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Abstract – The current genetic diversity of Apis mellifera colonies in Argentina was evaluated using geometric 
morphometric analysis of wing shape in 480 managed colonies collected in different regions and 154 colonies 
commercially produced by 28 different queen breeders. In addition, mitotype (COI-COII) characterization was 
conducted on queen breeders’ colonies. We found European morphotypes in managed colonies from central 
and southern regions and greater diversity of A. mellifera subspecies compared to the northern region where 
African morphotype predominates. In queen breeders’ colonies, we found a fairly heterogeneous degree of 
hybridization, similar to managed colonies in the central and southern regions but with a clear predominance 
of A. m. ligustica and A. m. carnica, which was consistent with the mitotype analysis. Current genetic diversity 
in Argentina is wide and comprises mainly seven subspecies belonging to four evolutionary lineages (C, M, A, 
and O). This probably results from both historical and current importation events, transhumance, and exchange 
of queens between regions lacking strong geographical barriers, in combination with genetic dominance factors, 
gene flow, or adaptation to different environmental conditions.

Apis mellifera / genetic diversity / breeding lines / geometric morphometrics / mtDNA

1. INTRODUCTION

The distribution of honeybee Apis mellifera 
originally occupied Europe, Africa, and Western 
Asia, and has currently been described 33 subspe-
cies belonging to five evolutionary lineages (A, M, 

C, O, Y) based on morphological and nucleotide 
polymorphism data (Ilyasov et al. 2020). Since the 
beginning of human management, a wide expan-
sion of its native distribution has occurred, displac-
ing, exchanging, and artificially mixing naturally 
established honeybee populations (Harpur et al. 
2012; Leclercq et al. 2018), with consequences that 
have not only affected current genetic diversity but 
have also promoted the transmission of diseases 
and pathogens (Mutinelli 2011). A great diversity 
of subspecies of A. mellifera has been introduced 
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since colonial times in Argentina, mainly from 
Europe, including Apis mellifera mellifera, Apis 
mellifera ligustica, Apis mellifera carnica, Apis 
mellifera caucasica, Apis mellifera intermissa, and 
Apis mellifera iberiensis (Bierzychudek 1979). In 
1956, the African subspecies Apis mellifera scutel-
lata, began to spread into the American continent 
from southern Brazil, in an effort to establish hon-
eybee populations better adapted to tropical condi-
tions (Scott Schneider et al. 2004). The Africani-
zation process involved the bidirectional flow of 
maternal and paternal genes between previously 
introduced European and Africanized honeybees 
(Sheppard et al. 1991; Clarke et al. 2001; Pinto 
et al. 2005).

In Argentina, Africanized honeybees predomi-
nate in the northern region and European honey-
bees in the central and southern regions. In the area 
between 28º and 35º S, mixed populations derived 
from Africa and Europe overlap, causing a hybridi-
zation zone (Whitfield et al. 2006; Abrahamovich 
et al. 2007; Agra et al. 2018; Porrini et al. 2020). 
There are almost 15,000 beekeepers and 3, 5 mil-
lion beehives mainly found in the central region of 
the country which are used for honey production 
(80,000 tons/2018, MAGYP 2019). However, in 
the last 20 years, honeybee queen production and 
commercialization have been strongly intensified in 
the local market as well as for export to other coun-
tries (Ferrari et al. 2011), reaching 280,000 queen 
bees exported in 2019 (MAGYP 2019). In 2017, 
there were 24 breeding apiaries in the national reg-
istry (SENASA 2017; Min Agri 2019), although 
the current number of queen breeders possibly 
exceeds 50 apiaries. An important limitation is that 
most queen breeders in Argentina lack the tools or 
budget necessary to regularly control genetic diver-
sity and yet annually distribute a large number of 
queens, multiplied by a small number of moth-
ers. Intentionally or not, this process could reduce 
genetic variability. In addition to natural selection 
pressures, humans contribute, deliberately or not, to 
shaping the genetic diversity of honeybee popula-
tions around the world (Ferreira et al. 2020; Oleksa 
et al. 2021; Carpenter and Harpur 2021).

Human management and massive colony 
losses have raised concerns about decreased 
genetic variability, especially in Europe and 

North America (Meixner et  al. 2010; Cobey 
et al. 2012; Espregueira Themudo et al. 2020). 
Globally, hybridization rates are increasing  
due to honeybee movement and habitat altera-
tion (Allendorf et al. 2001). Introgression can 
disrupt local adaptation and negatively impact 
biodiversity (Moritz et al. 2005). However, man-
agement increases genetic diversity in honeybee 
populations (Harpur et al. 2012) and improves 
productivity, thermoregulation, and overall col-
ony fitness (Tarpy et al. 2013; Jones et al. 2004;  
Graham et al. 2006), giving to admixed genotypes 
more resistance against parasites and diseases 
(Desai and Currie 2015; Oldroyd et al. 1992; 
Mattila and Seeley 2007). It has also been proven 
that locally adapted colonies have higher survival 
(Hatjina et al. 2014) and a lower incidence of 
pathogens (Burnham et al. 2019; Meixner et al. 
2014), and therefore, it is essential to conserve 
the underlying genotypic variation (Frankham  
et al. 2002).

Introgression may be detrimental to A. mellifera 
subspecies conservation within their native range 
(Muñoz and De la Rúa 2021; Parejo et al. 2018; 
Oleksa et al. 2011). However, it occurs intentionally 
or not in many regions outside this range, resulting 
in admixed populations or similar commercial stocks 
(Carpenter and Harpur 2021; Saelao et al. 2020; 
Harpur et al. 2015; Chapman et al. 2016). Beyond 
this, queen breeders must ensure to promote genetic 
diversity since honeybees have a haplodiploid mat-
ing system making them more sensitive to inbreed-
ing (Zayed 2009). Currently, many queen breeders 
often import new genetic material, not only to pre-
serve genetic diversity, but also to increase certain 
desirable traits (Niño and Jasper 2015). The impor-
tation of queen bees affects the genetic structure of 
local populations, and this fact has been illustrated by 
the preferential use of some subspecies and hybrids 
(A. m. ligustica, A. m. cárnica, A. m. caucasica, 
Buckfast) and the accidental development of Afri-
canized populations (A. m. scutellata) in America.

Geometric morphometrics analysis of wing 
shape has been previously applied in the evalu-
ation of genetic structure within A. mellifera 
subspecies as well as in the identification of 
evolutionary lineages (Francoy et  al.  2008; 
Tofilski 2008; Barour and Baylac 2016), even 

61 Page 2 of 17



Genetic diversity of A. mellifera colonies in Argentina

1 3

obtaining a similar characterization compared to 
SNP analysis (Minozzi et al. 2021; Henriques 
et al. 2020). On the other hand, genetic mark-
ers such as the intergenic region COI-COII of 
mtDNA have been widely used to differenti-
ate maternal lineages and to discriminate mito-
chondrial haplotypes between A. mellifera sub-
species (Garnery et al. 1992; Franck et al. 2000; 
Szalanski and Magnus 2010).

The aim of this study was to compare genetic 
diversity in managed and commercial A. mellifera 
colonies from different regions of Argentina using 
geometric morphometric analysis of wing shape 
and estimate the current morphotype hybridization 
through distribution maps of the main A. mellifera 
subspecies previously introduced. In addition, to 
determine maternal lineage in commercial popula-
tions, mitochondrial haplotypes were characterized 
in colonies from queen breeders of different regions.

2.  MATERIALS AND METHODS

2.1.  Sampling

We obtained samples from 480 managed 
honeybee (A. mellifera) colonies from 70 locali-
ties in 22 provinces during 2013–2019 (Fig-
ure  1; Table  S1). In addition, 154 honeybee 
colonies coming from 28 breeding apiaries (Min 
Agri 2019) dedicated to the multiplication and 
commercialization of queens and other live prod-
ucts (queen cells, bee packs, bee nucleus) were 
collected in different regions during 2018–2020 
(Figure 1; Table S2).

2.2.  Geometric morphometrics

From the samples obtained, the left forewing of 
10 workers per colony was mounted in glass pho-
tographic frames and scanned (res.7200 dpi) with a 
Plustek Opticfilm 8100 (LaserSoft Imaging, Kiel, 
Germany). A total of 6340 forewing pictures were 
successfully obtained. For every wing image, the 
Cartesian coordinates (x, y) of 19 homologous 
landmarks (Francoy et al. 2008) were digitized 
using tpsDIG v.2.16 and tpsUtil v.1.4 (Rohlf 2010). 

Additionally, for each pure subspecies (A. m. car-
nica, A. m. caucasica, A. m. iberiensis, A. m. inter-
missa, A. m. ligustica, A. m. mellifera, and A. m. 
scutellata), wing images representing 50 different 
colonies, obtained from the morphometric Bee 
Data Bank in Oberursel (Germany), were included 
in the analysis. The landmark coordinates were pro-
cessed through MorphoJ software package v.1.06a 
(Klingenberg 2011). Alignment was performed 
using Procrustes fit (translation, proportion, and 
rotation). Based on the spectral decomposition of 
covariance, principal component analysis (PCA) 
was performed, and principal components were 
further analyzed with canonical variate analysis 
(CVA) to visualize the differences between groups: 
managed colonies in north region (MCN), managed 
colonies in central region (MCC), and managed col-
onies in south region (MCS) and queen breeder’s 
colonies (QB). Statistically significant differences 
in wing shape were evaluated by the 38 principal 
components using multivariate analysis of variance 
(MANOVA) in PAST v4.3 (Hammer et al. 2001). 
Furthermore, to estimate morphotype distribution 
and intracolonial diversity by region, Mahalanobis 
distances (MDs) to different A. mellifera subspe-
cies were calculated grouping the datasets by prov-
ince  (MDbp) or by colony  (MDbc). Morphometric 
maps were conducted separately via Esri’s ArcMap 
10.4.1 (Esri, Redlands, California) using  MDbp. 
Together in each map,  MDbc obtained from man-
aged colonies in three regions (MCN, MCC, and 
MCS) or in queen breeder’s colonies (QB) were 
compared by the Box & Whisker Median plots 
and Kruskal–Wallis tests using STATISTICA 10 
(Statsoft 2011). In addition, Spearman’s correlation 
analysis was run to assess the relationship between  
 MDbc and latitude for each A. mellifera subspecies.

2.3.  Mitotype characterization

In order to characterize the evolutionary lineage 
and mitochondrial haplotypes, the COI-COII inter-
genic region (mtDNA) was amplified from honey 
bee thoraces from 28 different colonies from queen 
breeders. Amplifications were carried out in a total 
volume of 20 µl, containing 10 µl of 2 × MyTaq 
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Figure 1.  Map indicating the type and number of honeybee colonies sampled in different Argentinean provinces. 
Collection sites from managed colonies are shown with black circles and queen breeder sites with green circles and 
different letters.

61 Page 4 of 17



Genetic diversity of A. mellifera colonies in Argentina

1 3

PCR mix (Bioline, London, UK) master mix, 1 µM 
of each primer (E2: 5′-GGC AGA ATA AGT GCA 
TTG -3′ and H2: 5′-CAA TAT CAT TGA TGACC-3′) 
(Garnery et al. 1992), and 1 µl of DNA. All reac-
tions were carried out in a Rotor-Gene thermocycler 
(Qiagen, Hilden, Germany) using EvaGreen (KAPA 
Fast, Biosystems, Woburn, USA) as fluorescent 
intercalator. The amplification products were exam-
ined by electrophoresis in 1% agarose gels contain-
ing TAE buffer (Tris–acetate 0.04 M, 1 mM EDTA, 
pH 8), ethidium bromide staining, and a molecular 
weight marker (GeneRulerTM 100pb DNA Ladder, 
Ferments). After verifying the correct amplification, 
PCR products were purified using AccuPrep® PCR 
Purification Kit (Bioneer Co., South Korea), and 
sequenced by Sanger reaction using the BigDye® 
Terminator v3.1 Cycle Sequencing kit, ZR-96 DNA 
Sequencing Clean-up™ in an Applied Biosystems 
3500 Genetic Analyzer. Electropherograms obtained 
were manually checked to correct erroneous readings 
in BioEdit (Hall 1999) and aligned using ClustalX2 
(Larkin et al. 2007). To characterize the obtained 
sequences, they were compared with previously 
reported A. mellifera haplotype sequences available 
on GenBank (NCBI: National Center for Biotech-
nology Information, Bethesda, MD, USA), using 
BLASTn (Basic Local Alignment Search Tool) 
with high-quality parameters of similarity (megab-
last) http:// blast. ncbi. nlm. nih. gov/ Blast. Similari-
ties were calculated by Neighbor joining method, 
and circular phylogenetic tree was constructed by 
UPGMA in MEGA7 (Kumar et al. 2016) using the 
maximum composite likelihood (MCL) approach 
(Tamura et al. 2004). After processing, 23 of the 
sequences obtained from queen breeder’s colonies 
were deposited in the GenBank database with the 
following access numbers: MN026273-95.

3.  RESULTS

3.1.  Geometric morphometrics

The canonical variate analysis (CVA) of wing 
shape using origin (MCN, MCC, MCS, QB) as 
classification criterion revealed that the first three 
components (CV1 = 58.623%; CV2 = 11.914%; 
CV3 = 16.615%) explain 81.152% of the total 

variation (Figure 2). Wing shape (represented 
by the 38 principal component scores) differed 
significantly between groups (MANOVA: Wilks’ 
lambda = 0.00021; P < 0.0001). Mahalanobis dis-
tances and P-values from permutation tests were 
also calculated for groups with different origins.  
In pairwise comparisons, all groups significantly 
differed from each other (Table  I). The CVA  
revealed consistent results but had differ-
ences in the magnitude of Mahalanobis dis-
tances (MD) obtained when datasets (N = 634)  
were grouped by colony (MDbc) to compare 
morphotype in managed colonies (N = 480) from 
different regions (MCN, MCC, and MCS) with 
queen breeder’s (QB) colonies (N = 154) (Fig-
ure 3), or were grouped by province (MDbp) to 
build morphotype maps (Figure 4). The African 
morphotype predominates in managed colonies 
from the northern region with shorter MDbc to 
A. m. scutellata than to A. m. intermissa (Figure 3) 
The closest  MDbp to A. m. scutellata were found 
in Misiones (2.22), La Rioja (2.62), Jujuy (2.75), 
Catamarca (2.77), and Chaco (2.87) (Figure 4a). 
For A. m. intermissa, the closest ones were found 
in Santiago del Estero (3.22), Misiones (3.32),  
Santa Fe (3.48), La Rioja (3.50), and Catama-
rca (3.55) (Figure 4b). Both African subspecies 
showed  MDbc that increased in managed colonies 
from central and southern regions, and even more 
in relation to queen breeder’s colonies (Figure 3). 
Something to highlight regarding the scutellata-
morphotype is its distribution limited only to 
the northern region, with  MDbc that increase 
significantly at higher latitudes, but with greater 
magnitude compared to other subspecies. A. m. 
iberiensis, native to the Iberian peninsula and 
taxonomically located between M and A lineage, 
presented the highest  MDbp compared to other 
A. mellifera subspecies being the morphotype 
with less territorial distribution mainly found in 
Córdoba (4.44), Santa Fe (4.77), and Corrientes 
(4.85), (Figure 4c). The smallest  MDbc were found 
in managed colonies from the north and central 
regions with significant increases for the southern 
region and queen breeder’s colonies (Figure 3). A.  
m. caucasica assigned to the O lineage by mor-
phometry and native to the Caucasus valleys 
revealed shorter  MDbp than A. m. iberiensis, and it 
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is distributed mainly on the central region in Entre 
Rios (4.08), Córdoba (4.14), San Luis (4.15), and 
Corrientes (4.17) (Figure 3d).

Although there are short  MDbc in managed 
colonies from the south region and queen breeder’s 
colonies, these increase significantly when being 
compared with managed colonies in both the north 
and central regions (Figure 3). The European dark 
honey bee (M lineage: A. m. mellifera) showed a 
wide territorial distribution with closer  MDbp in 
Rio Negro (3.25), Entre Ríos (3.37), Santiago del 
Estero (3.49), Santa Fé (3.57), Salta (3.58), and 
Tucumán (3.59), (Figure 4e). When analyzing  MDbc 
in managed colonies, no significant differences were 
observed between regions. However, they increased 
significantly compared to queen breeder’s colonies 
(Figure 3). Although the European morphotype is 
represented by at least 4 different A. mellifera sub-
species analyzed here, two of them presented dis-
tances that decrease significantly between regions 
with increasing latitude. The Italian honey bee (C 
lineage: A. m. ligustica) mainly occupies the central 

and southern regions with closer  MDbp in Mendoza 
(3.23), Buenos Aires (3. 27), La Pampa (3.28), Rio 
Negro (3.31), and Santa Cruz (3.42) (Figure 4f). 
When comparing managed colonies, a significant 
decrease in  MDbc between the north and central or 
south regions was observed. However, no signifi-
cant differences were observed between managed 
colonies from these regions and queen breeder’s 
colonies (Figure 3). A similar scenario occurs with 
the Carniolan honey bee (C lineage: A. m. carnica) 
which is distributed with close  MDbp in Rio Negro 
(3. 27), Buenos Aires (3.47), and Chubut (3.57), 
(Figure 4g), and as latitude increases,  MDbc in man-
aged colonies decrease significantly between the 
north and central and even south regions, but no sig-
nificant differences were observed comparing south 
region with queen breeder’s colonies (Figure 3).

By linearly correlating  MDbc and latitude, 
significant P-values (< 0.05) were obtained 
for six A. mellifera subspecies (Figure  5). 
Strong negative correlations were observed 
for A.m. cárnica (rs = − 0.4967) and A. m. 

Figure 2.  Canonical variate analysis (CVA). The first two canonical variates illustrate wing shape variation in dif-
ferent groups (managed colonies in north region MCN = light gray; managed colonies in central region MCC = grey; 
managed colonies in south region MCS = dark gray; Queen breeder’s colonies QB = black), in comparison to ref-
erence samples of A. mellifera subspecies (A. m. carnica = red; A. m. caucasica = orange; A. m. iberiensis = light 
green; A. m. intermissa = green; A. m. ligustica = turquoise; A. m. mellifera = blue and A. m. scutellata = purple). Each 
marker (points) represents the mean scores of each colony. The ellipses represent 95% confidence intervals around 
the centroid of each data cluster.

61 Page 6 of 17



Genetic diversity of A. mellifera colonies in Argentina

1 3

ligustica  (rs = − 0.4510), showing closer  MDbc 
with increasing latitude. Strong and moder-
ate positive correlations were observed for A.  
m. scutellata (rs = 0.59708) and A. m. inter-
missa (rs = 0.30171), while for A. m. caucasica 
(rs = 0.12379) and A. m. iberiensis (rs = 0.13375), 
the weakest positive correlations were observed, 
showing closer  MDbc as latitude decreases. No 
correlations were observed for A. m. mellifera.

3.2.  Mitotype characterization

Sequence analysis of the intergenic (COI-
COII) region of mitochondrial DNA allowed us 
to classify queen breeder colonies as belonging 

to lineage C (Eastern Europe). The sequences 
were deposited in GenBank (access no. 
MN026273-95). The comparison of sequences 
obtained with the Blast tool yielded a similar-
ity percentage greater than 99% with at least 6 
sequences previously deposited (FJ824582.1, 
MF428426.1, MH341407.1, MH939340.1, 
JF723976.1, MH939345. 1). These sequences 
belong to three different haplotypes: C1, char-
acteristic of the A. m. ligustica, and C2d and 
C2j, characteristic of A. m. carnica (Table II). 
In silico DraI restriction analysis revealed the 
absence of P-type regions (P0, P, or P1) char-
acteristic of lineages A and M. A single Q-type 
region belonging to lineage C was identified in 
all samples, with three restriction sites for the 

Figure 3.  Mahalanobis distances (MDs) obtained from canonical variate analysis (CVA) of wing shape using data-
sets grouped by colony. The graph is separated into four blocks comparing managed colonies in the north region 
(MCN), managed colonies in the central region (MCC), managed colonies in the south region (MCS), and queen 
breeder’s colonies (QB). Box and Whisker plots represent values of MD to different A. mellifera subspecies (A. m. 
scutellata = purple; A.m. intermissa = dark green; A.m. iberiensis = light green; A.m. caucasica = orange; A.m. mellif-
era = blue; A.m. ligustica = turquoise; A.m. carnica = red). The black scripts markers indicate medians, boxes indicate 
25th and 75th percentiles, whiskers indicate non-outlier range, and circles indicate outliers. The same letters next to 
scripts indicate no significant difference in a Kruskal Wallis test.
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DraI (TTT AAA ) enzyme located at positions 44, 
84, and 148 and three polymorphic sites at posi-
tions 205, 275, and 413 (Figure 6).

4.  DISCUSSION

Based on geometric morphometrics and mito-
chondrial DNA analysis, our comprehensive study 
provides novel insights into the current genetic 

diversity in Argentina, which will serve as back-
ground for future population studies. The CVA 
carried out in different regions allowed us to 
understand the latitudinal variation of A. mellifera 
morphotype in both managed and queen breeder 
colonies. In Argentina, the morphotype present 
in managed colonies is as diverse as the origin of 
A. mellifera subspecies introduced over time. The 
genetic structure becomes more complex if we con-
sider the population admixture that occurred during 

Figure 5.  Significant Spearman’s coefficient of rank correlation for six subspecies of A. mellifera. Mahalanobis dis-
tances obtained from CVA grouping datasets by colony  (MDbc) were plotted separately in relation to latitude using 
different color marks for different subspecies. In addition, the Spearman (rs) values are indicated.

Page 9 of 17 61



Porrini et al.

1 3

the Africanization process. Africanized populations 
in America have retained a predominantly African 
morphotype (Clarke et al. 2001) with a stronger 
influence of African over European genes on wing 
venation patterns (Francoy et al. 2012). This genetic 
dominance, added to competitive advantages in 
tropical regions, has possibly caused a greater flow 
of African genes towards European populations. 
This asymmetric gene flow did not necessarily lead 
to the loss of European genetic markers; but it pos-
sibly contributed to the preservation of an African 
phenotype (Guzmán-Novoa et al. 2011).

Although we can affirm that A. mellifera 
morphotype in Argentina varies latitudinally, 
not all A. mellifera subspecies are correlated 
in the same way or with the same intensity. As 
previously established (Whitfield et al. 2006; 
Agra et al. 2018; Porrini et al. 2020), the north 
region is dominated by Africanized popula-
tions with high similarity to the subspecies A. 
m. scutellata for which a strong correlation with 
latitude is observed, but also to a lesser degree 
with A. m. intermissa with a weak correlation. 
Transition zones began to be delimited through 
mtDNA analysis and morphometry (Sheppard 
et al. 1991), and it was possible to determine 
ALBA haplotype in 25% of Africanized colo-
nies in Argentina (Sheppard et al. 1999). This 
haplotype is only found in A. m. intermissa 
colonies from North Africa (Morocco) but not 
in sub-Saharan colonies of A. m. scutellata, and 
was possibly introduced from the Iberian Penin-
sula. Consistent with these findings, our analysis 
showed a north–south clinal distribution of A. 
m. intermissa that extends even further than A. 
m. scutellata; nevertheless, for A. m. iberiensis, 
less similarity was found, and more heterogene-
ous distributions were obtained. A recent study 
using (mtDNA) sequence data of Iberian hon-
eybee (Chávez-Galarza et al. 2017) revealed a 
great diversity of haplotypes belonging to the 
M, but mainly to A lineage. Three sublineages 
were described, and among them, two  (AII and 
 AIII) contained A. m. intermissa. Considering the 
hybrid origin of A. m. iberiensis (Henriques et al. 
2020), it is possible that these two sublineages 
were the ones introduced in Argentina by early 
Spanish or Portuguese settlers. Even they could 

have arrived from Brazil together with A. m. 
scutellata at the beginning of the Africanization 
process (Collet et al. 2006; Whitfield et al. 2006).

In 2007, Abrahamovich et al. found two Afri-
can haplotypes (A8, A11) belonging to  AII lin-
eage and three (M2, M3, M6) belonging to M 
lineage in managed colonies from Buenos Aires. 
In 2018, Agra et al. found feral colonies with 
mitochondrial haplotypes A1 and A30 belonging 
to  AI and  AIII sublineage and managed colonies 
with M4 haplotype characteristic of A. m. mel-
lifera. Our morphotype analysis revealed that 
this is the subspecies within the M lineage most 
widely distributed in Argentina, showing simi-
lar close distances for all three regions, even in 
queen breeder colonies. Regarding A. m. cauca-
sica, there are no previous studies that confirm 
its presence in Argentina; however, there are 
queen breeders that produce hybrids between A. 
m. ligustica and A. m. caucasica (Min.Agri.BA., 
2019), and possibly, there have been unrecorded 
introductions. Apparently, these hybrids would 
be more useful in areas with high temperatures 
and short nectar flows due to their longevity and 
gloss length. Both M (A. m. mellifera) and O (A. 
m. caucasica) lineages lacked a pronounced lati-
tudinal variation in managed colonies, showing 
equal similarity in queen breeder colonies.

In managed colonies from the central and 
southern regions, European morphotype clearly 
predominates, with C lineage (A. m. ligustica; 
A. m. carnica) showing a strong north–south 
clinal distribution inversely proportional to 
that observed for A lineage (A.m. scutellata; 
A.m. intermissa). In queen breeder colonies, we 
found the closest wing shape proximity with A. 
m. ligustica and A. m. carnica. In agreement with 
these results, mitotype analysis revealed three 
mitochondrial haplotypes (C1 and C2d and C2j) 
characteristic of these two subspecies.

Our results are consistent with two previous 
studies, the first established as most frequent 
(92%) C1 haplotype in Buenos Aires province 
(Abramovich et al. 2007), the second in which 
396 colonies from different provinces were 
analyzed (Agra et al. 2018), showing only two 
haplotypes belonging to C lineage (C1, C2j). 
The preference of beekeepers to manage A. m. 
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Figure 6.  a Arrangement of the P and Q regions and restriction sites of the DraI enzyme in different lineages and 
mitochondrial haplotypes of A. mellifera. b Circular phylogeny analysis by UPGMA method. Evolutionary distances 
were calculated using the composite maximum likelihood method and are in the units of the number of base substitu-
tions per site. C1 haplotypes are shown in turquoise, C2 haplotypes in red, and reference sequences in black.
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ligustica, A. m. carnica, or even hybrid Buckfast 
is commonly reported in countries that exceed 
the native range of A. mellifera and could be due 
to some particular characteristics such as gentle-
ness, productivity, prolificacy, resilience in envi-
ronmental conditions, or low swarming tendency 
(Jensen et al. 2005; Moritz et al. 2005).

However, morphotype analysis also revealed 
a slighter similarity with other European subspe-
cies (A. m. mellifera; A. m. caucasica). This may 
be due to the fact that wing venation patterns 
present a biparental inheritance, contrary to the 

mtDNA, and maternal inheritance; it seems to 
influence more in descendants from interracial 
hybrids (Węgrzynowicz et al. 2019). Molecu-
lar methods based on the analysis of mtDNA 
sequences are more useful for phylogenetic 
studies but do not show much efficiency in sub-
species characterization (Meixner et al. 2013; 
Oleksa and Tofilski 2015). The new techniques 
of gDNA sequencing or SNP analysis (Momeni 
et  al. 2021; Whitfield et  al. 2006) are more 
exhaustive but are not yet easily available for use 
by beekeepers or queen breeders.

Table II  Characterization of maternal lineage (A, C, M, O, Y) and mitochondrial haplotype indicating the 
characteristic subspecies in queen breeder’s colonies from different provinces of Argentina. The access number 
to the sequence deposited in the GenBank database is detailed for each sample

Colony Province Lineage GenBank Acc. Numb Subspecies Haplotype

A1 Buenos Aires C MN026287 A.m. carnica C2d
A2 Buenos Aires C MN026287 A.m. carnica C2d
A3 Buenos Aires C MN026280 A.m. ligustica C1
B Buenos Aires C MN026274 A.m. ligustica C1
C Buenos Aires C MN026275 A.m. ligustica C1
D La Pampa C MN026288 A.m. ligustica C1
E Buenos Aires C MN026279 A.m. carnica C2j
F1 Rio Negro C MN026276 A.m. ligustica C1
F2 Rio Negro C MN026289 A.m. carnica C2d
G Rio Negro C MN026284 A.m. ligustica C1
H Mendoza C MN026290 A.m. ligustica C1
I Sgo. Del Est C MN026291 A.m. ligustica C1
J Buenos Aires C MN026292 A.m. carnica C2j
M Santa Fe C MN026285 A.m. ligustica C1
N Mendoza C MN026282 A.m. ligustica C1
Ñ Cordoba C MN026293 A.m. ligustica C1
O Entre Rios C MN026286 A.m. ligustica C1
P Santa Fe C MN026292 A.m. carnica C2j
Q Santa Fe C MN026283 A.m. ligustica C1
R Santa Fe C MN026294 A.m. ligustica C1
T1 Buenos Aires C MN026278 A.m. ligustica C1
T2 Buenos Aires C MN026295 A.m. ligustica C1
U Buenos Aires C MN026277 A.m. ligustica C1
V1 Mendoza C MN026273 A.m. ligustica C1
V2 Mendoza C MN026273 A.m. ligustica C1
V3 Mendoza C MN026280 A.m. ligustica C1
W La Pampa C MN026281 A.m. ligustica C1
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Geometric morphometric analysis of wing 
shape can be used for a quick and economic  
characterization of  A. mellifera subspecies 
in order to have a better criterion in selective 
breeding, and its effectiveness has even been 
proven using automatic image recognition and 
machine learning applied to honey bee wings 
(Da Silva et al. 2015; De Nart et al. 2022). Com-
mercial honeybee populations are selected, 
multiplied, and distributed to and from different  
regions annually; therefore, environmental fac-
tors are not the only parameters that affect mor-
photype or genetic stock hybridization.

The results presented here show that the cur-
rent genetic diversity in A. mellifera colonies in 
Argentina is wide and comprises mainly seven 
different subspecies belonging to four evolution-
ary lineages (C, M, A, O). The genetic structure 
of A. mellifera in Argentina reflects its evolu-
tionary history but also specific adaptations to 
different biogeographical regions which lack 
strong geographical barriers (Arana et al. 2017). 
Morphotype differences found probably respond 
to variations in gene flow between populations 
related to environmental factors such as climate, 
resource availability, and nesting sites, but 
mainly to anthropic factors such as agricultural 
practices including transhumance, honeybee 
queen’s importation, and live beekeeping mate-
rial (queens, queen cells, bee packs, bee nucleus) 
commercialization in the local market.

In Argentina, as in the rest of the world, hon-
eybees live predominantly in managed colonies,  
and this has significantly impacted their genetic 
structure and admixture promoting the horizontal 
transmission of diseases (Mutinelli 2011). As future  
perspectives, it is considered necessary to continue 
evaluating genetic diversity in queen breeders’ 
colonies and studying through field trials, if the 
increase in intracolonial genetic diversity improves 
productivity or response to different stressors. We 
also consider that monitoring and evaluation of pro-
ductive parameters carried out by queen breeders 
are essential to increase colony performance. This 
will allow us to understand how different traits are 
inherited in hybridized populations from different 
biogeographical regions and how management 
practices contribute to the long-term success of 

honeybee colonies. Being able to identify subspe-
cies of A. mellifera and characterize the colonies 
in an agile and simple way considering the current 
hybridization is crucial for selection and multipli-
cation, as well as for managing honeybee colonies 
in an increasingly dynamic environment. The joint 
application of morphometric and molecular meth-
ods to estimate genetic diversity in hybridized Apis 
mellifera colonies is the basis of the success of such 
an objective, and this is demonstrated by the results 
of the present study.
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