet, the origin of this difference is not
completely clear. A first possibility is a slight modulation of
η with the frequency. Such an effect could originate from a
residual cavity effect, due to incomplete rejection of the zero
diffraction order in the AOFS. We investigated this possibility,
by taking into account a slight harmonic modulation of η
with the frequency 1/τc (spectral period). Taking a modulation
contrast as weak as 0.5 % enables to reproduce qualitatively
the experimental phase noise (red plot in Fig. 9 b). Another
explanation could come from the approximation that has been
made, that the ASE background produces a constant noise
floor in the phase noise PSD. In reality, it has been shown that
in frequency-shifted feedback (also called modeless) lasers,
i.e. FSLs seeded only with the ASE of the gain medium, the
output intensity is periodic (period: τc) [35]. Talbot lasers are
systems where the incoherent (i.e. modeless) behavior cannot
be neglected, and competes with the coherent one (i.e. the
optical frequency comb) [36]. This argument would justify the
existence of 1/τc-periodic modulation of the ASE intensity
spectrum, and contradict the aforementioned hypothesis of
white ASE noise. A last reason for this discrepancy could
also be the relative intensity noise of the seed laser, that has
been neglected in our model.

V. REDUCTION OF THE LOW-FREQUENCY PHASE NOISE BY
LOCKING TECHNIQUES

A remarkable feature of Talbot lasers, that differs from
analog frequency multiplication processes, is the fact that at
high offset frequencies, the phase noise becomes independent
from the repetition rate. Typical values of the phase noise at
high offset frequencies (above 106 Hz) approach -140 dBc/Hz
for a repetition rate of 8 GHz, just above the thermal detection
floor (-145 dBc/Hz). Provided one can increase the output
power of the Talbot laser, this leads to the possibility of
reaching very small values of RMS jitter, since the latter
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Fig. 9. a: In blue, experimental phase noise when q = 37. The seed laser
is phase-modulated by a white noise signal (1 Vpp). The yellow (resp. red)
curve is the contribution of phase fluctuations occurring inside the FSL (resp.
in the injection arm), see text. The purple curve is the resulting expected phase
noise PSD (sum of the yellow and the red curves), after determination of the
experimental parameters (ASE and η). The inset provides a magnification
of the peak around the offset frequency of 4.65 GHz. b: Comparison of the
experimental phase noise PSD (in blue), with the expected one (purple), by
taking into account a slight dependence of η with the frequency (see text).

is inversely proportional to the repetition rate. However, the
phase noise at low offset frequencies increases significantly
and can reach values as high as -50 dBc/Hz at 1 kHz offset
frequency (rep. rate = 8 GHz). This value can be attributed to
two main factors: the phase noise of the seed laser, and the
mechanical and thermal drifts of the fiber. Since the phase
noise at low offset frequencies increases as 20 log q, these
noise terms become strongly amplified for large values of q.
In this section, owing to a simple model for low frequency
phase fluctuations, we describe an efficient technique to reduce
considerably the phase noise at low frequency.

A. Theoretical aspects of the low frequency noise

In this study, we restrict to the case of phase fluctuations
slower that Nτc. Again, the phase fluctuations can be separated
in two contributions: φ(t) and ϕ(t), the phase fluctuations in
the injection arm and in the loop, respectively. As explained
above, the effect of slowly-varying phase fluctuations on the
injection arm can be discarded. This corresponds to the fact
that the associated transfer function vanishes when the offset
frequency tends to 0. On the other hand, the phase fluctuations
that occur in the loop itself play an important role. We use
here the formalism developed in section 3. If one assumes that
these fluctuations are sufficiently slow so that, for any value

of n < N , ϕ(t− nτc) ' ϕ(t), one can write: θn(t) = nϕ(t),
and the electric field rewrites:

E(t) = E0e
i2πf0t×

∞∑
n=0

ηnei2πnfste−i2πnf0τce−iπn(n+1)fsτceinϕ(t).
(24)

Then, the envelope of the beatnote at frequency qfs is given
by:

Ĩq(t) =
( N∑
n=q

η2n−q
)
eiq(ϕ(t)−2πfsτc−2πf0τc), (25)

and the phase of Ĩq(t) at frequency qfs writes:

ψq(t) = q(ϕ(t)− 2πfsτc − 2πf0τc). (26)

This expression shows that the phase fluctuations ϕ(t) can
be compensated by slightly modulating one of the three param-
eters f0, fs, and τc. Interestingly, the phase of the beatnote
q is proportional to q. This means that if by some locking
mechanism, one can fully compensate the phase fluctuations
of the beatnote q, then the phase fluctuations of all other
beatnotes can be canceled. Since all frequency components of
the output intensity remain phase-locked, the output signal still
consists of a train of transform-limited pulses. This property is
important in the context of photonic-assisted sampling, where
pulses with high peak power are desired.

B. Experimental results

In this part, we describe different locking schemes used
to reduce the low frequency phase noise in Talbot lasers.
Among the three parameters that can be used to compensate
for the phase fluctuations occurring inside the loop (i.e. f0,
fs, and τc), we choose to apply a feedback on fs. This choice
is motivated by simplicity: applying a phase or a frequency
modulation on the frequency of the seed laser f0 would require
the use of a phase modulator, or of an acousto-optic frequency
shifter. Similarly, tuning of τc could be achieved at the expense
of a phase modulator, or of an piezo-electric fiber stretcher. On
the contrary, modulation of fs does not require any additional
optical hardware, but can be achieved in a commercial function
generator with an external frequency modulation input.

We investigated a locking mechanism inspired by phase-
locked loops techniques. Phase fluctuations that occur inside
the loop induce phase fluctuations of the optical comb lines
and consequently, of the beatnotes between the comb lines.
By comparing the frequency of such a beatnote to an external
oscillator, we generate an error signal, proportional to the
difference between the two frequencies. This error signal
is processed through a standard PID (Proportional Integral
Derivative) controller, and the correction signal is used to
modulate in frequency the signal that drives the AOFS inside
the loop, a scheme equivalent to phase-locked loops. In the
specific case of FSLs, we investigated two locking mecha-
nisms. The first one is directly derived from regular heterodyne
interferometry and requires additional optical hardware (Fig.
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Fig. 10. a: Locking scheme on the first comb tooth (see text). The green
lines are electric circuitry and components. b: Locking scheme on the first
harmonic of the pulse train.

10a). It is based on the measurement of the relative phase
between the reference RF oscillator, and the heterodyne signal
obtained by the interference of light having experienced one
round-trip in the loop, and the laser output. For this aim, the
seed laser output is separated in two parts. One is sent to
the FSL, the second one is frequency-shifted in a reference
arm, and recombined with the FSL output. Notice that in this
case, the reference arm has to be as compact and stable as
possible, to consider that the phase variations measured at
the output of the interferometer, are only due to the phase
fluctuations occurring in the FSL ϕ(t). As said, the relative
phase between the two signals is used as an error signal.
The latter is processed by means of the PID controller, and
is applied as an external modulation to the frequency of the
AOFS.

The second locking mechanism is simpler in terms of optical
hardware, and consists of measuring the relative phase between
a reference RF signal at fs (in our case, close to 80 MHz),
with the intensity signal (Fig. 10b). Even if the repetition rate
of the output pulse train in a fractional Talbot condition is qfs
(i.e. the intensity spectrum consists of beatnotes multiples of
qfs, such as in Fig. 1b and Fig. 7a), there are unavoidable
contributions in the intensity at all multiples of fs. This is
due to imperfect canceling of the beatnotes at frequencies kfs
(k integer and k 6= q) in the case of an optical spectrum
with an exponentially decreasing envelope, such as the one
encountered in FSLs [27]. Similarly to the previous case, the
relative phase is used as an error signal, processed, and used
to modulate the frequency of the AOFS in the FSL.

The influence of the locking on the phase noise for different
Talbot conditions has been extensively studied. In both cases,
the phase noise in the offset frequency range 10 Hz - 5 kHz
is strongly reduced by the locking. This frequency range is

set by the limitations of the PID controller. The reduction in
phase noise can exceed 20 dB from 10 Hz to 1 kHz. The
results obtained by means of the second locking mechanism
are shown in Fig. 11.

Fig. 11. a (resp. b): phase noise in different Talbot conditions without (resp.
with) feedback. The error signal comes from the relative phase between a
reference RF signal and the first harmonic of the pulse train intensity.

VI. SUMMARY AND CONCLUSION

In this article, we have provided a theoretical model and an
experimental validation of the phase noise properties in Talbot
lasers. Despite its simplicity, our model provides predictions in
excellent agreement with the experimental results. We have re-
stricted ourselves to multiplicative sources of phase noise, and
we have neglected the influence of the gain medium dynamics,
and the amplitude noise of the comb lines. Additionally, we
have not taken into account additive noise sources, such as the
ASE of the gain medium [33]. Among the specific features of
Talbot lasers, we have proven that the phase noise of the output
pulse train in a fractional Talbot condition, is related to the
phase fluctuations of the system by two transfer functions. One
sets the proportionality relation of the output phase noise with
the fluctuations occurring in the injection arm (phase noise
of the seed laser and, to a lesser extent, length variations of
the injection fiber), and the second one with the fluctuations
in the loop itself (phase noise of the frequency shifter, length
variations of the loop). Besides intrinsic difference, the two
transfer functions share common features, such as the fact that
the phase noise of the output pulse train evolves as 20 log q
at low offset frequencies from the carrier, and is independent
from the multiplicative factor at higher offset frequencies. As
such, this result is remarkable, and differs substantially from
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conventional cases, such as analog frequency multiplication.
Therefore, Talbot lasers are a promising solution for the
generation of short transform-limited pulses, at repetition rates
tunable over several orders of magnitude.

At this point, it is relevant to compare Talbot lasers with
HML lasers. In HML lasers, the low offset frequency phase
noise of the pulse train follows the synthesizer’s character-
istics [13]. In practice, the synthesizer’s signal is obtained
by electronic multiplication of a lower frequency reference
signal, and is accompanied by a increase of the phase noise
by 20 log q. In Talbot lasers, a similar phase noise degradation
with the repetition rate is observed for low offset frequencies.
However, Talbot lasers are much less demanding in terms
of electronic hardware, since the frequency multiplication is
not realized in the synthesizer, but in the optical system by
the Talbot effect itself. Instead of the multi-GHz synthesizer
required in HML lasers, Talbot lasers only require a much
simpler oscillator at ∼100 MHz. Moreover, the very architec-
ture of Talbot lasers offers the possibility to lock the phase
noise onto the low-frequency reference signal, a possibility
that HML lasers do not offer. A high offset frequencies, the
phase noise in HML is filtered by the cavity and is no longer
constrained by the synthesizer [13], a feature related to the
independence of the phase noise with the multiplication factor
encountered in Talbot lasers.

In terms of ultimate phase noise performance, Talbot
lasers do not reach yet the level of HML lasers. One of the
reasons for this might be the ASE, that adds to the coherent
pulse train. It has been shown that, in the absence of any
spectral filtering mechanism, the total power of the ASE can
be comparable to, or exceed, the power of the comb [31].
To limit the influence of the ASE, Talbot lasers usually
operate below laser threshold. This is especially true in fiber
configurations, where the influence of the ASE is more critical
due to the confinement of the spatial mode. Whereas in free
space configurations (dye or solid-state lasers), Talbot laser
can produce tens of mW [37], the output power in fiber Talbot
lasers usually does not exceed a fraction of mW. Recently,
to operate a Talbot fiber laser above the laser threshold, we
implemented an RF feedback loop, that modulates the losses
of the fiber loop at the repetition rate of the pulse train [38].
This configuration brings also a solution to the deleterious
influence of the ASE on the laser output, since it provides an
efficient filtering of the ASE, as compared to the coherent
regime. We have successfully demonstrated the generation
of GHz-rate pulse trains, with an average power exceeding
1.5 mW at 4.9 GHz. At this repetition rate, the timing jitter
(integrated from 10 kHz and 100 MHz) could reach 54 fs.
Interestingly, we have also observed in this configuration that
the phase noise at large offset frequencies from the carrier,
is independent of the repetition rate. This tends to prove that
some of the conclusions of the present article should also be
verified in hybrid configurations, where the FSL is combined
to a RF feedback loop.
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