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Fuzzy Fault-Tolerant Predefined-Time Control for

Switched Systems: A Singularity-Free Method
Di Cui , Mohammed Chadli , Senior Member, IEEE, and Zhengrong Xiang , Member, IEEE

Abstract—The subject of this study is fuzzy predefined-time con-
trol for a class of switched nonlinear systems with multiple faults.
In comparison to existing research on predefined-time control, this
study delves into the realm of switched nonlinear systems, encom-
passing switched linear sensor faults and switched nonaffine faults.
The difficulty in the controller design lies in following the backstep-
ping technique, as taking the derivative of fractional power virtual
control laws would trigger singularity issues at equilibrium states
or coordinate transformation origins. The study utilizes the unique
characteristics of switching and fuzzy logic systems to introduce
a continuous piecewise predefined-time controller with a fault-
tolerant compensation mechanism to avoid singularity problems.
By adjusting a predefined parameter in the developed controller,
the system could achieve the objectives of adaptive stability and
adaptive tracking within a predefined time, as desired by the user.
Moreover, the application of the proposed algorithm to practical
systems is presented.

Index Terms—Adaptive fuzzy control, nonaffine faults,
predefined-time control, sensor faults, switched nonlinear systems.

I. INTRODUCTION

D
UE to the prevalence of nonlinear switched systems in

practical applications, such as circuit systems [1], robotic

manipulators [2], and computer disk drive systems [3], various

control methods for switched nonlinear systems have been gain-

ing increasing attention. The advantage of switched nonlinear

systems lies in their combination of nonlinear and switching

characteristics, which offers enhanced robustness and flexibility.

When processing nonlinear functions, linear growth conditions

are commonly used; however, such growth conditions make

strong assumptions about the form of the function, thus limiting

their ability to handle complex functions. In contrast, fuzzy

logic systems (FLSs) offer greater flexibility and adaptability,

enabling them to handle more complex nonlinear functions [4].

By designing fuzzy sets and fuzzy rules and utilizing fuzzy infer-

ence and defuzzification techniques, FLSs can approximate non-

linear functions more accurately. Furthermore, the robustness of

This work was supported by the National Natural Science Foundation of 
China under Grant 62373191.

Di Cui and Zhengrong Xiang are with the School of Automation, Nan-
jing University of Science and Technology, Nanjing 210094, China (e-mail:
cuidi19940725@gmail.com; xiangzr@mail.njust.edu.cn).

Mohammed Chadli is with the University Paris-Saclay, Univ Evry, IBISC,
91020 Evry, France (e-mail: mchadli20@gmail.com).

switched nonlinear systems can be further enhanced by integrat-

ing adaptive control methods [5], [6]. Therefore, the exploration

of adaptive control for such systems has significant theoretical

and practical value, leading to the publication of numerous out-

standing results within the realm of adaptive control techniques

for nonlinear switched systems [7], [8], [9], [10], [11], [12], [13].

For example, Zhang et al. [7] introduced an innovative state-

dependent switching law, accompanied by a decentralized fuzzy

controller, to effectively tackle the control challenges associated

with switched interconnected nonlinear systems. Qi et al. [8]

tackled the challenge of a switched boost converter circuit model

suffering from random disturbances by devising an exquisite

sliding mode controller under Markov switching and developing

adaptive laws.

The escalating demands of industrial production have meant

that people are increasingly striving to achieve faster imple-

mentation performance. To address this need, finite-time control

theory was proposed [14], [15], [16], [17], [18], where systems

can be quickly stabilized in finite time. For instance, for switched

nonlinear uncertain stochastic systems, Li et al. [16] intro-

duced a remarkable finite-time control scheme that leverages

the synergistic power of command filters and adaptive fuzzy

control. Their proposed approach ensures the convergence of

switched nonlinear systems within the settling time. Notably,

in finite-time stable systems, the maximum convergence time is

typically dependent on the initial conditions. Specifically, as the

norm of the initial values tends toward infinity, the maximum

convergence time may also extend infinitely, thereby placing

certain limitations on the system’s performance. To overcome

this limitation and further expedite the system’s convergence,

the fixed-time control approach was introduced and has gained

widespread adoption. Within the framework of the fixed-time

control scheme, the maximum convergence time remains un-

affected by the initial values, which addresses the issue of

unbounded convergence time [19], [20], [21], [22], [23]. For

instance, a segmented terminal sliding mode fixed-time control

strategy for a dc–dc buck converter system was developed in [19]

to achieve superior tracking performance.

Although fixed-time stability surpasses finite-time stabil-

ity in performance, establishing an immediate association be-

tween the settling time and tuning gains has been recognized

as a complex task. Consequently, a novel concept known as

predefined-time stability was extensively explored in [24]. This

concept aims to overcome the aforementioned challenge by

permitting an arbitrary selection of the settling time function’s

upper bound through the appropriate adjustment of the system’s
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control parameters. This property proves to be particularly

advantageous for systems exhibiting predefined-time stabil-

ity [25], [26], [27], [28]. For instance, Mao et al. [27] developed

a predefined-time consensus protocol for multi-agent systems

using the sign function, guaranteeing that the multi-agent attains

consensus within a predefined time. For switched nonlinear

systems, the design and analysis of predefined-time control

are more challenging due to the complexity of their dynamic

characteristics and the presence of switching behavior. There are

limited results currently available for predefined-time control of

switched nonlinear systems. Further exploration in this direction

would have potential research value.

On the other hand, the issue of faults in controlled systems is a

widespread concern in industrial production. As the main com-

ponents, if actuators or sensors fail, the system’s performance

and reliability would degrade and pose potential risks to personal

safety, leading to production losses and significant economic

implications. To mitigate the risks associated with sensor or

actuator failures, employing fault-tolerant control (FTC) algo-

rithms and strategies is crucial. Numerous FTC methods have

been developed [29], [30], [31], [32], [33], [34]. For example,

by employing adaptive technology and FLSs, a fixed-time FTC

approach was developed for nonlinear systems with nonaffine

faults in [29]. Furthermore, Liu et al. [34] tackled the intricate

challenge of event-triggering FTC for microgrids with linear

faults. Given the powerful combination of the backstepping

strategy, the authors artfully designed a fault-tolerant consen-

sus control protocol. However, it is vital to note that these

existing control strategies predominantly focus on scenarios

where either the systems are nonswitched or only a single fault

type is considered. In addition, there is a dearth of research

on how to establish a comprehensive predefined-time FTC ap-

proach for switched nonlinear systems that encompass multiple

faults. This research gap is not only of great practical signifi-

cance but also served as a source of inspiration for the current

study.

Deriving inspiration from the insightful analyses presented

earlier, this study addresses the issue of adaptive predefined-time

fuzzy FTC for switched nonlinear systems in the presence of

faults. The research makes multifaceted contributions, encom-

passing the following aspects.

1) A novel fuzzy predefined-time FTC strategy is devised.

The application of the FLS not only facilitates the accom-

plishment of adaptive fuzzy control but also effectively

addresses the challenge of nonaffine faults.

2) Unlike the predefined-time controllers outlined in [35] and

[36], the continuous piecewise predefined-time controller

proposed by this study not only enhances the convergence

speed but also adeptly circumvents the singularity predica-

ments stemming from power exponent problems identified

in previous works [35], [36].

3) Distinguished from the FTC strategies in [29], [32], and

[37], the devised FTC method exhibits significant fault-

tolerant capabilities in addressing sensor faults and non-

affine faults subject to the switching law in this study

by applying FLSs. Notably, systems afflicted by faults

in [29], [30], and [38] can be considered special cases

within the broader framework of our system considered in

this article.

The rest of this article is organized as follows. Section II

is divided into two main parts. The first part focuses on the

preparatory tasks for predefined-time control and FLSs, while

the second part provides a comprehensive description of the

switched nonlinear system with faults. In Section III, we present

the developed predefined-time control method along with a

detailed stability analysis. To validate the effectiveness of the

designed controller, we simulate the switched resistor–inductor–

capacitor (RLC) circuit and the switched continuous stirred

tank reactor (CSTR) systems in Section IV. Finally, Section V

concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section serves as a pivotal platform, provides a compre-

hensive definition of predefined time, and presents the relevant

lemmas employed in deriving the predefined-time controller in

Section A. Subsequently, the main research system and problem

description are presented in Section B.

A. Preliminaries

Consider a nonlinear system as follows:

ẋ = h(x(t)), h(0) = 0, x(0) = 0 (1)

where the origin is the equilibrium point,x ∈ Rn is system state,

and h(x(t)) is the system function.

Definition 1 (See [28]): If there is a positive constant δ,

then, for ∀x ∈ Rn and all t ≥ Tmax > 0, satisfying ‖x(t)‖ < δ,

system (1) is practically predefined-time stable, withTmax being

a known predefined time.

Lemma 1 (See [28]): For the system (1), if V (x(t)) > 0 and

V̇ (x(t) meets

V̇ (x(t)) ≤ −
π

c0T

(

V 1+
c0
2 (x(t)) + V 1−

c0
2 (x(t))

)

+ b0, t ≥ 0

then, system (1) is practically predefined-time stable with 0 <
c0 < 1, T > 0, and d0 > 0. The predefined time is 2 T .

Lemma 2 (See [35]): For real numbers A,B, and l0, the

following outcome holds true:

|P|A|Q|B ≤
Al0

A+ B
|P|A+B +

Bl0
− A

B

A+ B
|Q|A+B

with P and Q being variables.

In this article, the Type-I FLS, also known as a Mamdani

system, is utilized for modeling and decision-making in uncer-

tain and imprecise environments. Notably, Type-I FLSs have the

capability to estimate unknown continuous functions through

fuzzification, reasoning methods, and defuzzification.

A Type-I FLS can be represented as follows:

ℵ(η) =

q
∑

j=1

ψj

[

n
∏

i=1

µ
F

j

i
(ηi)

]

/

q
∑

j=1

[

n
∏

i=1

µ
F

j

i
(ηi)

]

.

Here, the terms and symbols are defined as follows.

1) q is the number of fuzzy rules (i.e., if η1 is F j
1 and , . . . ,

and ηn is F j
n, then ℵ is Aj).
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2) Aj and F j
i represent fuzzy sets with η = [η1, . . . , ηn]

T .

3) µ
F

j

i
expresses the fuzzy membership function.

4) ψj = maxη∈RµAj (ℵ) with W= [ψ1, . . . , ψq]
T .

When ϕj(η) =
∏n

i=1 µF
j

i
(ηi)/

∑q
j=1 [

∏n
i=1 µF

j

i
(ηi)] with

ϕ(η) = [ϕ1(η), . . . , ϕq(η)]
T , Type-I FLSs can be characterized

as ℵ(η) =̟Tϕ(η).
Lemma 3 (See [29]): If the continuous function H(η) can be

defined on Ωη ⊂ Rq, grounded on the universal approximation

capability of Type-I FLSs, it is true that

sup
η∈Ωη

∣

∣H (η)−̟Tϕ (η)
∣

∣ ≤ ν

where ν represents the estimation error.

Remark 1: In the context of estimating unknown nonlinear

functions, it is worth noting that Type-I FLSs have demonstrated

a distinct advantage over Type-II FLSs. While Type-II FLSs

offer advanced modeling capabilities for handling uncertainty,

including modeling uncertainties within membership functions,

they entail increased computational complexity and may ne-

cessitate a larger dataset for training and calibration. In our

specific application, the inherent merits of Type-I FLSs, such

as simplicity, interpretability, reduced computational load, and

robustness, align well with our system’s control and decision-

making requirements.

Lemma 4 (See [35]): For ℑ > ℑ̃ > 0, the following inequal-

ity holds:

ℑ̃(ℑ− ℑ̃)ı ≤
ı

ı+ 1
(ℑı+1 − ℑ̃ı+1)

where ı > 1.

Lemma 5 (See [39]): For any χ and ε ∈ R

0 ≤ |ε| −
ε2

√

ε2 + χ2
≤ χ

where χ > 0 and ε > 0.

B. System Description

Consider the following switched nonlinear systems subject to

faults:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋi(t) = xi+1(t) + h
σ(t)
i (x̄i(t))

ẋn(t) = u(t) + h
σ(t)
n (x̄n(t))

+L(t− T0)F
σ(t)(x̄n(t), u(t))

yf (t) = x1(t)

(2)

where x̄i(t) = [x1(t), x2(t), . . ., xi(t)]
T is the state vector;

h
σ(t)
i (x̄i(t)) is a nonlinear continuous function under the switch-

ing law σ(t) : [0,+∞) → M = {1, 2, . . .,m}; and yf (t) is the

system output with sensor faults modeled as

yf (t) = βσ(t)(t)x1(t) + φσ(t)(t)

where βσ(t)(t) (0 < β̄ ≤ βσ(t) ≤ 1) and φσ(t)(t) (|φσ(t)(t)| ≤
φ̄) are unknown continuous differentiable fault functions, and β̄
and φ̄ are constants. Whenβσ(t)(t) = 1 andφσ(t)(t) = 0, it indi-

cates that the sensor is functioning correctly. Fσ(t)(x̄n(t), u(t))
denotes the unknown nonaffine switched fault with the system

input u(t). The term L(t− T0), which represents time-based

characteristics of faults, can be described as

L (t− T0) =

{

0, t < T0

1− e−L(t−T0), t ≥ T0

where |h
σ(t)
n (x̄n(t)) + L(t− T0)F

σ(t)(x̄n(t), u(t))| ≤ Gσ(t)

(x̄n(t), u(t)), with Gσ(t)(x̄n(t), u(t)) being an unknown non-

negative function and L > 0.

Remark 2: Despite there being several FTC strategies for

mitigating actuator or sensor faults, this study addresses both

switched nonaffine faults related to the input and switched sensor

faults. In addition, the sensor faults we considered include the

following.

1) 0 < β̄ ≤ βσ(t)(t) < 1 and φσ(t)(t) = 0 stand for the par-

tial sensor failure.

2) βσ(t)(t) = 1 and φσ(t)(t) = c (c is constant) represent the

fixed bias fault.

3) βσ(t)(t) = 1 and |φσ(t)(t)| = dt (0 < d << 1) signify the

drift fault.

4) βσ(t)(t) = 1, |φσ(t)(t)| < φ̄(t), and φ̇σ(t) → 0 denote the

sensor precision decline.

Compared with the single sensor fault considered in [32]

and [38] and the linear actuator fault considered in [31] and [37],

the faults considered in this study are more complex. Therefore,

the development of FTC in this study poses a greater challenge.

The main objective of this research is to introduce an exquisite

adaptive predefined-time fuzzy FTC approach, designed to fulfill

the following crucial criteria for the system described by system

(2).

1) The output variable yf (t) achieves bounded tracking of

the reference signal yd(t), with the order up to the nth

being derivable.

2) The closed-loop signals exhibit practical predefined-time

stability.

Remark 3: Although some nonsingular predefined-time con-

trol strategies have been developed (Here, singularity refers to

the inability to obtain the virtual controller as ζi equals 0), the

main differences and advantages of nonsingular predefined-time

control approaches in this study are as follows.

1) Compared with the method employed in [27] and [39],

which utilize the sign function to evade singularity issues,

the approach proposed in this study eliminates chattering

phenomenon.

2) Unlike the work in [25], which only guarantees that the

tracking error converges within a predefined time, this

study focuses on the predefined-time stability of all signals

in the system, not just tracking errors.

3) While the work in [28] also employed a piecewise con-

troller to address the singularity problem, it is crucial

to highlight that the piecewise controller used by Wang

et al. [28] is discontinuous. This discontinuity poses chal-

lenges in obtaining the derivatives of the virtual controller.

Notably, previous works, such as [26] and [37], introduced

continuous piecewise predefined-time controllers to han-

dle singularity issues; however, the controllers proposed
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in these studies introduce an additional term requiring

separate treatment.

III. MAIN RESULTS

In this section, an adaptive fuzzy predefined-time controller is

devised by adapting common Lyapunov functions and FLSs. To

lay the groundwork, we will first introduce a pivotal coordinate

transformation, defined as follows:

ζ1 = yf − yd (3)

ζi = xi − αi−1. (4)

Step 1: Considering (2)−(4), we get

ζ̇1 = βk(α1 + hk
1 + ζ2) + β̇kx1 + φ̇k − ẏd (5)

where k represents that the kth subsystem is active. Next, con-

struct the following Lyapunov function candidate:

V1 =
1

2
ζ21 +

1

2r1
˜̟ T
1 ˜̟ 1 (6)

where ˜̟ 1 = ̟1 − ˆ̟ 1.

Substituting (5) into (6) gives

V̇1 ≤ ζ1β
k(α1 + hk

1 + ζ2) +
1

r1
˜̟ T
1
˙̟̃
1

+ ζ1

(

β̇kx1 + φ̇k − ẏd

)

≤ ζ1(β
kα1 +Hk

1 (X1) + βkζ2)−
1

r1
˜̟ T
1
˙̟̂
1 − ζ21 (7)

where Hk
1 (X1) = βkhk

1(x̄1) + β̇kx1 + ζ1 + φ̇k − ẏd, X1 =
[x1, yr, ẏd]

T .

Applying Young’s inequality obtains

βkζ1ζ2 ≤
1

2
ζ21 +

1

2
ζ2

2. (8)

Type-I FLSs can estimate the unknown continuous function

Hk
1 (X1) with

Hk
1 (X1) = W kT

1 ϕ1(X1) + ν1(X1)

where ν1 ≤ ν̄1 with ν̄1 being a positive constant. Further,

ζ1H
k
1 ≤

ζ21
2a1

̟1ϕ
T
1 ϕ1 +

a21
2

+
ζ21
2

+
ν̄21
2

(9)

where ̟1 = max{‖W k
1 ‖

2, k ∈ M}, and a1 > 0 is a parameter.

The virtual controllerα1 and the adaptive rate ˆ̟ 1 are designed

as

α1 = −
ζ1ϑ

2
1

β̄
√

ζ21ϑ
2
1 + κ2

1

(10)

ϑ1 =
Γ1

Γ2
ζ

c2+c1
c2

1 +
Γ3

Γ4
ς1 +

ζ1
2a21

ˆ̟ 1ϕ
T
1 ϕ1 (11)

˙̟̂
1 =

r1
2a21

ζ21ϕ
T
1 ϕ1 − Γ1 ˆ̟

c2+c1
c2

1 − Γ3 ˆ̟ 1 (12)

where Γ1 = n
c1
2c2 πc2/(c1 T ), Γ2 = 21+

c1
2c2 , Γ3 = πc2/(c1 T ),

Γ4 = 21−
c1
2c2 , r1 > 0, κ1 > 0, and 0 < c1 < c2 < 1. c1 and c2

are odd integers and

ς1=

⎧

⎨

⎩

ζ
c2−c1

c2
1 , |ζ1| ≥ ξ1

ξ
−2c2−c1

c2
1 (2+ c1

2c2
)ζ31 − ξ

−4c2−c1
c2

1 (1 + c1
2c2

)ζ51 , |ζ1|< ξ1.

Applying Lemma 5, we have

ζ1β
kα1 ≤ −

ζ21ϑ
2
1

√

ζ21ϑ
2
1 + κ2

1

≤ κ1 − |ζ1ϑ1|

≤ κ1 − ζ1ϑ1. (13)

When |ζ1| < ξ1, the following holds:

−ζ1ϑ1 = −
Γ3

Γ4
ξ
−2−

c1
c2

1

(

2 +
c1
2c2

)

ζ41 −
Γ1

Γ2
ζ
2+

c1
c2

1

+
Γ3

Γ4
ξ
−4−

c1
c2

1

(

1 +
c1
2c2

)

ζ61 −
ζ21
2a21

ˆ̟ 1ϕ
T
1 ϕ1

≤ −
Γ3

Γ4

(

ξ
−2−

c1
c2

1

(

2 +
c1
2c2

)

ζ41

)

−
ζ21
2a21

ˆ̟ 1ϕ
T
1 ϕ1

+
Γ3

Γ4

(

ξ
−2−

c1
c2

1

(

1 +
c1
2c2

)

ζ41

)

−
Γ1

Γ2
ζ
2+

c1
c2

1

≤ −
Γ3

Γ4
ξ
−2−

c1
c2

1 ζ41 −
Γ1

Γ2
ζ
2+

c1
c2

1 −
ζ21
2a21

ˆ̟ 1ϕ
T
1 ϕ1

≤ −
Γ3

Γ4
ζ
2−

c1
c2

1 −
Γ1

Γ2
ζ
2+

c1
c2

1

−
ζ21
2a21

ˆ̟ 1ϕ
T
1 ϕ1 +

Γ3

Γ4
ξ
2−

c1
c2

1 . (14)

Similarily, −ζ1ϑ1 ≤ −Γ3

Γ4
ζ
2−

c1
c2

1 − Γ1

Γ2
ζ
2+

c1
c2

1 −
ζ2
1

2a2
1
ˆ̟ 1ϕ

T
1 ϕ1,

when |ζ1| ≥ ξ1.

From (8)−(13), when |ζ1| < ξ1, (7) can be rewritten as

V̇1 ≤
ζ21
2a1

̟1ϕ
T
1 ϕ1 +

a21
2

+
ζ21
2

+
ν̄21
2

+
1

2
ζ21 +

1

2
ζ2

2 + κ1 − ζ21 +
Γ3

Γ4
ξ
2−

c1
c2

1

−
1

r1
˜̟ T
1

(

r1
2a21

ζ21ϕ
T
1 ϕ1 − Γ1 ˆ̟

1+
c1
c2

1 − Γ3 ˆ̟ 1

)

− ζ1

(

Γ1

Γ2
ζ
1+

c1
c2

1 +
Γ3

Γ4
ζ
1−

c1
c2

1 +
ζ1 ˆ̟ 1ϕ

T
1 ϕ1

2a21

)

≤
ζ22
2

+
Γ1

r1
˜̟ T
1 ˆ̟

1+
c1
c2

1 +
Γ3

r1
˜̟ T
1 ˆ̟ 1 +

Γ3

Γ4
ξ
2−

c1
c2

1

−
Γ1

Γ2
ζ
2+

c1
c2

1 −
Γ3

Γ4
ζ
2−

c1
c2

1 +
a21
2

+
ν̄21
2

+ κ1. (15)

When |ζ1| < ξ1, (7) can be rewritten as

V̇1 ≤
ζ22
2

+
Γ1

r1
˜̟ T
1 ˆ̟

1+
c1
c2

1 +
Γ3

r1
˜̟ T
1 ˆ̟ 1 +

a21
2

+
ν̄21
2

−
Γ1

Γ2
ζ
2+

c1
c2

1 −
Γ3

Γ4
ζ
2−

c1
c2

1 + κ1. (16)
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Implementing Lemmas 2 and 4 gives

Γ1

r1
˜̟ T
1 ˆ̟

1+
c1
c2

1 ≤
Γ1

r1

c2 + c1
2c2 + c1

(

̟
2+

c1
c2

1 − ˜̟
2+

c1
c2

1

)

(17)

Γ3

r1
˜̟ T
1 ˆ̟ 1 ≤

Γ3

2r1

(

̟2
1 − ˜̟ 2

1

)

(18)

(

1

2r1
˜̟ 2
1

)

2c2−c1
2c2

≤

(

1

2r1
˜̟ 2
1

)

+
c1
2c2

(

2c2 − c1
2c2

)

2c2−c1
c1

.

(19)

Then, V̇1 can be written as

V̇1 ≤ −Γ2Γ1
c2 + c1
2c2 + c1

(

1

2r1
˜̟ 2
1

)1+
c1
2c2

− Γ1

(

1

2
ζ21

)1+
c1
2c2

− Γ3

(

1

2
ζ21

)1−
c1
2c2

+∆1 +
ζ22
2

− Γ3

(

1

2r1
˜̟ 2
1

)

2c2−c1
2c2

(20)

where Ξ1 =
a2
1

2 +
ν̄2
1

2 + κ1 +
Γ1

r1

c2+c1
2c2+c1

̟
2+

c1
c2

1 + Γ3

2r1
̟2

1 +

Γ3c1
2c2

( 2c2−c1
2c2

)
2c2−c1

c1 with

∆1 =

{

Ξ1 |ζ1| ≥ ξ1

Ξ1 +
Γ3

Γ4
ξ
2−

c1
c2

1 |ζ1| < ξ1.

Step i (2 ≤ i ≤ n− 1): Choose the following Lyapunov func-

tion candidate:

Vi = Vi−1 +
1

2
ζ2i +

1

2ri
˜̟ T
i ˜̟ i (21)

where ˜̟ i = ̟i − ˆ̟ i.

Computing the derivative of the Vi function results in

V̇i ≤ V̇i−1 + ζi
(

αi + hk
i + ζi+1 − α̇i−1

)

+
1

ri
˜̟ T
i
˙̟̃
i

≤ V̇i−1 + ζiH
k
i (Xi) + ζiαi +

1

2
ζi

2

+
1

2
ζ2i+1 −

1

ri
˜̟ T
i
˙̟̂
i −

3

2
ζi

2 (22)

where Xi = [x1, . . . , xi, ˆ̟ 1, . . . , ˆ̟ i, yd, ẏd, . . . , y
(i)
d ]T , and

Hk
i (Xi) = hk

i + 3
2ζi − α̇i−1. Type-I FLSs are introduced to

estimate the unknown continuous function Hk
i (Xi) with

Hk
i (Xi) = W kT

i ϕi(Xi) + νi(Xi)

where νi ≤ ν̄i, and ν̄i is a positive constant. Then,

ζiH
k
i ≤

ζ2i
2a2i

̟iϕ
T
i ϕi +

a2i
2

+
ζ2i
2

+
ν̄2i
2

(23)

where ̟i = max{‖W k
i ‖

2, k ∈ M}, and ai > 0 is a parameter.

The virtual controllerαi and the adaptive rate ˆ̟ i are designed

as

αi = −
ζiϑ

2
i

√

ζ2i ϑ
2
i + κ2

i

(24)

ϑi =
Γ1

Γ2
ζ
1+

c1
c2

i +
Γ3

Γ4
ςi +

ζi
2a2i

ˆ̟ iϕ
T
i ϕi (25)

˙̟̂
i =

ri
2a2i

ζ2i ϕ
T
i ϕi − Γ1 ˆ̟

1+
c1
c2

i − Γ3 ˆ̟ i (26)

where ri > 0, κi > 0, and

ςi =

⎧

⎨

⎩

ζ
1−

c1
c2

i , |ζi| ≥ ξi

ξ
−2−

c1
c2

i (2 + c1
2c2

)ζ3i − ξ
−4−

c1
c2

i (1 + c1
2c2

)ζ5i , |ζi| < ξi.

Applying the Lemma 5, repeating the steps of the first phase

yields

ζiαi ≤ −
ζ2i ϑ

2
i

√

ζ2i ϑ
2
i + κ2

i

≤ κi − ζiϑi

≤ κi −
Γ3

Γ4
ζ
2−

c1
c2

i −
Γ1

Γ2
ζ
2+

c1
c2

i −
ζ2i
2a2i

ˆ̟ iϕ
T
i ϕi. (27)

When |ζi| < ξi, in order to avoid singularity problems, ζiαi

satisfies ζiαi ≤ κi −
Γ3

Γ4
ζ
2−

c1
c2

i − Γ1

Γ2
ζ
2+

c1
c2

i −
ζ2
i

2a2
i

ˆ̟ iϕ
T
i ϕi +

Γ3

Γ4
ξ
2−

c1
c2

i .

Further, when |ζi| ≥ ξi, (22) can be rewritten as

V̇i ≤

i
∑

m=1

Γ1

rm
˜̟ T
m ˆ̟

1+
c1
c2

m +

i
∑

m=1

Γ3

rm
˜̟ T
m ˆ̟m

−

i
∑

m=1

Γ1ζ
2+

c1
c2

m

Γ2
−

i
∑

m=1

Γ3ζ
2−

c1
c2

m

Γ4
+

ζ2i+1

2

+

i
∑

m=1

a2m−1

2
+

i
∑

m=1

ν̄2m−1

2
+

i
∑

m=1

κm. (28)

Likewise, when |ζi| < ξi, one has

V̇i ≤

i
∑

m=1

Γ1

rm
˜̟ T
m ˆ̟

1+
c1
c2

m +

i
∑

m=1

Γ3

rm
˜̟ T
m ˆ̟m

−

i
∑

m=1

Γ1ζ
2+

c1
c2

m

Γ2
−

i
∑

m=1

Γ3ζ
2−

c1
c2

m

Γ4

+

i
∑

m=1

a2m−1

2
+

i
∑

m=1

ν̄2m−1

2
+

i
∑

m=1

κm

+
i

∑

m=1

Γ3

Γ4
ξ
2−

c1
c2

m +
ζ2i+1

2
. (29)

Drawing from the preceding classification discussion and ap-

plying Lemmas 2 and 4, we can conclude that

V̇i ≤ −
i

∑

m=1

Γ2Γ1
c2 + c1
2c2 + c1

(

1

2rm
˜̟ 2
m

)1+
c1
2c2

−

i
∑

m=1

Γ1

(

1

2
ζ2m

)1+
c1
2c2

−

i
∑

m=1

Γ3

(

1

2
ζ2m

)1−
c1
2c2

5



−

i
∑

m=1

Γ3

(

1

2rm
˜̟ 2
m

)

2−c1
2c2

+∆i +
ζ2i+1

2
(30)

where Ξi = Ξi−1 +
a2
i

2 +
ν̄2
i

2 + κi +
Γ1

ri

c2+c1
2c2+c1

̟
2+

c1
c2

i + Γ3

2ri

̟2
i +

Γ3c1
2c2

( 2c2−c1
2c2

)
2c2−c1

c1 with

∆i =

{

Ξi |ζi| ≥ ξi

Ξi +
Γ3

Γ4
ξ
2−

c1
c2

i |ζi| < ξi.

Step n: Construct the Lyapunov function as

Vn = Vn−1 +
1

2
ζ2n +

1

2rn
˜̟ T
n ˜̟ n. (31)

Then, V̇n can be obtained as follows:

V̇n ≤ V̇n−1 + ζn
(

u+ hk
n − α̇n−1 + L(t− T0)F

k(x̄n, u)
)

+
1

rn
˜̟ T
n
˙̟̃
n

≤ V̇n−1 + ζnH
k
n(Xn, u) + ζnu−

1

rn
˜̟ T
n
˙̟̂
n −

1

2
ζ2n (32)

where Hk
n(Xn, u) =

1
2ζn − α̇n−1 + Gk(x̄n, u) and Xn =

[x1, . . . , xn, ˆ̟ 1, . . . , ˆ̟ n, yd, ẏd, . . . , y
(n)
d ]T . To overcome the

algebraic loop issue that emerges while utilizing Type-I FLSs to

estimate the term Gk(x̄n, u), the filtered signal uf is introduced

by subjecting the actual control inputu to a Butterworth low-pass

filter (LPF)HL(s), thus ensuring that uf = HL(s)u ≈ u. Then,

Hn(Xn, u) can be estimated by an FLS as follows:

Hk
n(Xn, u) = W kT

n ϕn(Xn, u
f ) + νn

where νn ≤ ν̄n with ν̄n being a positive constant. Then,

ζnH
k
n ≤

ζ2n
2a2n

̟nϕ
T
nϕn +

a2n
2

+
ζ2n
2

+
ν̄2n
2

(33)

where ̟n = max{‖W k
n‖

2, k ∈ M}, and an is a positive con-

stant.

The controller u and the adaptive rate ˆ̟ n are designed as

u = −
ζnϑ

2
n

√

ζ2nϑ
2
n + κ2

n

(34)

ϑn =
Γ1

Γ2
ζ
1+

c1
c2

n +
Γ3

Γ4
ςn +

ζn
2a2n

ˆ̟ nϕ
T
nϕn (35)

˙̟̂
n =

ri
2a2n

ζ2nϕ
T
nϕn − Γ1 ˆ̟

1+
c1
c2

n − Γ3 ˆ̟ n (36)

where rn > 0, κn > 0, and

ςn=

⎧

⎨

⎩

ζ
c2−c1

c2
n , |ζn| ≥ ξn

ξ
−2−

c1
c2

n (2 + c1
2c2

)ζ3n − ξ
−4−

c1
c2

n (1 + c1
2c2

)ζ5n, |ζn| < ξn.

When |ζn| ≥ ξn, applying Lemma 5 allows us to stack the steps

of the process at step i to conclude that

ζnαn ≤ −
ζ2nϑ

2
n

√

ζ2i ϑ
2
n + κ2

n

≤ κn − |ζnϑn|

≤ κn −
Γ3

Γ4
ζ
2−

c1
c2

n −
Γ1

Γ2
ζ
2+

c1
c2

n −
ζ2n
2a2n

ˆ̟ nϕ
T
nϕn. (37)

To avoid situations where a virtual controller cannot be obtained

when the value of ζn is close to 0, we consider switching to

another controller mode and obtain ζnαn ≤ κn − Γ3

Γ4
ζ
2−

c1
c2

n −

Γ1

Γ2
ζ
2+

c1
c2

n −
ζ2
i

2a2
n
ˆ̟ nϕ

T
nϕn + Γ3

Γ4
ξ
2−

c1
c2

n .

Further, applying Lemmas 2 and 4, (32) can be rewritten as

V̇n ≤ −

n
∑

m=1

Γ2Γ1
c2 + c1
2c2 + c1

(

1

2rm
˜̟ 2
m

)1+
c1
2c2

−
n
∑

m=1

Γ1

(

1

2
ζ2m

)1+
c1
2c2

−
n
∑

m=1

Γ3

(

1

2
ζ2m

)1−
c1
2c2

−

n
∑

m=1

Γ3

(

1

2rm
˜̟ 2
m

)

2−c1
2c2

+∆n (38)

where Ξn = Ξn−1 +
a2
n

2 + ν̄2
n

2 + κn + Γ1

rn

c2+c1
2c2+c1

̟
2+

c1
c2

n +

Γ3

2rn
̟2

n + Γ3c1
2c2

( 2c2−c1
2c2

)
2c2−c1

c1 with

∆n =

{

Ξn |ζn| ≥ ξn

Ξn + Γ3

Γ4
ξ
2−

c1
c2

n |ζn| < ξn.

Theorem 1: If the nonlinear system in a switched nonlinear

system (2) can be estimated by Type-I FLSs, for any bounded

initial conditions, the stability of switched nonlinear system (2)

with faults can be ensured under arbitrary switching laws by

designing virtual controllers (10) and (24), actual controller (34),

and update laws (12), (26), and (36). Moreover, the tracking error

converges into a set within predefined time.

Proof: According to (38)

V̇ ≤ − Γ1n
−

c1
2c2

(

n
∑

m=1

(

1

rm
˜̟ 2
m +

1

2
ζ2m

)

)1+
c1
2c2

− Γ3

(

n
∑

m=1

(

1

rm
˜̟ 2
m +

1

2
ζ2m

)

)1−
c1
2c2

+∆n

≤ −
c1π

c2T

(

V 1+
c1
2c2 + V 1−

c1
2c2

)

+∆n. (39)

From Lemma 1, the tracking error ζ1 converges to

|ζ1| ≤

√

2c1∆nT

c2π

with the predefined time 2 T .

IV. SIMULATION STUDIES

In this section, we present two examples—an RLC circuit sys-

tem and a CSTR system—to empirically validate the theoretical

findings presented in this study.

Example 1: An RLC circuit system [30] with three subsys-

tems (refer to Fig. 1 ) is simulated in this section.
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Fig. 1. Switched RLC circuit.

Fig. 2. Output and reference signal in Example 1.

Let the charge in the capacitor be x1 and the flux in the

inductance be x2. The RCL circuit system’s dynamic becomes
{

ẋ1 = x2 +
1
L
x2 − x2

ẋ2 = u− 1
Cσ(t)x1 −

R
L
x2 +Rσ(t) (40)

where σ(t) = {1, 2, 3}, C1 = 100, C2 = 75, C3 = 50, L =
1.2, and R = 1. Rσ(t) = L(t− T0)(Q

σ(t)x1x2 + cos(u)) is

switched nonaffine faults and Q1 = 5, Q2 = 6, and Q3 = 7.

The sensor fault function is selected as

yf =

{

x1, t < 8
x1 + 0.7, t ≥ 8.

The nonlinear fault function is selected as

L(t− T0) =

{

0, t < 11
1− e−100(t−T0), t ≥ 11.

Furthermore, the initial conditions are chosen as [ ˆ̟ 1(0),
ˆ̟ 2(0), x1(0), x2(0)]

T = [0.9, 0.1, 1, 0.6]T . The Butterworth

LPF is chosen asHL(s) = 1/(s2 + 1.414 s+ 1), and the track-

ing signal is designated as yd = 0.5 sin(t) + 0.5 cos(0.5t). Let

c1 = 3, c2 = 5, κ1 = 0.03, κ2 = 0.05, r1 = 5, r2 = 6, a1 = 5,

a2 = 4, and β̄1 = 0.69. To elaborate on the validity of the devel-

oped method, three groups of predefined times are considered:

2T = 2, 2T = 6, and 2T = 10.

The tracking performance is displayed in Fig. 2, under the

switched rule in Fig. 3. We can see that, with the time T given

in advance by humans, the system (40) could attain stability

Fig. 3. Switching signal in Example 1.

Fig. 4. Control input in Example 1.

Fig. 5. Schematic of the process.

within 2 T under the designed controller. Fig. 4 expresses the

actual control signals under faults.

Example 2: A CSTR system with a consistent liquid vol-

ume (refer to Fig. 5) is examined in this part. The reactor is

fed through an inlet stream that is controlled using a switch-

ing valve linked to two different input streams. The standard
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TABLE I
NOMINAL PARAMETERS OF THE PROCESS

operating conditions associated with an unstable equilibrium

point for both modes are as follows: T ∗
1 = 350 K, T ∗

c = 300 K,

and C∗
A = 0.5 mol/L.

Table I provides the process parameters for the CSTR sys-

tem [40]. The dynamic model of the CSTR system is obtained

through energy balances and mass

ĊA =
qσ(t)

V

(

CAfσ(t) − CA

)

− k0e
(− E

RT )CA

Ṫ1 =
qσ(t)

V

(

Tfσ(t) − T1

)

− k1e
(− E

RT )CA

+ k2 (Tc − T1) . (41)

Specify the statesx1 = CA − C∗
A andx2 = T1 − T ∗. Then, (41)

becomes
{

ẋ1 = x2 + h
σ(t)
1

ẋ2 = u+ L(t− T0)F
σ(t)(x̄n, u)

(42)

where h1
1 = 0.5x1, h2

1 = 2x1, and σ(t) = {1, 2}. The sensor

fault function is selected as

yf =

{

x1, t < 10
(

0.05e4−t + 0.95
)

x1, t ≥ 10.

The nonlinear fault function is selected as

L(t− T0) =

{

0, t < 17
1− e−6(t−T0), t ≥ 17

with F1(x̄2, u)=0.5(x1x2+sin(u)), F2(x̄2, u) = 0.6(x1x2 +
sin(u)), and the tracking signal is yd = sin(t). Furthermore,

the parameters in the adaptive law and controller are the

same as in Example 1. The initial conditions are chosen as

[ ˆ̟ 1(0), ˆ̟ 2(0), x1(0), x2(0)]
T = [0.5, 0.2, 0.7, 0.1]T .

The simulation results are presented in Figs. 6−9. The track-

ing performance is displayed in Fig. 6 , under the switched rule

in Fig. 8. Fig. 7 expresses the actual control signals under faults.

The control input might have experienced a momentary surge

due to the occurrence of faults; however, it quickly recovered and

returned to a steady state. Moreover, four evaluation indices were

considered [41]. The results in Fig. 9 further demonstrate that the

Fig. 6. Output and reference signal in Example 2.

Fig. 7. Control input in Example 2.

Fig. 8. Switching signal in Example 2.

tracking performance improved with a drop in T . Concurrently,

there was a decline in robustness. Moreover, the energy con-

sumption decreases asT increases, but the convergence accuracy

is also decreased. Therefore, the choice ofT needs to be made by

accounting for the actual requirements and cost considerations

in practical applications.
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Fig. 9. Four evaluation indices under different predefined time in Example 2.

V. CONCLUSION

This article offers a discussion on the predefined-time adap-

tive fuzzy FTC tracking issue of switched nonlinear systems vul-

nerable to multiple faults. By relying on the strengths of FLSs,

the designed predefined-time FTC scheme realized predefined-

time tracking and robustness for multiple faults. The nonsingu-

lar predefined-time control approaches presented in this study

demonstrate unique advantages and overcome the limitations

encountered in existing methodologies. These refinements pave

the way for developing more robust, precise, and computa-

tionally efficient control strategies, thereby enabling enhanced

performance in practical systems, such as RLC and CSTR. In

future studies, the application of the proposed control strategy

to microgrids will be an engrossing subject. In addition, for

further saving communication resources, event-triggered control

methods [42], [43] will also be integrated into the proposed

methods in the future.
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