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Abstract

Experiment design is an important topic in system identification. It enables choosing the best input signal that allows
computing parameters with minimum variance. Experiment design for system identification with fractional models is
treated in this paper. Elementary fractional models of the second kind are considered, extending the previous results
regarding models of the first kind. It allows choosing the best frequency(ies) of a sine input signal by minimizing
the D-optimality criterion of the covariance-matrix. The case of a single unknown parameter is treated which can be
either of the following: gain, pseudo-damping factor, natural frequency, or even the differentiation order. Then, all the
combinations of two unknown parameters are considered. Finally, three and four unknown parameters are considered
and the covariance matrix computed. It is shown that its optimum is difficult to obtain analytically in the general case.
The particular case of second order (rational) systems, when the commensurate differentiation order equals one, is
pointed out, as a special case in this study.

Keywords: Experiment planning, fractional system, system identification, D-optimality, Fisher Information Matrix.

1. Introduction

The field of optimal experiment design dates back to the seventies. The main idea consists in finding the best
input signal that provides the most precise estimation of unknown parameters, where multi-sine approaches gave rise
to important results still used today [1, 2]. Important developments emerged in the late eighties based on Ljung’s
asymptotic covariance formula [3]. Some research focus on optimizing the whole input signal spectrum in relation
with desired constraints [4, 5].

Fractional calculus has gained more and more importance in the last decades with a rapid growth of the number of
applications in widespread fields of science. This is due to the ability of fractional differential equations to elegantly
model diffusive phenomena. In electrochemistry, for example, it is proven that the diffusion of charges in acid batteries
is governed by Randles’ models [6] that involve a half order integrator. Since then, multiple references regarding
modeling and identification of various batteries have been proposed in the literature [7, 8, 9]. In semi-infinite thermal
systems, Battaglia et al. [10] have shown that the exact solution of the heat equation links the thermal flux applied
at one edge of a homogenous medium to a half order derivative of the temperature. Consequently, [11, 12] use
fractional models for estimating thermal parameters and controlling the temperature along a thermal rod. This fact
has been extended to large temperature variation in [13]. Biological systems [14, 15], medical systems [16, 17], and
many others can elegantly be expressed in terms of fractional-order differential equations. System identification using
fractional models was initiated in the late nineties and the beginning of this century [18, 19]. It continued gaining
interest in the last few years and multiple journal references were published on this subject [20, 21, 22, 23, 24, 25, 26,
27].

Experiment design of elementary transfer functions of the first kind was treated in [28, 29]. In [28], D-optimality
of the covariance matrix is minimized, whereas in [29] the problem is formulated in a convex finite dimensional
form, the input spectrum is decomposed in Laguerre polynomial basis and an LMI solution is proposed. This method
enables synthesizing optimal input spectrum of LTI continuous-time systems that can also be fractional ones. It is well
known in the literature that the optimal experiment design depends on the optimal parameters which are unknown.
This chicken-and-egg problem can be solved by pre-estimating system parameters using a non optimal input signal
and then by using an optimal signal with a prescribed power. When a bounded interval of the estimated parameters is
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known, an alternative way consists in performing robust experiment design as described in [28] for transfer functions
of the first kind.

This paper focuses on fractional systems of the second kind and answers the question what is the best input signal
which allows computing any of the system parameters by minimizing the D-optimality criterion of the covariance
matrix, for a prescribed input energy. The results developed in this paper assume implicitly that time-domain responses
of fractional systems are correctly simulated with negligible simulation errors [30, 31]. A preliminary version of this
paper, published in the SYSID 2018 conference [32], focuses on a single unknown parameter. This paper goes beyond
the latter case, in section 3, by explaining the discontinuity issue when the differentiation orders are unknown. Then,
results regarding two unknown parameters is treated in section 4. Finally, the covariance matrix for the case of three
and four unknown parameters is computed in section 5. It is shown that the analytical computation of the optimal
input signal is very complex in these latter cases. Finally, a conclusion is drawn at the end of the paper.

Mathematical background
Fractional systems are usually defined in the Laplace domain using a transfer function representation:

M
> b,’Sﬂ’
Goy=28 _ = 1
As) 1+ 1ZV] a;sYi
2.4

J=1

where s is the Laplace variable, (a;,b;) € R2Vie {0,1,...,M} and ¥V j € {1,...,N} and the differentiation orders
(v}, B;) are positive real numbers that are ordered for identifiability purposes:

O<y1<y2<...<yn )
0<Byp<Pi1<...<Bu.
Elementary transfer functions of the first kind involve a simple and real s”-pole:
Fi(s) = 3

1+ (rs)”’
which are straightforward generalization of first order transfer functions, when v = 1. Their stability conditions write:

{T>0 @)

O0<v<?2.

When two s”-complex-conjugate poles are involved, transfer functions of the second kind are used, as they have only

real-valued coeflicients: K

\2v s\ :
(&) +2(z) +1
Fractional transfer functions of the second kind, as in (5), were studied extensively in [33]. It was shown that their
stability conditions must satisfy (6):

Fa(s) =

&)

woy > 0
0<v<?2 (6)
¢ > —cos(v),

which generalizes the stability conditions of rational transfer functions > 0, when v = 1. Consequently, stable

fractional transfer functions may be obtained for negative values of £, provided { > —cos (v%)
This result was determined by applying Matignon’s stability theorem [34]:

|arg(s)| > vg (7)

to the s”-roots of (5). Further, some new stability results have been established for incommensurate systems in
[35, 36].



2. Basics on experiment design and problem formulation

Let a single input single output (SISO) system be defined as:

y(®) = F(pu(1) + (), ®)

where p is the differential operator %, F(p) is a fractional transfer function and e(#) is a Wiener process independent
and identically distributed that follows a normal distribution N(0; o?). All parameters of F(p) are gathered in a vector
6. The objective in system identification is to estimate the vector 6 with a maximum possible precision which can
be assessed by minimizing a norm of the covariance matrix which is the inverse of Fisher Information Matrix (FIM)
[1, 3]:

PN (®,(w) = P (®,(w)) + Ry, ©
with
. R dF (jw)|" OF (—jw)
P@y(w) =5— f w%[[ = ] cbu(w)[Tde, (10)

where o2 is the noise variance, ®,(w) is the spectrum of the input signal u(), and R a constant independent of @, (w).
Moreover, for simplicity, a unit power with o> = 1 is further assumed.

The objective in experimental design is to compute a parametrized optimal input signal that maximizes a norm
of the inverse covariance matrix (10). For this chicken-and-egg problem, parameters are generally pre-estimated and
then used for optimal experiment design.

Obviously, the covariance matrix depends on the input signal spectrum ®,(w) and also on system parameters.
Different matrix norms can be used to assess this performance. Among them, the D-optimality criterion is used in this
paper. It corresponds to the volume of the confidence region of 6:

Jp(Py(w)) = det(P(D,(w))). an
Furthermore, the input signal is assumed to be multi-cosine:
N
u(t) = ) Acos(wit), w; >0, (12)
i=1

where each magnitude A; allows setting the total energy on the corresponding frequency component w;, with a con-
straint allowing to fix the total power of the input signal Zfi 1 Ai = A. The required number of cosine components N
depends on the number of unknown parameters. It is shown in [1] that the optimal choice for estimating one or two
unknown parameters is to design an input signal with a single cosine component N = 1:

u(t) = Acos(wt), w >0. (13)
However, when 3 or 4 parameters are unknown, two cosine components are necessary to have a persistent excitation:
u(t) = A(acos(wit) + (1 — @) cos(wrt)), wip = 0. (14)

By introducing the parameter «, the total amount of energy A of the input signal may be optimized so that it splits
into an optimal way on every cosine component. Moreover, since the spectrum of each cosine function is a Dirac
distribution, (10) can be rewritten as (note that P’l(g) is used as a shorter notation of P~(®, (w))):

_ 1 v OF (jw;) "ol (—jw;)
1 —
P (w) = iél ,@e([ } [ D, (15)

06

where N depends on the number of used cosine components and w = [w1, w3, ..., WN].
Remark: As indicated previously, the Fisher Information Matrix (FIM) is the inverse of the covariance matrix.
Hence the bigger the FIM, the smaller the covariance matrix and the more precise the estimation.
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Problem formulation

Hence the problem treated in this paper can be formulated as finding the best frequency(ies) of the cosine input
signal (12), for estimating the parameters K, wy, £, and the differentiation order v of the transfer function of the second
kind (5). For that purpose, the D-optimality criterion of the inverse covariance matrix is maximized for a prescribed
power of the input signal A.

When one or two parameters are unknown a single cosine component is considered and the problem resumes in
finding

Wopr = arg max det(P~ (w)). (16)

For three and four unknown parameters, the amount of energy associated to each cosine component (parameter o
in (14)) can be optimized along with the frequencies. The problem then resumes in:
(@, @opi] = arg max det(P~ (w)). (17
w,a

A general matrix is given when the number of parameters equals three and four. It is shown how complex the
computation of the maximum is, in that case.

3. Fractional systems of the second kind with a single unknown parameter

Experiment planning of elementary fractional transfer functions of the second kind (5) is considered in this section.
Hence, a single parameter is supposed to be unknown among K, £, wg, and v. In this case, the input signal is composed
of a single frequency as in (13), the amplitude A is fixed and the optimal frequency maximizing (16) is computed in
each case. Consequently, the obtained optimal frequency allows to estimate the unknown parameter with a minimum
variance.

In this section, the elementary fractional transfer function of the second kind (5) is considered to be subject to the
input signal (13) with a fixed amplitude A. First, a single parameter among K, {, wy, and v is considered to be unknown
and the optimal frequency w of the input signal (13) is computed allowing to estimate the unknown parameter with a
minimum variance (15).

Some preliminary results of this section were previously published in the conference paper [32]. These results are
recalled, for the sake of completeness, and afterwards augmented.

3.1. Case K is unknown

In this section, parameters {,w( and v are supposed to be known and only the parameter K is supposed to be
unknown. It is interesting to start by examining the case of a rational second order system (v = 1).

3.1.1. Rational second order system with v = 1

Define, all along the paper, the normalized frequency w, = @ Then, the FIM computed by (15) is given by:

wo
A 1
Pl (wy) = — X 18
x (wWn) 27 % Drin (18)
where:
Dy(w,) = 48%wi + (1 — wh)?. (19)
The maximum of the FIM (18) is obtained for the minimum of the denominator:
dD(w,
AD1@n) _ () &, g (w2 + 222 - 1) = 0, (20)
dw,
There is a single non-negative solution at
2
wy =0, when > % @1)



and two non-negative solutions at

w, =0 \2
h 0 —_— 22
{wn: ,—l_zgzwen <§<2 (22)
It is easy to verify, that the global optimum in (22) is at Wy opr = V1 — 242
For non-resonant systems, { > g, the optimum frequency is zero which corresponds to a step signal. Intuitively,

estimating the gain of a transfer function is usually done by a step signal. It turns out to be the optimum signal for

non-resonant systems. However, for resonant systems, 0 < { < ﬁ, the optimum frequency is the resonant one. This
can easily be explained by the fact that sensitivity to gain variations is the most important at the resonant frequency.

3.1.2. General (fractional) system with v € (0,2)
The FIM, computed from (15), is given by

A 1
Pl (wy) = — % 23
x (Wn) 7 Dot (23)
where
T
Da(n) = 1+ & + 4262 + 202" cos(vm) + 42w (1 + w2 cos (vz) . (24)
The optimum of the FIM (15) is not easy to obtain, as it requires solving the nonlinear equation obtained after
differentiating the FIM with respect to w,, dpgafw”) = 0. Except the trivial solution at w, = 0, no other analytical

solution can be found. Consequently, numerical solutions are computed and plotted for different values of v in Fig.1-
left. Hence, the optimal signal in the sense of (16), depends on whether the system is resonant or not!:

w, =0, when the system is non-resonant (25)

w, = wg otherwise (26)

where, wy, is the resonant frequency, computed numerically, and plotted in Fig.1 versus ¢ for different values of v.

The results in the fractional case are comparable to the rational case: when the fractional system (5) is non-
resonant, the optimal frequency is zero. When it is resonant, the optimal frequency is the resonant one, as it offers the
highest sensitivity to gain variations.

3.2. Case ({ is unknown

In this section, parameters K, wy and v are supposed to be known and only the parameter { is supposed to be
unknown. Again, it is interesting to start by examining the case of a rational second order system (v = 1).

3.2.1. Rational second order system withv = 1
The FIM, computed from (15), is:

2AK*w?
P (w,) = =, @7
D%(w,)
7 (wn . . . .
Analytical solutions of de]m( ) - 0 are difficult to obtain for any {. To get an analytical solution, the problem must be
even more simplified by setting, for example ¢ = 1, which yields:
dP; ! (wy) _ 4AK? y wp (32 — 1) 08)
dw, m @ +1)°
This function has two roots at:
wn =0 (29)
w, = B ~0577.

IResonance conditions are computed numerically in [33] and plotted in Fig.1 in the aforementioned reference.
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Figure 1: Optimal frequency, wy, versus ¢, for different values of v in different cases. Left: only K is unknown; the rational case (v = 1,{ = 0.5)
corresponding to w, = g, from (22), is highlighted by a square. Right: only ¢ is unknown; the rational case (v = 1,{ = 1) corresponding to

Wy = g from (29), is highlighted by a square.

Hence, for v = 1 and ¢ = 1, the maximum of the FIM which would allow estimating (an unknown) ¢ with a maximum

3
precision iS: Wy opr = 3 However, in the general case of any ¢ and v = 1, a numerical solution is plotted in
Fig.1-right (with v = 1).

3.2.2. General (fractional) system with (v € (0,2))

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the only unknown system parameter is the pseudo-damping factor £ and that the input signal is given by
(13) with a prescribed A. Then, the FIM, calculated from (15), is given by

P (w,) 2AK? w2 (30)
wn = —7
‘ 7D3(w,)
7 (wn . .
and the optimal frequency of the input signal in the sense of (16), solution of % = 0, is computed numerically,
and plotted in Fig.1-right versus ¢ for different values of v.
Due to the stability conditions (6), for each value of v in Fig.1, the starting point of { = —cos(v7), corresponds to

the critical stability. In that case, the optimal input frequency equals the natural frequency and hence the normalized
frequency equals one. The higher the pseudo-damping factor £, the lesser the system damping, and the smaller the
natural frequency w,, which tends to 0 as { tends to oo for all v.

3.3. Case wy is unknown
In this section, parameters K, { and v are supposed to be known and only the parameter wy is supposed to be
unknown. Again, it is interesting to start by examining the case of a rational second order system.

Rational second order system with v = 1. The FIM, computed from (15) is given by:

2AKw? w2+ P

Pl (w,) = . 31
) = S X s (31)
o (@n . . .
Again, solving dpsz)( L 0 analytically for all values of { is not an easy task. However, by setting { = 1, (31)

simplifies to:
dP, (W)  —4AK? y wp w2 = 1)
dw, 7w (? + 1)* ’

6
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Figure 2: Optimal frequency versus £, for different values of v, in the case only wq is unknown. The rational case (v = 1,{ = 1) corresponding to
an optimal frequency given by w, = g from (33) is highlighted by a square.

which solutions are:

Wnopt = 0 (33)
Whopt = % ~0.7.

However, in the general case of any £ and v = 1, a numerical solution is plotted in Fig.2 (v = 1 curve).

3.3.1. General (fractional) system with v € (0,2)

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the only unknown system parameter is the natural frequency w, and that the input signal is given by (13)
with a prescribed A. Then, the FIM, calculated from (15), is given by

2AKV W y Wy + 2{w), cos(vE) + 7

Polwn) = : G4

7Ta)(2) D% (wy)

—1
AP, w,)

o = 0, is computed numerically,

and the optimal frequency of the input signal in the sense of (16), solution of
and plotted in Fig.2 versus ¢ for different values of v.

3.4. Case v is unknown

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied.
Consider that the only unknown system parameter is the differentiation order v, and that the input signal is given by
(13) with a prescribed A. Then, the FIM, calculated from (15), is given by

AK?wY  (4In*(w,) + 1) (R’ + 2L cos(vE)w), + {?)
X

—1 _
Py (wn) = —— D2 (an)

) (35)

and the optimal frequency of the input signal in the sense of (16), solution of % = 0, is computed numerically,

and plotted in Fig.3 versus ¢ for different values of v. Fig.3 upper left and right, show an apparent discontinuity at
¢ = 0 when v < 0.38. This is due to the presence of two global maximum points in the FIM as illustrated in the Fig.3
lower left. The Fig.3 lower right shows the presence of two global optima of the normalized frequency when v < 0.38
and a single global optimum when v > 0.38. The presence of two global maxima of the FIM was also pointed out in
fractional systems of the first kind in [28].
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4. Fractional systems of the second kind with two unknown parameters

4.1. Case K and { are unknown
In this section, K and ¢ are assumed unknown whereas parameters wy and v are assumed known. Start by exam-
ining the rational case.

4.1.1. Rational second order system with v = 1

The FIM is given by:
i —4K¢w;
A Dy (wy) D%(w,,)
Pielwn) = >~ , (36)
! T —4K{w? 4K w?
DX (wy) DX(w,)

the determinant of which is: )
Aszwﬁ (1 -w?

n
m? Di(w,)

det(Pyl(w,)) = (37)

L . . . . ddet(P(w, . S
Finding the maximum of (37), requires solving the equation W = 0. The analytical solution is difficult to

obtain. Instead a numerical solution is computed and plotted in Fig. 4-left for v = 1.

4.1.2. General (fractional) system with (v € (0,2))

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the two parameters K and { are unknown and that the input signal is given by (13) with a prescribed A.
Then, the FIM, calculated from (15), is given by:

1 —2Kw}(cos(vw +2w}+cos(v3))
Pl () = A Da(n) D2(wy) (38)
KNS = 5 | 2Ky (cos(v])wy +2w, £ +eos(v])) 4K2 0w >
D3(w) D}(wy)

and its determinant by

2
K202 Daw,) = (cos(vHw?” + 2w)¢ + cos(v]))
X .

? D3(wy)

det(Py (wy)) = (39)
d det(P}_'{(wn)) _

It allows computing numerically the optimal frequency of the input signal in the sense of (16), by solving T

0. The maximum of the FIM is plotted in Fig.4 versus ¢ for multiple values of v.

4.2. Case K and wqy are unknown
In this section, K and wy are assumed unknown whereas parameters ¢ and v are assumed known. Start by exam-
ining the rational case.

4.2.1. Rational second order system withv = 1

The FIM is given by:
1 2Kwl(w2+2£2-1)
-1 _ D (wn) woD?(wy,)
P oy (@n) = 7 | 2Kedwie22-1) s | (40)
woD? (wy) W3 D (wy)

and its determinant by:

A2K202 y Di(w)(@? + &%) — (@2 + 222 = 1)

—1 —_
det(Py.,, (wn)) = D(wy)

(41)
2,2

Trwj
ddet(Py., (@)

Finding the maximum of (41), requires solving the equation 3o

Fig. 4-right for v = 1.

= 0. The numerical solution is plotted in
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Figure 4: Optimal frequency versus {, when two parameters are unknown. Left: K and { are unknown; in the case (v = 0.6, = 0), the
corresponding optimal frequency, given by w, = 0.4, is highlighted by a square. Right: K and wq are unknown; in the case (v = 0.4, = 0), the
corresponding optimal frequency, given by w, = 0.4, is highlighted by a square.

4.2.2. General (fractional) system with v € (0,2)

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the two parameters K and wy are unknown and that the input signal is given by (13) with a prescribed A.
Then, the FIM, calculated from (15), is given by:

A 1 2Kvw} (w3 +3¢ cos(v 3wl +(22+cos(nv))w)+{ cos(v3))
1 _ D (wy) woD3(wy)
PK,wo(w") - E ZKvw;(m?,V+3{cos(v%)w,’;"+(2{2+cos(7rv))w,v,+{cos(v%)) 4K2v2wf,"(a)ﬁv+22{wz cos(v%)-f—g'z) ’ (42)
wyD3(w,) Wi D3 (wn)
and its determinant, by
A2 K2V2 w2v
—1 _ n
det(Py,, (wn)) = —nzwg
Day(w,) (W + 2w, cos(v3) + ) - (W +3¢ cos(v’z—r)a),zly + (2% + cos(nv))w), + g’cos(v’z—’))2 43)
D3(wy)
. ddet(Pgl, (@) . . . - .
The solution of ——=—— = 0 allows obtaining optimal frequencies as plotted in Fig.4 for multiple values of .

4.3. Case K and v are unknown

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the two parameters K and wy are unknown and that the input signal is given by (13) with a prescribed A.
Then, the FIM, calculated from (15), is given by

1 —2Kw}, In(w,) (W)’ +3¢ cos(vE)w?” +(242+cos(nv))w) +{ cos(v3))
P—l (W) = — X Dr(wy) D3(wy)
Ky Wyp) = 20T —2Kw), ln(w,,)(wflv+3§cos(v§)wﬁ"+(2§2+cns(ﬂv))w;+§ cos(vg)) I(zw,zlv(4lnz(w,,)+7r2)(a)ﬁ‘”+2{w,v1 cos(v%)#—g’z)
Dl (wy) D3(wy)
(44)
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Figure 5: Optimal frequency versus ¢, when two parameters are unknown. Left: K and v are unknown; in the case (v = 0.6, = 0), the
corresponding optimal frequency, given by w, = 0.8, is highlighted by a square. Right: { and w( are unknown; in the case (nu = 0.8, = 1.5), the
corresponding optimal frequency, given by w, = 0.5, is highlighted by a square.

and its determinant, by

A2K202 [ Da(wy) (4n*(w,) + 72) (02 + 24w), cos(vE) + £2)
det(Py,(wy)) = X [ _

4 Di(w,)

2

(21n(w,) (0} + 3 cos(vEIwp’ + (242 + cos(r)w), + L cos(v3)))

. 45)
D (wy) ]

ddet(Pg (wn)

The solution of o

= ( allows obtaining optimal frequencies, plotted in Fig.5-left for multiple values of v.

4.4. Case { and wy are unknown

In this section, ¢ and wy are assumed unknown whereas parameters K and v are assumed known. Start by exam-
ining the rational case.

4.4.1. Rational second order system with v = 1

The FIM is given by:
4K2a)ﬁ —4K2{a),21
-1 _ D3 (wn) wo D} (wy)
o @n) = o X ki Radwid) | (46)
wo D} (wy) wg DY (wy)
and its determinant by:
4A2K* W8

det(P;! (wn)) =

{wo

2 wg D‘]‘ (wy)” “7)

ddet(PZ!, (@,))

i = 0. The numerical solution is plotted in

Finding the maximum of (47), requires solving the equation
Fig. Sforv = 1.

4.4.2. General (fractional) system with v € (0,2)

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the two parameters  and wy are unknown and that the input signal is given by (13) with a prescribed A.
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Figure 6: Optimal frequency versus £, when two parameters are unknown. Left: £ and v are unknown; in the case (v = 0.4, { = 0), the corresponding
optimal frequency, given by w, = 0.6, is highlighted by a square. Right: wg and v are unknown; in the case (v = 0.4, = 1), the corresponding
optimal frequency, given by w, = 0.2, is highlighted by a square.

Then, the FIM, calculated from (15), is given by

s 4K W —4K*vw¥ ({+w}, cos(v))
-1 _ D3(wy) wyD3(wy)
P{,wo (wp) = ﬂ X —4K2vwﬁv(2“+wx cos(v3)) 4K2v2wiv(wﬁv+22§w:; cos(vH)+) |’ (48)
woD%(wn) w(z)Dg (wn)

and its determinant by:

dei(P, () = K S 0) (49)

et wy)) = .
S 2w} D3(wy)

{wg
dw,

ddet(P;}, (@)

The solution of = ( allows obtaining optimal frequencies, plotted in Fig.5-right for multiple values of v.

4.5. Case { and v are unknown

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the two parameters ¢ and v are unknown and that the input signal is given by (13) with a prescribed A. Then,
the FIM, calculated from (15), is given by:

4K w2 4K w2 In(w,)({+w}; cos(v]))
—1 _ D3 (wn) D3 (wn)
P{,v(w”) - E x 4K w¥ ln(a),,z)({+w,: cos(v%)) K2w? (4 lnz(w,,)+7r2)2(a),z,v+2{w; cos(v%)f[z) ’ (50)
D2 (wy) D3 (wy)

and its determinant by

A2KAwY (4 In*(w,) + 72 (w2 + 2L w), cos(v3) + ) — In(w,)*({ + w), cos(v5))?
X )

2 Di(wy) ©1)

det(P; ) (wp)) =

ddet(P; ! (w,)

T, = 0 allows obtaining optimal frequencies, plotted in Fig.6-left for multiple values of v.

The solution of

4.6. Case wy and v are unknown

Consider the second order elementary fractional transfer function (5) with stability conditions (6) satisfied. Con-
sider that the two parameters w(y and v are unknown and that the input signal is given by (13) with a prescribed A.
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Then, the FIM, calculated from (15), is given by

4K? vzwgv(wﬁyﬁ—Z_{wx cos(v%)+§2) —4K? Va),z,V ln(w,l)(wﬁ"-*—Z{wx cos(v%)+§2)
A 252 7
-1 _ wy D5 (wn) woD3(wn)
Pwo,V(w") T or x 4Ky In(w,) (W2 +2{w}, cos(vE)+¢%) K202 (4 In? (wn)+72) (w2 +2{w}, cos(vE)+{?) (52)
woD3(wy) D3(wn)

and its determinant by
2
AZKN2WY (W + 24w) cos(vE) + £2)

o D)

det(P} (wy)) =

wo,V

(53)

d det(P; ! (w,))

The solution of 3
Wn

= 0 allows obtaining optimal frequencies, plotted in Fig.6 for multiple values of v.

5. Fractional systems of the second kind with three or four unknown parameters

When three or four parameters are unknown, then the input signal should have at least two cosine terms, as in
(14), to fulfill the requirements for persistent excitation. Consequently, the problem becomes even more difficult to
solve because two frequencies and the weighting factor @ in (14) need to be determined by finding the maximum of
the determinant of a 3 X 3 or a 4 X 4-matrix with respect to both frequencies and the weighting factor. In the case of 4
unknown parameters, the FIM writes:

A
—1 _
P (@) 0y @) = Zr(aMl + (1= a)M,) (54)
with
1 —2Kw}, (cos(vE)wd +2w}, {+cos(v5))
D (wy;) D3 (wy,)
-2Kw), (cos(v% YW +20w) {+cos(v] ) 4K w2
M = D3 (wp,) Di(wy;)
! 2Kvay, (w;'j:_’+3{ cos(v%)w§:+(2{2+cos(ﬂv))w,vli+§ cos(v3)) 74K2vw§’_y({+w,vli cos(v3))
woD3(wn;) woD3(wny)
—2Kw:,_ In(wy, )(u);?‘_v+3§ cos(vg )w%l_v+(2§2+cos(ﬂv))w;i +{ cos(v} )) (4K2a),271" In(wy, ))(gﬂu;i cos(v3))
D3 (wp;) D2(wn;)
2Kvw), (w?liv+3§ cos(v )w,z,;+(2§2 +eos(a))wy +cos(v3))  —2Kw), In(wy, )(m3;+3{ cos(v3 )wﬁ’_v-f—(Z{z +cos(nv))wy, +¢ cos(v3 )) ]
wD3(@y,) D3(wr,)
—-4K? vng (_[+w,V,i cos(v3)) (4K? wﬁlv In(wy, ))(§+wx, cos(v3))
woDé(wni) D%(wn,») (55)
4K2V2w§;f(w£’,v+2(wxi Cos(v%)+[2) —4K2vw%x_v ln(wni)(w%x_v+2(w;i cos(v’zl)+(2) .
M%D%(mni) (‘JOD%(“M‘-)
~4K? vy In(wy )W, +2{w), cos(v3)+(?) K20y (41n (g 47wy +2 424w}, cos(v5))

woD3(wn;) D3 (wn;)

det P;}Lwo’v(wnl Wy @)
dlwy, wp, ]

In the case of any combination of 3 unknown parameters, the FIM can straightforwardly be deduced from (54)
and (55), by simply eliminating the line and the column corresponding to the supposed known parameter, i.e. the first
line/column if K is known, the second line/column if £ is know, the third line/column if wy is known, and the fourth
line/column if v is known.

Obviously, solving = [0, 0, 0] can only be done numerically.

6. Conclusion

In this paper, experiment design for system identification using fractional transfer functions of the second kind
has been considered. First of all, a proposed method computes the optimal frequency allowing to identify a single
parameter (gain, pseudo-damping factor, natural frequency, or the commensurate differentiation order) by maximiz-
ing the Fisher Information criterion. Then, the proposed method computes the optimal frequency allowing to identify
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a couple of these parameters by maximizing the Fisher Information criterion. It is shown that the obtained results
allow to extend straightforwardly the optimality of rational systems. Finally, the procedure is extended to three and
four unknown parameters, though requiring some tedious computations for the determinant and even more for the
computation of its optimality conditions. It might be interesting to extend the results of this paper to elementary frac-
tional transfer functions with time delays. Moreover, it is well known that fractional systems are infinite dimensional
and that they have polynomial convergence, as compared to the exponential convergence of rational systems. Hence,
further insights could be oriented towards setting up time-bounded-criteria in the framework of experiment planning.
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