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Optimal Bounds on the Growth of Iterated
Sumsets in Abelian Semigroups

Shalom Eliahou∗and Eshita Mazumdar†

Abstract
We provide optimal upper bounds on the growth of iterated sumsets

hA = A+ · · ·+A for finite subsets A of abelian semigroups. More precisely,
we show that the new upper bounds recently derived from Macaulay’s the-
orem in commutative algebra are best possible, i.e., are actually reached
by suitable subsets of suitable abelian semigroups. Our constructions, in a
multiplicative setting, are based on certain specific monomial ideals in poly-
nomial algebras and on their deformation into appropriate binomial ideals
via Gröbner bases.

Keywords. Additive combinatorics; Plünnecke inequality; Standard graded
algebra; Hilbert function; Binomial representation; Lexideal; Gröbner basis.

1 Introduction
Let A be a nonempty finite subset of an abelian semigroup (G,+). Estimating the
growth of the iterated sumsets hA = A+ · · ·+A︸ ︷︷ ︸

h

as h increases is a core problem

in additive combinatorics. Khovanskii [7, 8] showed that |hA| is asymptotically
polynomial in h. See also [13, 14]. But not much is known about this polynomial
and, for h small, the behavior of |hA| may wildly vary with A, even when |A|
is fixed. A classical estimate, originally derived using graph theory, is given by
Plünnecke’s inequality [17], namely

|hA| ≤ |iA|h/i (1)
∗LMPA-ULCO, Calais, France. Email: eliahou(at)univ-littoral.fr
†Ahmedabad University, India. Email: eshita.mazumdar(at)ahduni.edu.in

1



for all 1 ≤ i ≤ h. See [5, 12, 16, 19] for in-depth treatments of this and re-
lated inequalities. We recently improved (1) by deriving it from Macaulay’s
1927 theorem on the growth of Hilbert functions of standard graded algebras [3].
Macaulay’s theorem involves a certain operation a 7→ a〈h〉 on positive integers

related to binomial representations. In short, if a =
h

∑
j=1

(
a j

j

)
with decreasing in-

tegers ah > · · · > a1 ≥ 0, then a〈h〉 =
h

∑
j=1

(
a j +1
j+1

)
, and this is well-defined. See

Section 2 for more details. Using this notation, here is part of our improvement
to (1) obtained in [3].

Theorem 1.1. Let A be a nonempty finite subset of an abelian semigroup G. Set
dh = |hA| for all h. Then d0 = 1 and

dh+1 ≤ d〈h〉h (2)

for all h≥ 1.

Example 1.2. For comparison purposes, let A ⊂ Z be a subset such that |6A| =
1000. While Plünnecke’s inequality (1) yields

|5A| ≥ 317, |7A| ≤ 3162,

inequality (2) yields the much sharper – and nearly optimal – bounds

|5A| ≥ 511, |7A| ≤ 1827. (3)

See Example 2.3 below for the derivation of |7A| ≤ 1827 from |6A|= 1000 and (2).

Our purpose in this paper is to prove that the upper bounds in Theorem 1.1
are best possible. That is, if (di)i≥0 is any sequence of positive integers such that
d0 = 1 and di+1 ≤ d〈i〉i for all i≥ 1, then there exists an abelian semigroup G and
a subset A⊆ G such that

dh = |hA| (4)

for all h≥ 0. Our construction of such a pair G,A is in multiplicative notation and
proceeds as follows. Let n = d1 and S = K[X1, . . . ,Xn], the n-variable polynomial
algebra over a field K with its standard grading. Then G will be a multiplicative
submonoid of a quotient ring R = S/J, where J is an appropriate graded ideal of
S. Denoting by π : S→ R the quotient map, and setting x j = π(X j) for 1≤ j ≤ n,
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we consider the subset A = {x1, . . . ,xn} of R and its h-fold iterated product sets
Ah = A · · ·A. The problem then amounts to uncover a suitable ideal J of S so as
to realize, for this subset A of S/J, the equality dh = |Ah| for all h. For an almost
sharp realization, a specific monomial ideal J = L establishing the converse part of
Macaulay’s theorem suffices. A sharp realization is then achieved by deforming
L into a binomial ideal L̂ via a Gröbner basis construction so as to preserve the
Hilbert function of S/L.

The contents of this paper are as follows. Section 2 provides some background
on binomial representations, Macaulay’s theorem and lexideals. In Section 3, after
recalling basic facts about monomial ideals, we prove that the bounds provided by
Theorem 1.1 are almost sharp in an appropriate sense. In Section 4, after recalling
basic facts about Gröbner bases, we proceed to prove the full sharpness of these
bounds. The analogous problem restricted to abelian groups remains open. This
is briefly discussed in the concluding Section 5.

2 Background
Given sets A,B in an abelian semigroup (G,+), their sumset is A+B= {a+b | a∈
A,b∈ B}. For A = B, we denote 2A = A+A, and more generally hA = A+ · · ·+A︸ ︷︷ ︸

h
for all h ≥ 2. Macaulay’s theorem involves a certain operation a 7→ a〈h〉 on N
related to binomial representations, which we now recall.

2.1 Binomial representation
Proposition 2.1. Let h ≥ 1 be a fixed integer. Then for any integer a ≥ 1, there
are unique integers ah > ah−1 > · · ·> a1 ≥ 0 such that

a =
h

∑
j=1

(
a j

j

)
.

Proof. See e.g. the relevant chapters in [1, 6, 15].

This expression is called the h-binomial representation of a. Producing it is
computationally straightforward: take for ah the largest integer such that

(ah
h

)
≤ a,
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and complete that first summand by adding to it the (h−1)-binomial representa-
tion of a−

(ah
h

)
. The unicity follows from the classical formula(

n+h
h

)
=

h

∑
j=0

(
n−1+ j

j

)
. (5)

Notation 2.2. Let a ≥ h ≥ 1 be integers. Let a =
h

∑
j=1

(
a j

j

)
be its unique h-

binomial representation. We then denote a〈h〉 =
h

∑
j=1

(
a j +1
j+1

)
. We also set 0〈h〉 =

0.

Note that the right-hand side ∑
h
j=1
(a j+1

j+1

)
is a valid (h+1)-binomial represen-

tation of some positive integer, namely of the integer it sums to.

Example 2.3. Let h = 6 and a = 1000. Then

1000 =

(
12
6

)
+

(
8
5

)
+

(
6
4

)
+

(
4
3

)
+

(
2
2

)
+

(
0
1

)
,whence

1000〈6〉 =
(

13
7

)
+

(
9
6

)
+

(
7
5

)
+

(
5
4

)
+

(
3
3

)
+

(
1
2

)
= 1827.

This explains the upper bound in (3) using Theorem 1.1.

2.2 Macaulay’s theorem

Let R = ⊕i≥0Ri be a standard graded algebra over a field R0 = K. That is, R is a
graded commutative algebra which is finitely generated by R1 as a K-algebra. It
follows that Ri = Ri

1, the i-fold product set of R1, and that Ri is finite-dimensional
as a vector space over K for all i ≥ 0. The Hilbert function of R is the numerical
function i 7→ di = dimK Ri.

Macaulay’s classical theorem gives necessary and sufficient conditions for any
numerical function i 7→ di to be the Hilbert function of a standard graded alge-
bra [9]. Here it is.

Theorem 2.4 (Macaulay). Let R = ⊕i≥0Ri be a standard graded algebra over a
field K, with Hilbert function di = dimRi. Then d0 = 1 and

di+1 ≤ d〈i〉i (6)
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for all i ≥ 1. Conversely, let (di)i≥0 be a sequence of nonnegative integers such
that d0 = 1 and di+1 ≤ d〈i〉i for all i ≥ 1. Then there exists a standard graded
K-algebra R =⊕i≥0Ri such that di = dimRi for all i≥ 0.

With the notation of Theorem 2.4, note that if di = 0 for some i ≥ 2, then
d j = 0 for all j ≥ i, and this occurs if and only if R is finite-dimensional as a K-
vector space. A more detailed version of the converse statement, needed for our
present purposes, is given below.

2.3 Lexideals
For the converse part in Theorem 2.4, the desired algebra R may be constructed as
a quotient of a polynomial algebra by a suitable monomial ideal (see Section 3.1),
and more specifically by a lexideal L. Here are some details needed in the sequel.

Let (di)i≥0 be a sequence of nonnegative integers such that d0 = 1 and di+1 ≤
d〈i〉i for all i ≥ 1. Set d1 = n. In the polynomial algebra S = K[X1, . . . ,Xn] over
the field K, with its standard grading given by deg(X j) = 1 for all j, we endow
the set M of monomials in S with the graded lexicographic order relative to X1 >

· · ·> Xn. That is, for u = ∏ j Xa j
j ,v = ∏ j Xb j

j ∈M , we set u > v if either deg(u)>
deg(v), or else deg(u) = deg(v) and u comes before v lexicographically, i.e. the
first nonzero difference a j−b j is positive.

Example 2.5. With this ordering, the monomials of degree 2 in K[X1,X2,X3] are
ordered as follows:

X2
1 > X1X2 > X1X3 > X2

2 > X2X3 > X2
3 .

For all i ≥ 0, we denote by Mi the set of monomials of degree i in S. Thus
M0 = {1}, M1 = {X1, . . . ,Xn} and Mi = M i

1 , the i-fold product set of M1.

Definition 2.6. A lexsegment is a subset C of Mi for some i ≥ 1 such that C =
{u ∈Mi | u≥ v} for some v ∈Mi. A lexideal L in S is a monomial ideal such that
L∩Mi is a lexsegment for all i≥ 1 such that L∩Mi 6= /0.

It is easy to verify that if C ⊆ Mi is a lexsegment, then M1C ⊆ Mi+1 is a
lexsegment as well, where M1C = {X ju | u ∈ C,1 ≤ j ≤ n}. The converse in
Macaulay’s theorem may be expressed in the following more detailed form. See
e.g. [1, 6, 11, 15].
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Theorem 2.7. Let (di)i≥0 be a sequence in N such that d0 = 1 and di+1 ≤ d〈i〉i
for all i ≥ 1. Set n = d1. There exists a lexideal L in S = K[X1, . . . ,Xn] such that
for R = S/L =⊕i≥0Ri, we have di = dimRi for all i≥ 0.

This result is constructive, implying in turn that our results, namely Theo-
rems 3.5 and 4.12, are constructive as well. A concrete illustration is given in
the extended Example 3.6 below. One key point is the following intimate link
between lexsegments and the numerical operation a 7→ a〈i〉.

Lemma 2.8. Let C ⊂Mi be a lexsegment such that |Mi \C| = a. Then |Mi+1 \
M1C|= a〈i〉.

2.4 An additive version of Macaulay’s theorem
Consider the abelian semigroup G =Nn. For 1≤ i≤ n, denote by ei the ith canon-
ical basis element of G, i.e. ei = (δi j)1≤ j≤n where δi j is the Kronecker symbol.
Let B = {e1, . . . ,en} ⊂ G. Note that for all h ≥ 1, the h-fold iterated sumset hB
consists of all elements in G whose coordinate sum is equal to h. Of course, G
is canonically isomorphic to the set M of monomials in K[X1, . . . ,Xn], viewed as
a multiplicative abelian semigroup. We order G by transfering the graded lexico-
graphic order ≤ on M via the canonical isomorphism induced by X j↔ e j for all
j. The following statement is equivalent to Macaulay’s Theorem 2.4.

Theorem 2.9. Let G =Nn and B = {e1, . . . ,en} ⊂G. For all h≥ 1 and all subsets
A⊆ hB, we have

|A+B| ≥ |Alex +B|,

where Alex ⊆ hB denotes the unique lexsegment of cardinality |Alex|= |A|.

Proof. See [11, Theorem 4.1] for an analogous statement in terms of monomial
subspaces, shown there to be equivalent to Theorem 2.4.

Macaulay’s theorem is fundamental in commutative algebra and algebraic ge-
ometry, and since the 1970’s in combinatorics too, thanks to the pioneering work
on polytopes by McMullen [10] and Stanley [18] among others. The additive ver-
sion given by Theorem 2.9 shows that Macaulay’s theorem squarely belongs to
additive combinatorics as well.
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3 An Almost Sharp Realization
We show here that if (di)i≥0 is a sequence of positive integers satisfying d0 = 1
and

1≤ di+1 ≤ d〈i〉i (7)

for all i ≥ 1, then there exists an abelian semigroup G and a subset A ⊆ G such
that

dh ≤ |hA| ≤ dh +1 (8)

for all h ≥ 0. Our proof of this almost sharp realization relies on the sufficiency
condition in Macaulay’s theorem, and more specifically on Theorem 2.7. To pro-
ceed, we need a few relevant facts concerning monomial ideals.

3.1 Monomial ideals
Let S = K[X1, . . . ,Xn] be the n-variable polynomial algebra over the field K, en-
dowed with its standard grading S =⊕i≥0Si induced by deg(X j) = 1 for all j. As
earlier, we denote by M the set of monomials in S and by Mi = M ∩Si the subset
of monomials of degree i for all i≥ 0.

A monomial ideal in S =K[X1, . . . ,Xn] is an ideal J of S generated by monomi-
als. Of course, J is a graded ideal, so that J =⊕i≥0Ji, where Ji = J∩Si. Macaulay
proved that for every graded ideal I of S, there exists a monomial ideal J of S such
that S/I and S/J have the same Hilbert function. See Proposition 4.2 below.

Lemma 3.1. Let J ⊂ S be a monomial ideal. Let f ∈ S. Then f ∈ J if and only if
every monomial with a nonzero coefficient in f belongs to J.

Proof. Easily follows from the fact that J is spanned by monomials in M and that
M is a K-basis of S.

Proposition 3.2 (Macaulay, [9]). Let J ⊂ S be a monomial ideal. Let π : S→ S/J
be the quotient map. Then the family F = {π(u) | u ∈M \J} is a K-basis of S/J.

Proof. The family F spans S/J, since M spans S and π(M ∩J) = {0}. And F is
free, for if f = ∑u∈M \J λuu and π( f ) = 0, then f ∈ ker(π) = J. Lemma 3.1 then
implies λu = 0 for all u ∈M \ J, i.e. f = 0.

Even though we have already encountered iterated product sets above, we
formally recall the notation here.
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Notation 3.3. Let G be an abelian semigroup in multiplicative notation. For any
subset A⊆ G, we denote by Ah = A · · ·A︸ ︷︷ ︸

h

its h-fold iterated product set.

We need one more auxiliary result.

Proposition 3.4. Let J be a monomial ideal in S. Let R = S/J = ⊕i≥0Ri and
let π : S→ R = S/J be the quotient map. Let x j = π(X j) for all j and set A =
{x1, . . . ,xn} ⊂ R. Then for all h≥ 1, we have

|Ah|=

{
dimRh if Jh = {0},
dimRh +1 if not,

(9)

where Ji = Si∩ J for all i.

Proof. We have J = ⊕i≥0Ji, and Ji has for vector subspace basis Mi ∩ J for all
i≥ 0. Since A = π(M1), and since Mh = M h

1 for all h≥ 1, we have

Ah = π(Mh) (10)

for all h≥ 1. Since J = ker(π), we have

π(Mh) =

{
π(Mh \ Jh) if Mh∩ Jh = /0,

π(Mh \ Jh)t{0} if not.
(11)

It follows from Proposition 3.2 that

dimRh = |Mh \ Jh|= |π(Mh \ Jh)|. (12)

Combining (21), (11) and (12) yields the claimed formula (9).

3.2 First construction
Combining the above results with the sufficiency part of Macaulay’s theorem, we
obtain an almost sharp realization of dh as |hA| for some subset A of some abelian
semigroup.

Theorem 3.5. Let (di)i≥0 be a sequence of nonnegative integers such that d0 = 1
and di+1 ≤ d〈i〉i for all i≥ 1. Then there exists an abelian semigroup G and A⊆G
such that dh ≤ |hA| ≤ dh +1 for all h≥ 0.
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Proof. Set n = d1. By Macaulay’s theorem, there exists a standard graded algebra
R =⊕i≥0Ri such that di = dimRi for all i≥ 0. By Theorem 2.7, one may take R =
S/L, where S =K[X1, . . . ,Xn] with its standard grading, and L is a suitable lexideal
in S. Let π : S→ R be the quotient map. For the required abelian semigroup,
in multiplicative notation, we may take G = (R, ·) or, more economically, G =
π(M ). Set x j = π(X j) for all j and A = {x1, . . . ,xn} ⊂ G. It then follows from
Proposition 3.4 that |Ah| ∈ {dh,dh +1} for all h≥ 0, as desired.

Given a sequence (di)i≥0 satisfying the conditions of Theorem 3.5, the follow-
ing extended example shows how to explicitly construct a pair G,A satisfying the
conclusion of this theorem.

Example 3.6. Let (d0,d1,d2,d3,d4,d5, . . .)= (1,5,13,25,42,63, . . .). Then di+1≤
d〈i〉i for 1≤ i≤ 4. Indeed, we have

d1 = 5 =

(
5
1

)
=⇒ d〈1〉1 =

(
6
2

)
= 15;

d2 = 13 =

(
5
2

)
+

(
3
1

)
=⇒ d〈2〉2 =

(
6
3

)
+

(
4
2

)
= 26;

d3 = 25 =

(
6
3

)
+

(
3
2

)
+

(
2
1

)
=⇒ d〈3〉3 =

(
7
4

)
+

(
4
3

)
+

(
3
2

)
= 42;

d4 = 42 =

(
7
4

)
+

(
4
3

)
+

(
3
2

)
=⇒ d〈4〉4 =

(
8
5

)
+

(
5
4

)
+

(
4
3

)
= 65.

Hence the differences d〈i〉i − di+1 assume the following nonnegative values, as
claimed:

d〈1〉1 −d2 = 2, d〈2〉2 −d3 = 1, d〈3〉3 −d4 = 0, d〈4〉4 −d5 = 2. (13)

Set n = d1 = 5 and S = K[X1, . . . ,X5]. We now use (13) to construct a lexideal L⊂
S such that the quotient R = S/L =⊕i≥0Ri satisfies dimRi = di for 0≤ i≤ 5. To
do so, it suffices to exhibit a minimal system of monomial generators G satisfying
the following requirements:

(1) |G ∩Mi+1|= d〈i〉i −di+1 for all 1≤ i≤ 4,

(2) the resulting ideal L = (G) is a lexideal.
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The first condition arises from Lemma 2.8. Using these constraints as a construc-
tion tool, we obtain the following solution:

G = {X2
1 ,X1X2,X1X2

3 ,X1X3X3
4 ,X1X3X2

4 X5}.

As required, we do have |G ∩M2| = d〈1〉1 − d2 = 2, |G ∩M3| = 1, |G ∩M4| = 0,
|G ∩M5| = 2, and L∩Mi is a lexsegment for all i ≥ 2. Let π : S→ R = S/L be
the quotient map. Again, the sought-for semigroup may be taken as G = (R, ·), or
more simply G = π(M ). Set x j = π(X j) for 1≤ j ≤ 5, and A = {x1, . . . ,x5} ⊂ G.
Then

|A|= d1, |Ah|= dh +1

for all 2≤ h≤ 5, as desired. For instance, for h = 2 we have x2
1 = x1x2 = 0 in G,

and

A2 = {0}t{x1x3,x1x4,x1x5,x2
2,x2x3,x2x4,x2x5,x2

3,x3x4,x3x5,x2
4,x4x5,x2

5},

so that |A2|= 14 = d2 +1.

4 Main Result
In order to show that the bounds given by Theorem 1.1 are best possible, we now
aim for a sharp realization. That is, given any sequence (di)i≥0 of positive integers
satisfying d0 = 1 and

1≤ di+1 ≤ d〈i〉i

for all i≥ 1, we shall construct an abelian semigroup G and a subset A⊆ G such
that

dh = |hA|

for all h ≥ 0. Note that the condition dh ≥ 1 for all h is necessary here, since
|hA| ≥ 1 for any nonempty subset A of a semigroup (G,+). To that end, we
shall deform the lexideal L⊂ S, used above for our almost sharp realization, into a
binomial ideal L̂⊂ S with the same Hilbert function as L, i.e. such that dim L̂∩Si =
dimL∩ Si = for all i. The latter constraint can be achieved with a Gröbner basis
construction.
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4.1 Gröbner bases
We recall here the few relevant facts on Gröbner bases needed for our construc-
tions, and refer to [4, 6, 15] for more details. Again, let M denote the set of
monomials in K[X1, . . . ,Xn]. The notion of Gröbner basis is relative to a given
ordering of M . Here we only consider the graded lexicographic ordering ≤ on
M relative to X1 > · · ·> Xn as defined in Section 2.3.

Denote M ∗ = M \ {1}. For any u,v ∈ M , let gcd(u,v) ∈ M denote their
greatest common divisor. We further need the following notation and definitions.

Notation 4.1. For a nonzero polynomial f ∈ K[X1, . . . ,Xn], we denote by in( f ) ∈
M its leading monomial with respect to the given ordering on M , and by lc( f ) ∈
K∗ its leading coefficient, i.e. the coefficient of in( f ) in f . The leading term of f
is

lt( f ) = lc( f ) in( f ).

For a proper ideal I ( K[X1, . . . ,Xn], we denote by in(I) the monomial ideal gen-
erated by the set {in( f ) | f ∈ I \{0}}.

The importance of the ideal in(I) stems from the following property.

Proposition 4.2 (Macaulay, [9]). Let I be a proper graded ideal in S=K[X1, . . . ,Xn].
Then the graded algebras

S/I and S/ in(I)

have the same Hilbert function.

Definition 4.3. A finite set {g1, . . . ,gs}⊂K[X1, . . . ,Xn]\K of nonconstant polyno-
mials is a Gröbner basis if, for any nonzero element f of the ideal I = (g1, . . . ,gs),
we have in( f ) ∈ (in(g1), . . . , in(gs)); equivalently, in( f ) is divisible by in(gi) for
some 1≤ i≤ s. We then say that {g1, . . . ,gs} is a Gröbner basis of I.

Note that every proper ideal I ( K[X1, . . . ,Xn] admits a Gröbner basis; this
follows from the fact that K[X1, . . . ,Xn] is noetherian, whence in(I) is finitely gen-
erated. A key property of Gröbner bases is the following direct consequence of
Proposition 4.2.

Corollary 4.4. Let {g1, . . . ,gs} ⊂ K[X1, . . . ,Xn] \K be a Gröbner basis, with g j
homogeneous for all j. Then the graded algebras

S/(g1, . . . ,gs) and S/(in(g1), . . . , in(gs))

have the same Hilbert function.
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Proof. Let I = (g1, . . . ,gs). Then I is a graded ideal since the g j are homogeneous
for all j. Moreover, in(I) = (in(g1), . . . , in(gs)) since {g1, . . . ,gs} is a Gröbner
basis by hypothesis. We conclude with Proposition 4.2.

Buchberger developed an algorithm to construct Gröbner bases for any proper
ideal of K[X1, . . . ,Xn], including a stopping criterion to recognize them. Here are
the relevant details for the sequel.

Definition 4.5. Let f ,g,h ∈ K[X1, . . . ,Xn] with f ,h nonzero. We say that f prop-
erly reduces to g with respect to h if in(h) divides in( f ) in M , and if g is obtained
by eliminating the leading term of f with that of h, i.e.

g = f − lt( f )
lt(h)

h.

We write f h−→ g when this occurs. In particular, if f h−→ g, then either g = 0 or
else in(g)< in( f ).

Definition 4.6. More generally, let H ⊂K[X1, . . . ,Xn] be a set of nonconstant poly-
nomials, and let f ,g ∈ K[X1, . . . ,Xn] with f 6= 0. We say that f properly reduces
to g with respect to H, and we write f H−→ g, if there is a sequence of proper
reductions from f to g of the form

f = f0
h1−→ f1

h2−→ ·· · h`−→ f` = g

with h1, . . . ,h` ∈ H.

A key ingredient in Buchberger’s algorithm is the notion of S-polynomial.

Definition 4.7. Let f ,g ∈ K[X1, . . . ,Xn]\K. Let v = gcd(in( f ), in(g)) ∈M . The
S-polynomial of f ,g is

S( f ,g) =
lt(g)

v
f − lt( f )

v
g.

Theorem 4.8 (Buchberger’s criterion). A set H = { f1, . . . , fr} of polynomials in
K[X1, . . . ,Xn] \K is a Gröbner basis if and only if S( fi, f j)

H−→ 0 for all 1 ≤ i <
j ≤ r.
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4.2 A Gröbner basis of binomials
We construct here a Gröbner basis made of certain homogeneous binomials, i.e.
of differences u− v of monomials u,v of same degree. As above, M is the set of
monomials in K[X1, . . . ,Xn], endowed with the graded lexicographic order ≤, and
M ∗ = M \{1}.

Notation 4.9. For u∈M ∗, we denote by min(u) the smallest index i≥ 1 such that
Xi divides u, and by max(u) the largest index j ≥ 1 such that X j divides u.

For instance, for u = X4
2 X3X3

5 , we have min(u) = 2 and max(u) = 5.

Definition 4.10. Let ϕ : M ∗→M ∗ be the map defined for all u ∈M ∗ by

ϕ(u) = uXn/Xmin(u).

Note that if min(u) < n, then u > ϕ(u) and hence in(u−ϕ(u)) = u. For in-
stance, for u = X4

2 X3X3
5 again, taken here as an element of K[X1, . . . ,X5], i.e. with

n = 5, we have
ϕ(u) = X3

2 X3X4
5

and, as stated, X4
2 X3X3

5 > X3
2 X3X4

5 in M8.

Proposition 4.11. Let u1, . . . ,ur ∈M ∗ satisfy min(ui)≤ n−1 for all i. Then the
set of binomials

Hr = {ui−ϕ(ui) | 1≤ i≤ r}

is a Gröbner basis.

Proof. The case r = 1 is trivial. Let r = 2, and let u1,u2 ∈M ∗ satisfy min(u1),min(u2)≤
n−1. With Theorem 4.8 in mind, we will show that

S(u1−ϕ(u1),u2−ϕ(u2))
H2−→ 0. (14)

Without loss of generality, we may assume u1 > u2 and min(u1) = 1. Let i =
min(u2). Thus i ∈ {1, . . . ,n− 1} by hypothesis. Write u1 = X1v1 and u2 = Xiv2
with v1,v2 ∈M and min(v1)≥ 1, min(v2)≥ i. Then

u1−ϕ(u1) = (X1−Xn)v1,

u2−ϕ(u2) = (Xi−Xn)v2.

Let now v = gcd(v1,v2) ∈M .

13



• Assume first i = 1. Then X1v = gcd(u1,u2), and we have

S(u1−ϕ(u1),u2−ϕ(u2)) = S((X1−Xn)v1,(X1−Xn)v2)

= (X1−Xn)v1v2/v− (X1−Xn)v2v1/v
= 0.

• Assume now i≥ 2. Then

S(u1−ϕ(u1),u2−ϕ(u2)) = S((X1−Xn)v1,(Xi−Xn)v2)

= (X1−Xn)Xiv1v2/v− (Xi−Xn)X1v2v1/v
u1−ϕ(u1)−→ X1Xnv2v1/v−XiXnv1v2/v
u2−ϕ(u2)−→ X2

n v2v1/v−X2
n v1v2/v

= 0.

By Buchberger’s criterion in Theorem 4.8, the set H2 is a Gröbner basis, as
desired. For r ≥ 3, the analog of formula (14) remains valid for any pair ui−
ϕ(ui),u j−ϕ(u j) with 1≤ i < j ≤ r. Hence, by Buchberger’s criterion again, the
set Hr is a Gröbner basis, and the proof is complete.

4.3 Sharp realization
We are now in a position to prove our main result in this paper.

Theorem 4.12. Let (di)i≥0 be a sequence of positive integers such that d0 = 1 and
1≤ di+1 ≤ d〈i〉i for all i≥ 1. Then there exists an abelian semigroup G and A⊆G
such that dh = |hA| for all h≥ 0.

Proof. Set n = d1 and S = K[X1, . . . ,Xn] = ⊕i≥0Si with its standard grading. By
Theorem 2.7, there exists a lexideal L ⊆ S such that, for R = S/L = ⊕i≥0Ri, we
have

di = dimRi

for all i≥ 0. Denoting Li = L∩Si, we have L =⊕i≥0Li and Ri = Si/Li for all i. In
particular, since n = d1 = dimR1, we have L1 = {0}.
Claim 1. For all u ∈M ∩L, we have

min(u)≤ n−1. (15)
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For otherwise, let u ∈M ∩L be such that min(u) = n. Therefore u = Xk
n for some

k ≥ 1. This implies L ⊃Mk since Xk
n = min(Mk) and L∩Mk is a lexsegment.

Hence Rk = {0}, contradicting dk ≥ 1. This proves the claim.

Let G ⊂M ∩L be the minimal system of monomial generators of L, so that
L = (G). Of course G is finite and consists of all monomials in L which are not
the product of two monomials in L. Denote Gi = G ∩ Si = G ∩Mi for all i ≥ 1.
We have G1 = /0 since L1 = {0}.

Since L is a lexideal, it is a stable monomial ideal. As such, its minimal system
of generators G may be characterized as follows [2]: for all u ∈M ∩L, there is a
unique monomial factorisation

u = vw

with v,w ∈M such that {
v ∈ G ,

max(v)≤min(w).
(16)

Using the map ϕ : M ∗→M ∗ of Definition 4.10, denote

Ĝ = {u−ϕ(u) | u ∈ G}.

It follows from (15) and the definition of ϕ that u > ϕ(u) for all u ∈ G . Set
L̂ = (Ĝ), the homogeneous binomial ideal of S generated by Ĝ . Denote by

π : S→ R = S/L =⊕i≥0Ri,

π̂ : S→ R̂ = S/L̂ =⊕i≥0R̂i

the respective quotients and quotient maps of S. Applying Proposition 4.11 to
Ĝ , as allowed by (15), it follows that Ĝ is a Gröbner basis of L̂. Therefore, by
Corollary 4.4, the Hilbert functions of L and L̂ are the same. That is, for all i≥ 0,
we have

dim(R̂i) = dim(Ri) = di. (17)

Claim 2. For all u ∈M ∩L, we have

ϕ(u)≡ u mod L̂. (18)

Indeed, consider the unique monomial decomposition u= vw with v∈G provided
by (16). Hence min(u) = min(v), implying

ϕ(u) = ϕ(vw) = ϕ(v)w
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by definition of ϕ. Therefore

u−ϕ(u) = vw−ϕ(vw) = vw−ϕ(v)w = (v−ϕ(v))w.

Since v−ϕ(v) ∈ Ĝ , this proves (18).

Claim 3. For all u ∈M ∩L, there is a least exponent `≥ 1 such that

ϕ
`(u) ∈M \L, (19)

where ϕ` = ϕ◦ · · · ◦ϕ︸ ︷︷ ︸
`

. Indeed, at each application of ϕ, the exponent of Xn in-

creases by 1 while the degree remains constant. And Xk
n ∈M \L for all k by (15).

This proves the claim.

Claim 4. We have π̂(M ) = π̂(M \ L). That is, for all u ∈M , there exists w ∈
M \L such that

u≡ w mod L̂. (20)

Indeed, if u ∈M \ L, take w = u. If u ∈M ∩ L, let w = ϕ`(u) ∈M \ L with `
minimal as given by (19). We have

u−ϕ
`(u) =

`−1

∑
i=0

(ϕi(u)−ϕ
i+1(u)).

By minimality of ` with respect to (19), we have ϕi(u) ∈M ∩L for all 0 ≤ i ≤
`−1. Hence, since v≡ ϕ(v) mod L̂ for all v ∈M ∩L by (18), it follows that

u≡ ϕ
`(u) mod L̂.

This shows that (20) holds with w = ϕ`(u) ∈M \L, as desired. This settles the
claim.

Finally, let A = π̂(M1)⊂ R̂. Then for all h≥ 0, we have

Ah = π̂(Mh) = π̂(Mh \Lh) (21)

since Mh = M h
1 . Moreover, π̂(M \L) is a K-basis of R̂. This follows from the

facts that π̂(M \L) spans R̂, that π(M \L) is a K-basis of R by Proposition 3.2,
and by (17). We conclude that

|Ah|= dim(R̂h) = dim(Rh) = dh

for all h≥ 0, as desired.
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Example 4.13. Revisiting Example 3.6, let (d0,d1,d2,d3,d4,d5, . . .)= (1,5,13,25,42,63, . . .).
Let S = K[X1, . . . ,X5], and let L ⊂ S be the lexideal with minimal monomial gen-
erating set

G = {X2
1 ,X1X2,X1X2

3 ,X1X3X3
4 ,X1X3X2

4 X5}.
Using the map ϕ from Definition 4.10, let Ĝ = {u−ϕ(u) | u ∈ G}. Then

Ĝ = {X2
1 −X1X5,X1X2−X2X5,X1X2

3 −X2
3 X5,X1X3X3

4 −X3X3
4 X5,X1X3X2

4 X5−X3X2
4 X2

5 }.

This is a Gröbner basis by Proposition 4.11. Let L̂ = (Ĝ). Denote by π̂ : S→ R̂ =
S/L̂ the quotient map, set x j = π̂(X j) for 1 ≤ j ≤ 5, and A = {x1, . . . ,x5} ⊂ R̂.
Then by Theorem 4.12, we have

|Ah|= dh

for all 0≤ h≤ 5, as desired.

5 Concluding Remarks
Theorem 4.12 provides optimal upper bounds on the growth of iterated sumsets
relative to all abelian semigroups. However, restricted to abelian groups only, the
analogous problem remains open.

As recalled in Theorem 1.1, we have shown in [3] that the arithmetic condi-
tions di+1≤ d〈i〉i for all i are satisfied by all sequences (di)i≥0 occuring as dh = |hA|
for all h, with A a nonempty finite subset of an abelian semigroup G. But the
arithmetic conditions di+1 ≤ d〈i〉i for all i do not imply that this sequence is non-
decreasing. Yet relative to groups, and in contrast with semigroups in general,
monotonicity is a necessary condition, since

|hA| ≤ |(h+1)A| (22)

for all finite subsets A of groups and for all h. On the other hand, this monotonic-
ity condition is far from being sufficient. For instance, consider the eventually
constant sequence

(d0,d1,d2,d3, . . .) = (1,3,3,4,4,4, . . .)

with di = 4 for all i≥ 3. The conditions di+1 ≤ d〈i〉i for all i≥ 1 are satisfied here.
Yet this sequence cannot be of the form (|hA|)h≥0 for a subset A of a group G. For
if |A| = |2A| = 3, then A is a translate of a subgroup of order 3, whence |hA| = 3
for all h ≥ 1. This follows from the following well known lemma, whose short
proof we recall for convenience.
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Lemma 5.1. Let A be a nonempty finite subset of a group (G,+). Then |hA| =
|(h+ 1)A| for some h ≥ 0 if and only if A is a translate of a subgroup of G of
cardinality |hA|. In particular, |hA|= |h′A| for all h′ ≥ h.

Proof. Without loss a generality, we may assume that A contains 0. Let B = hA,
where h ≥ 0 satisfies |hA| = |(h+ 1)A|. Then |hA| = |h′A| for all h′ ≥ h, and in
fact hA = h′A for all h′ ≥ h since hA ⊆ h′A as A contains 0. It follows that B is a
finite subset of G satisfying 0 ∈ B and 2B = B. Hence, for all b ∈ B, there exists
c∈ B such that b+c = 0. It follows that B is both stable under addition and taking
opposites. Hence it is a subgroup of G.

Besides the problem of finding an analog of Theorem 4.12 restricted to abelian
groups, the following general problem is completely open.

Problem. Characterize the nondecreasing sequences (di)i≥0 of positive integers
arising as iterated sumsets cardinalities in abelian groups, i.e. such that there exists
an abelian group G and a nonempty finite subset A⊆G such that dh = |hA| for all
h≥ 0.
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