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Experiment design is an important topic in system identification. It enables choosing the best input signal that allows computing parameters with minimum variance. Experiment design for system identification with fractional models is treated in this paper. Elementary fractional models of the second kind are considered, extending the previous results regarding models of the first kind. It allows choosing the best frequency(ies) of a sine input signal by minimizing the D-optimality criterion of the covariance-matrix. The case of a single unknown parameter is treated which can be either of the following: gain, pseudo-damping factor, natural frequency, or even the di↵erentiation order. Then, all the combinations of two unknown parameters are considered. Finally, three and four unknown parameters are considered and the covariance matrix computed. It is shown that its optimum is di cult to obtain analytically in the general case. The particular case of second order (rational) systems, when the commensurate di↵erentiation order equals one, is pointed out, as a special case in this study.

Introduction

The field of optimal experiment design dates back to the seventies. The main idea consists in finding the best input signal that provides the most precise estimation of unknown parameters, where multi-sine approaches gave rise to important results still used today [START_REF] Goodwin | Dynamic system identifications: experiment design and data analysis[END_REF][START_REF] Mehra | Optimal input signals for parameter estimation in dynamic systems-survey and new results[END_REF]. Important developments emerged in the late eighties based on Ljung's asymptotic covariance formula [START_REF] Gevers | Optimal experiment designs with respect to the intended model application[END_REF]. Some research focus on optimizing the whole input signal spectrum in relation with desired constraints [START_REF] Hjalmarsson | Closed loop experiment design for linear time invariant dynamical systems via LMIs[END_REF][START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF].

Fractional calculus has gained more and more importance in the last decades with a rapid growth of the number of applications in widespread fields of science. This is due to the ability of fractional di↵erential equations to elegantly model di↵usive phenomena. In electrochemistry, for example, it is proven that the di↵usion of charges in acid batteries is governed by Randles' models [START_REF] Rodrigues | A review of state of charge indication of batteries by means of A.C. impedance measurements[END_REF] that involve a half order integrator. Since then, multiple references regarding modeling and identification of various batteries have been proposed in the literature [START_REF] Achraf | Fast time domain identification of electrochemical systems at low frequencies using fractional modeling[END_REF][START_REF] Wang | Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation[END_REF][START_REF] Tian | Online simultaneous identification of parameters and order of a fractional order battery model[END_REF]. In semi-infinite thermal systems, Battaglia et al. [START_REF] Battaglia | Solving an inverse heat conduction problem using a non-integer identified model[END_REF] have shown that the exact solution of the heat equation links the thermal flux applied at one edge of a homogenous medium to a half order derivative of the temperature. Consequently, [START_REF] Gabano | Estimation of thermal parameters using fractional modelling[END_REF][START_REF] Victor | Robust motion planning for a heat rod process[END_REF] use fractional models for estimating thermal parameters and controlling the temperature along a thermal rod. This fact has been extended to large temperature variation in [START_REF] Maachou | Nonlinear thermal system identification using fractional volterra series[END_REF]. Biological systems [START_REF] Ferdi | Some applications of fractional order calculus to design digital filters for biomedical signal processing[END_REF][START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], medical systems [START_REF] Kumar | Fractional Calculus in Medical and Health Science[END_REF][START_REF] Victor | Lung thermal transfer system identification with fractional models[END_REF], and many others can elegantly be expressed in terms of fractional-order di↵erential equations. System identification using fractional models was initiated in the late nineties and the beginning of this century [START_REF] Trigeassou | Modeling and identification of a non integer order system[END_REF][START_REF] Cois | Non integer model from modal decomposition for time domain system identification[END_REF]. It continued gaining interest in the last few years and multiple journal references were published on this subject [START_REF] Malti | Advances in system identification using fractional models[END_REF][START_REF] Malti | Set membership parameter estimation of fractional models based on bounded frequency domain data[END_REF][START_REF] Victor | Parameter and di↵erentiation order estimation in fractional models[END_REF][START_REF] Rapaić | Variable-order fractional operators for adaptive order and parameter estimation[END_REF][START_REF] Belkhatir | Parameters and fractional di↵erentiation orders estimation for linear continuous-time noncommensurate fractional order systems[END_REF][START_REF] Liu | Parameter identification of fractional order system using enhanced response sensitivity approach[END_REF][START_REF] Kapetina | Adaptive parameter estimation in lti systems[END_REF][START_REF] Mayoufi | Output error MISO system identification using fractional models[END_REF].

Experiment design of elementary transfer functions of the first kind was treated in [START_REF] Abrashov | Simple and robust experiment design for system identification using fractional models[END_REF][START_REF] Abrashov | Optimal input design for continuous-time system identification[END_REF]. In [START_REF] Abrashov | Simple and robust experiment design for system identification using fractional models[END_REF], D-optimality of the covariance matrix is minimized, whereas in [START_REF] Abrashov | Optimal input design for continuous-time system identification[END_REF] the problem is formulated in a convex finite dimensional form, the input spectrum is decomposed in Laguerre polynomial basis and an LMI solution is proposed. This method enables synthesizing optimal input spectrum of LTI continuous-time systems that can also be fractional ones. It is well known in the literature that the optimal experiment design depends on the optimal parameters which are unknown. This chicken-and-egg problem can be solved by pre-estimating system parameters using a non optimal input signal and then by using an optimal signal with a prescribed power. When a bounded interval of the estimated parameters is known, an alternative way consists in performing robust experiment design as described in [START_REF] Abrashov | Simple and robust experiment design for system identification using fractional models[END_REF] for transfer functions of the first kind.

This paper focuses on fractional systems of the second kind and answers the question what is the best input signal which allows computing any of the system parameters by minimizing the D-optimality criterion of the covariance matrix, for a prescribed input energy. The results developed in this paper assume implicitly that time-domain responses of fractional systems are correctly simulated with negligible simulation errors [START_REF] Podlubny | Fractional Di↵erential Equations[END_REF][START_REF] Aoun | Numerical simulations of fractional systems: an overview of existing methods and improvements[END_REF]. A preliminary version of this paper, published in the SYSID'2018 conference [START_REF] Malti | Experiment design for system identification using fractional models of the second kind[END_REF], focuses on a single unknown parameter. This paper goes beyond the latter case, in section 3, by explaining the discontinuity issue when the di↵erentiation orders are unknown. Then, results regarding two unknown parameters is treated in section 4. Finally, the covariance matrix for the case of three and four unknown parameters is computed in section 5. It is shown that the analytical computation of the optimal input signal is very complex in these latter cases. Finally, a conclusion is drawn at the end of the paper.

Mathematical background

Fractional systems are usually defined in the Laplace domain using a transfer function representation:

G(s) = B(s) A(s) = M P i=0 b i s i 1 + N P j=1 a j s j , ( 1 
)
where s is the Laplace variable, (a j , b i ) 2 R 2 8i 2 {0, 1, . . . , M} and 8 j 2 {1, . . . , N} and the di↵erentiation orders ( j , i ) are positive real numbers that are ordered for identifiability purposes:

8 > > < > > : 0 < 1 < 2 < . . . < N 0  0 < 1 < . . . < M . (2) 
Elementary transfer functions of the first kind involve a simple and real s ⌫ -pole:

F 1 (s) = K 1 + (⌧s) ⌫ , (3) 
which are straightforward generalization of first order transfer functions, when ⌫ = 1. Their stability conditions write:

8 > > < > > : ⌧ > 0 0 < ⌫ < 2. ( 4 
)
When two s ⌫ -complex-conjugate poles are involved, transfer functions of the second kind are used, as they have only real-valued coe cients:

F 2 (s) = K ⇣ s ! 0 ⌘ 2⌫ + 2⇣ ⇣ s ! 0 ⌘ ⌫ + 1 . (5) 
Fractional transfer functions of the second kind, as in (5), were studied extensively in [START_REF] Malti | Stability and resonance conditions of elementary fractional transfer functions[END_REF]. It was shown that their stability conditions must satisfy (6):

8 > > > > > < > > > > > : ! 0 > 0 0 < ⌫ < 2 ⇣ > cos(⌫ ⇡ 2 ), (6) 
which generalizes the stability conditions of rational transfer functions ⇣ > 0, when ⌫ = 1. Consequently, stable fractional transfer functions may be obtained for negative values of ⇣, provided ⇣ > cos

⇣ ⌫ ⇡ 2 ⌘
. This result was determined by applying Matignon's stability theorem [START_REF] Matignon | Stability properties for generalized fractional di↵erential systems[END_REF]:

| arg(s)| > ⌫ ⇡ 2 (7) 
to the s ⌫ -roots of [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF]. Further, some new stability results have been established for incommensurate systems in [START_REF] Rapaić | On stability regions of fractional systems in the space of perturbed orders[END_REF][START_REF] Tavazoei | On robust stability of incommensurate fractional-order systems[END_REF].

Basics on experiment design and problem formulation

Let a single input single output (SISO) system be defined as:

y(t) = F(p)u(t) + ✏(t), (8) 
where p is the di↵erential operator d dt , F(p) is a fractional transfer function and ✏(t) is a Wiener process independent and identically distributed that follows a normal distribution N(0; 2 ). All parameters of F(p) are gathered in a vector ✓. The objective in system identification is to estimate the vector ✓ with a maximum possible precision which can be assessed by minimizing a norm of the covariance matrix which is the inverse of Fisher Information Matrix (FIM) [START_REF] Goodwin | Dynamic system identifications: experiment design and data analysis[END_REF][START_REF] Gevers | Optimal experiment designs with respect to the intended model application[END_REF]:

P 1 ( u (!)) = P 1 ( u (!)) + R 0 , (9) 
with

P 1 ( u (!)) = 1 2⇡ 2 Z 1 1 Re 0 B B B B @ " @F(j!) @✓ # T u (!) " @F( j!) @✓ #1 C C C C A d!, ( 10 
)
where 2 is the noise variance, u (!) is the spectrum of the input signal u(t), and R 0 a constant independent of u (!). Moreover, for simplicity, a unit power with 2 = 1 is further assumed. The objective in experimental design is to compute a parametrized optimal input signal that maximizes a norm of the inverse covariance matrix [START_REF] Battaglia | Solving an inverse heat conduction problem using a non-integer identified model[END_REF]. For this chicken-and-egg problem, parameters are generally pre-estimated and then used for optimal experiment design.

Obviously, the covariance matrix depends on the input signal spectrum u (!) and also on system parameters. Di↵erent matrix norms can be used to assess this performance. Among them, the D-optimality criterion is used in this paper. It corresponds to the volume of the confidence region of ✓:

J D ( u (!)) = det(P( u (!))). (11) 
Furthermore, the input signal is assumed to be multi-cosine:

u(t) = N X i=1 A i cos(! i t), ! i 0, (12) 
where each magnitude A i allows setting the total energy on the corresponding frequency component ! i , with a constraint allowing to fix the total power of the input signal P N i=1 A i = A. The required number of cosine components N depends on the number of unknown parameters. It is shown in [START_REF] Goodwin | Dynamic system identifications: experiment design and data analysis[END_REF] that the optimal choice for estimating one or two unknown parameters is to design an input signal with a single cosine component N = 1:

u(t) = A cos(!t), ! 0. ( 13 
)
However, when 3 or 4 parameters are unknown, two cosine components are necessary to have a persistent excitation:

u(t) = A(↵ cos(! 1 t) + (1 ↵) cos(! 2 t)), ! 1,2 0. ( 14 
)
By introducing the parameter ↵, the total amount of energy A of the input signal may be optimized so that it splits into an optimal way on every cosine component. Moreover, since the spectrum of each cosine function is a Dirac distribution, (10) can be rewritten as (note that P 1 (!) is used as a shorter notation of P 1 ( u (!))):

P 1 (!) = 1 2⇡ N X i=1 Re 0 B B B B @ " @F( j! i ) @✓ # T " @F( j! i ) @✓ #1 C C C C A , (15) 
where N depends on the number of used cosine components and ! = [! 1 , ! 2 , ..., ! N ].

Remark: As indicated previously, the Fisher Information Matrix (FIM) is the inverse of the covariance matrix. Hence the bigger the FIM, the smaller the covariance matrix and the more precise the estimation.

Problem formulation

Hence the problem treated in this paper can be formulated as finding the best frequency(ies) of the cosine input signal [START_REF] Victor | Robust motion planning for a heat rod process[END_REF], for estimating the parameters K, ! 0 , ⇣, and the di↵erentiation order ⌫ of the transfer function of the second kind [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF]. For that purpose, the D-optimality criterion of the inverse covariance matrix is maximized for a prescribed power of the input signal A.

When one or two parameters are unknown a single cosine component is considered and the problem resumes in finding

! opt = arg max ! det(P 1 (!)). ( 16 
)
For three and four unknown parameters, the amount of energy associated to each cosine component (parameter ↵ in ( 14)) can be optimized along with the frequencies. The problem then resumes in:

[! opt , ↵ opt ] = arg max !,↵ det(P 1 (!)). ( 17 
)
A general matrix is given when the number of parameters equals three and four. It is shown how complex the computation of the maximum is, in that case.

Fractional systems of the second kind with a single unknown parameter

Experiment planning of elementary fractional transfer functions of the second kind ( 5) is considered in this section. Hence, a single parameter is supposed to be unknown among K, ⇣, ! 0 , and ⌫. In this case, the input signal is composed of a single frequency as in [START_REF] Maachou | Nonlinear thermal system identification using fractional volterra series[END_REF], the amplitude A is fixed and the optimal frequency maximizing ( 16) is computed in each case. Consequently, the obtained optimal frequency allows to estimate the unknown parameter with a minimum variance.

In this section, the elementary fractional transfer function of the second kind ( 5) is considered to be subject to the input signal ( 13) with a fixed amplitude A. First, a single parameter among K, ⇣, ! 0 , and ⌫ is considered to be unknown and the optimal frequency ! of the input signal ( 13) is computed allowing to estimate the unknown parameter with a minimum variance [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF]. Some preliminary results of this section were previously published in the conference paper [START_REF] Malti | Experiment design for system identification using fractional models of the second kind[END_REF]. These results are recalled, for the sake of completeness, and afterwards augmented.

Case K is unknown

In this section, parameters ⇣, ! 0 and ⌫ are supposed to be known and only the parameter K is supposed to be unknown. It is interesting to start by examining the case of a rational second order system (⌫ = 1).

Rational second order system with ⌫ = 1

Define, all along the paper, the normalized frequency ! n = ! ! 0 . Then, the FIM computed by ( 15) is given by:

P 1 K (! n ) = A 2⇡ ⇥ 1 D 1 (! n ) ( 18 
)
where:

D 1 (! n ) = 4⇣ 2 ! 2 n + (1 ! 2 n ) 2 . ( 19 
)
The maximum of the FIM ( 18) is obtained for the minimum of the denominator:

dD 1 (! n ) d! n = 0 ) 4! n (! 2 n + 2⇣ 2 1) = 0. ( 20 
)
There is a single non-negative solution at

! n = 0, when ⇣ > p 2 2 (21) 
and two non-negative solutions at

( ! n = 0 ! n = p 1 2⇣ 2 when 0 < ⇣ < p 2 2 . ( 22 
)
It is easy to verify, that the global optimum in ( 22) is at

! n,opt = p 1 2⇣ 2 . For non-resonant systems, ⇣ > p 2
2 , the optimum frequency is zero which corresponds to a step signal. Intuitively, estimating the gain of a transfer function is usually done by a step signal. It turns out to be the optimum signal for non-resonant systems. However, for resonant systems, 0 < ⇣ < p 2 2 , the optimum frequency is the resonant one. This can easily be explained by the fact that sensitivity to gain variations is the most important at the resonant frequency.

3.1.2. General (fractional) system with ⌫ 2 (0, 2)
The FIM, computed from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by

P 1 K (! n ) = A 2⇡ ⇥ 1 D 2 (! n ) ( 23 
)
where

D 2 (! n ) = 1 + ! 4⌫ n + 4⇣ 2 ! 2⌫ n + 2! 2⌫ n cos(⌫⇡) + 4⇣! ⌫ n ⇣ 1 + ! 2⌫ n ⌘ cos ✓ ⌫ ⇡ 2 ◆ . ( 24 
)
The optimum of the FIM ( 15) is not easy to obtain, as it requires solving the nonlinear equation obtained after di↵erentiating the FIM with respect to ! n ,

dP 1 K (! n ) d! n = 0.
Except the trivial solution at ! n = 0, no other analytical solution can be found. Consequently, numerical solutions are computed and plotted for di↵erent values of ⌫ in Fig. 1left. Hence, the optimal signal in the sense of ( 16), depends on whether the system is resonant or not 1 :

! n = 0, when the system is non-resonant (25) ! n = ! R otherwise (26) 
where, ! R is the resonant frequency, computed numerically, and plotted in Fig. 1 versus ⇣ for di↵erent values of ⌫.

The results in the fractional case are comparable to the rational case: when the fractional system ( 5) is nonresonant, the optimal frequency is zero. When it is resonant, the optimal frequency is the resonant one, as it o↵ers the highest sensitivity to gain variations.

Case ⇣ is unknown

In this section, parameters K, ! 0 and ⌫ are supposed to be known and only the parameter ⇣ is supposed to be unknown. Again, it is interesting to start by examining the case of a rational second order system (⌫ = 1).

Rational second order system with ⌫ = 1

The FIM, computed from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is:

P 1 ⇣ (! n ) = 2AK 2 ! 2 n ⇡D 2 1 (! n ) . ( 27 
)
Analytical solutions of

dP 1 ⇣ (! n ) d! n
= 0 are di cult to obtain for any ⇣. To get an analytical solution, the problem must be even more simplified by setting, for example ⇣ = 1, which yields:

dP 1 ⇣ (! n ) d! n = 4AK 2 ⇡ ⇥ ! n (3! 2 n 1) (! 2 n + 1) 5 . (28) 
This function has two roots at:

( ! n = 0 ! n = p 3 3 ' 0.577. ( 29 
)
1 Resonance conditions are computed numerically in [START_REF] Malti | Stability and resonance conditions of elementary fractional transfer functions[END_REF] and plotted in Fig. 1 in the aforementioned reference. Hence, for ⌫ = 1 and ⇣ = 1, the maximum of the FIM which would allow estimating (an unknown) ⇣ with a maximum precision is: ! n,opt = p 3 3 . However, in the general case of any ⇣ and ⌫ = 1, a numerical solution is plotted in Fig. 1-right (with ⌫ = 1).

3.2.2. General (fractional) system with (⌫ 2 (0, 2))

Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the only unknown system parameter is the pseudo-damping factor ⇣ and that the input signal is given by (13) with a prescribed A. Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by

P ⇣ 1 (! n ) = 2AK 2 ! 2⌫ n ⇡D 2 2 (! n ) , (30) 
and the optimal frequency of the input signal in the sense of ( 16), solution of

dP 1 ⇣ (! n ) d! n
= 0, is computed numerically, and plotted in Fig. 1-right versus ⇣ for di↵erent values of ⌫.

Due to the stability conditions [START_REF] Rodrigues | A review of state of charge indication of batteries by means of A.C. impedance measurements[END_REF], for each value of ⌫ in Fig. 1, the starting point of ⇣ = cos(⌫ ⇡ 2 ), corresponds to the critical stability. In that case, the optimal input frequency equals the natural frequency and hence the normalized frequency equals one. The higher the pseudo-damping factor ⇣, the lesser the system damping, and the smaller the natural frequency ! n , which tends to 0 as ⇣ tends to 1 for all ⌫.

Case ! 0 is unknown

In this section, parameters K, ⇣ and ⌫ are supposed to be known and only the parameter ! 0 is supposed to be unknown. Again, it is interesting to start by examining the case of a rational second order system. Rational second order system with ⌫ = 1. The FIM, computed from ( 15) is given by:

P 1 ! 0 (! n ) = 2AK! 2 n ⇡! 2 0 ⇥ ! 2 n + ⇣ 2 D 2 1 (! n ) . (31) 
Again, solving

dP 1 ! 0 (! n ) d! n
= 0 analytically for all values of ⇣ is not an easy task. However, by setting ⇣ = 1, (31) simplifies to: which solutions are:

dP 1 ! 0 (! n ) d! n = 4AK 2 ⇡! 0 ⇥ ! n (2! 2 n 1) (! 2 n + 1) 4 , (32) 
( ! n,opt = 0 ! n,opt = p 2 2 ' 0.7. (33) 
However, in the general case of any ⇣ and ⌫ = 1, a numerical solution is plotted in Fig. 2 (⌫ = 1 curve).

3.3.1. General (fractional) system with ⌫ 2 (0, 2) Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the only unknown system parameter is the natural frequency ! n and that the input signal is given by ( 13) with a prescribed A. Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by

P 1 ! 0 (! n ) = 2AK 2 ⌫ 2 ! 2⌫ n ⇡! 2 0 ⇥ ! 2⌫ n + 2⇣! ⌫ n cos(⌫ ⇡ 2 ) + ⇣ 2 D 2 2 (! n ) , (34) 
and the optimal frequency of the input signal in the sense of ( 16), solution of

dP 1 ! 0 (! n ) d! n
= 0, is computed numerically, and plotted in Fig. 2 versus ⇣ for di↵erent values of ⌫.

Case ⌫ is unknown

Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the only unknown system parameter is the di↵erentiation order ⌫ n and that the input signal is given by ( 13) with a prescribed A. Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by

P 1 ⌫ (! n ) = AK 2 ! 2⌫ n 2⇡ ⇥ (4ln 2 (! n ) + ⇡ 2 )(! 2⌫ n + 2⇣ cos(⌫ ⇡ 2 )! ⌫ n + ⇣ 2 ) D 2 2 (! n ) , (35) 
the optimal frequency of the input signal in the sense of ( 16), solution of

dP 1 ⌫ (! n ) d! n
= 0, is computed numerically, and plotted in Fig. 3 versus ⇣ for di↵erent values of ⌫. Fig. 3 upper left and right, show an apparent discontinuity at ⇣ = 0 when ⌫ < 0.38. This is due to the presence of two global maximum points in the FIM as illustrated in the Fig. 3 lower left. The Fig. 3 lower right shows the presence of two global optima of the normalized frequency when ⌫ < 0.38 and a single global optimum when ⌫ 0.38. The presence of two global maxima of the FIM was also pointed out in fractional systems of the first kind in [START_REF] Abrashov | Simple and robust experiment design for system identification using fractional models[END_REF]. The FIM is given by:

P 1 K,⇣ (! n ) = A 2⇡
2 6 6 6 6 6 6 6 6 6 6 6 6 4

1 D 1 (! n ) 4K⇣! 2 n D 2 1 (! n ) 4K⇣! 2 n D 2 1 (! n ) 4K 2 ! 2 n D 2 1 (! n )
3 7 7 7 7 7 7 7 7 7 7 7 7 5

, ( 36 
)
the determinant of which is:

det(P 1 K,⇣ (! n )) = A 2 K 2 ! 2 n ⇡ 2 ⇥ (1 ! 2 n ) 2 D 4 1 (! n ) . ( 37 
)
Finding the maximum of (37), requires solving the equation

d det(P 1 K,⇣ (! n )) d! n = 0.
The analytical solution is di cult to obtain. Instead a numerical solution is computed and plotted in Fig. 4-left for ⌫ = 1.

4.1.2. General (fractional) system with (⌫ 2 (0, 2))

Consider the second order elementary fractional transfer function ( 5) with stability conditions ( 6) satisfied. Consider that the two parameters K and ⇣ are unknown and that the input signal is given by ( 13) with a prescribed A. Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by:

P 1 K,⇣ (! n ) = A 2⇡ 2 6 6 6 6 6 6 6 6 4 1 D 2 (! n ) 2K! ⌫ n (cos(⌫ ⇡ 2 )! 2⌫ n +2! ⌫ n ⇣+cos(⌫ ⇡ 2 )) D 2 2 (! n ) 2K! ⌫ n (cos(⌫ ⇡ 2 )! 2⌫ n +2! ⌫ n ⇣+cos(⌫ ⇡ 2 )) D 2 2 (! n ) 4K 2 ! 2⌫ n D 2 2 (! n ) 3 7 7 7 7 7 7 7 7 5 , (38) 
and its determinant by

det(P 1 K,⇣ (! n )) = A 2 K 2 ! 2⌫ n ⇡ 2 ⇥ D 2 (! n ) ⇣ cos(⌫ ⇡ 2 )! 2⌫ n + 2! ⌫ n ⇣ + cos(⌫ ⇡ 2 ) ⌘ 2 D 4 2 (! n ) . ( 39 
)
It allows computing numerically the optimal frequency of the input signal in the sense of ( 16), by solving

d det(P 1 K,⇣ (! n )) d! n = 0.
The maximum of the FIM is plotted in Fig. 4 versus ⇣ for multiple values of ⌫.

Case K and ! 0 are unknown

In this section, K and ! 0 are assumed unknown whereas parameters ⇣ and ⌫ are assumed known. Start by examining the rational case.

Rational second order system with ⌫ = 1

The FIM is given by:

P 1 K,! 0 (! n ) = A 2⇡ ⇥ 2 6 6 6 6 6 6 6 4 1 D 1 (! n ) 2K! 2 n (! 2 n +2⇣ 2 1) ! 0 D 2 1 (! n ) 2K! 2 n (! 2 n +2⇣ 2 1) ! 0 D 2 1 (! n ) 4K 2 ! 2 n (! 2 n +⇣ 2 ) ! 2 0 D 2 1 (! n ) 3 7 7 7 7 7 7 7 5 , (40) 
and its determinant by:

det(P 1 K,! 0 (! n )) = A 2 K 2 ! 2 n ⇡ 2 ! 2 0 ⇥ D 1 (! n )(! 2 n + ⇣ 2 ) (! 2 n + 2⇣ 2 1) 2 D 4 1 (! n ) . ( 41 
)
Finding the maximum of (41), requires solving the equation Pseudo-damping factor ζ Normalized frequency ω n Figure 4: Optimal frequency versus ⇣, when two parameters are unknown. Left: K and ⇣ are unknown; in the case (⌫ = 0.6, ⇣ = 0), the corresponding optimal frequency, given by ! n = 0.4, is highlighted by a square. Right: K and ! 0 are unknown; in the case (⌫ = 0.4, ⇣ = 0), the corresponding optimal frequency, given by ! n = 0.4, is highlighted by a square. 4.2.2. General (fractional) system with ⌫ 2 (0, 2)

d det(P 1 K,! 0 (! n )) d! n = 0.
Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the two parameters K and ! 0 are unknown and that the input signal is given by ( 13) with a prescribed A. Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by:

P 1 K,! 0 (! n ) = A 2⇡ 2 6 6 6 6 6 6 6 6 4 1 D 2 (! n ) 2K⌫! ⌫ n (! 3⌫ n +3⇣ cos(⌫ ⇡ 2 )! 2⌫ n +(2⇣ 2 +cos(⇡⌫))! ⌫ n +⇣ cos(⌫ ⇡ 2 )) ! 0 D 2 2 (! n ) 2K⌫! ⌫ n (! 3⌫ n +3⇣ cos(⌫ ⇡ 2 )! 2⌫ n +(2⇣ 2 +cos(⇡⌫))! ⌫ n +⇣ cos(⌫ ⇡ 2 )) ! 0 D 2 2 (! n ) 4K 2 ⌫ 2 ! 2⌫ n (! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) ! 2 0 D 2 2 (! n ) 3 7 7 7 7 7 7 7 7 5 , (42) 
and its determinant, by

det(P 1 K,! 0 (! n )) = A 2 K 2 ⌫ 2 ! 2⌫ n ⇡ 2 ! 2 0 ⇥ D 2 (! n )(! 2⌫ n + 2⇣! ⌫ n cos(⌫ ⇡ 2 ) + ⇣ 2 ) (! 3⌫ n + 3⇣ cos(⌫ ⇡ 2 )! 2⌫ n + (2⇣ 2 + cos(⇡⌫))! ⌫ n + ⇣ cos(⌫ ⇡ 2 )) 2 D 4 2 (! n ) . (43) 
The solution of

d det(P 1 K,! 0 (! n )) d! n
= 0 allows obtaining optimal frequencies as plotted in Fig. 4 for multiple values of ⌫.

Case K and ⌫ are unknown

Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the two parameters K and ! 0 are unknown and that the input signal is given by ( 13) with a prescribed A. Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by Left: K and ⌫ are unknown; in the case (⌫ = 0.6, ⇣ = 0), the corresponding optimal frequency, given by ! n = 0.8, is highlighted by a square. Right: ⇣ and ! 0 are unknown; in the case (nu = 0.8, ⇣ = 1.5), the corresponding optimal frequency, given by ! n = 0.5, is highlighted by a square.

P 1 K,⌫ (! n ) = A 2⇡ ⇥ 2 6 6 6 6 6 6 6 6 4 1 D 2 (! n ) 2K! ⌫ n ln(! n )(! 3⌫ n +3⇣ cos(⌫ ⇡ 2 )! 2⌫ n +(2⇣ 2 +cos(⇡⌫))! ⌫ n +⇣ cos(⌫ ⇡ 2 )) D 2 2 (! n ) 2K! ⌫ n ln(! n )(! 3⌫ n +3⇣ cos(⌫ ⇡ 2 )! 2⌫ n +(2⇣ 2 +cos(⇡⌫))! ⌫ n +⇣ cos(⌫ ⇡ 2 )) D 2 2 (! n ) K 2 ! 2⌫ n (4 ln 2 (! n )+⇡ 2 )(! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) D 2 2 (! n ) 3 
and its determinant, by

det(P 1 K,⌫ (! n )) = A 2 K 2 ! 2⌫ n 4⇡ 2 ⇥ " D 2 (! n ) ⇣ 4ln 2 (! n ) + ⇡ 2 ⌘ ⇣ ! 2⌫ n + 2⇣! ⌫ n cos(⌫ ⇡ 2 ) + ⇣ 2 ⌘ D 4 2 (! n ) ⇣ 2 ln(! n ) ⇣ ! 3⌫ n + 3⇣ cos(⌫ ⇡ 2 )! 2⌫ n + (2⇣ 2 + cos(⇡⌫))! ⌫ n + ⇣ cos(⌫ ⇡ 2 ) ⌘⌘ 2 D 4 2 (! n ) # . (45) 
The solution of

d det(P 1 K,⌫ (! n )) d! n
= 0 allows obtaining optimal frequencies, plotted in Fig. 5-left for multiple values of ⌫. The FIM is given by:

P 1 ⇣,! 0 (! n ) = A 2⇡ ⇥ 2 6 6 6 6 6 6 6 4 4K 2 ! 2 n D 2 1 (! n ) 4K 2 ⇣! 2 n ! 0 D 2 1 (! n ) 4K 2 ⇣! 2 n ! 0 D 2 1 (! n ) K 2 ! 2 n (! 2 n +⇣ 2 ) ! 2 0 D 2 1 (! n ) 3 7 7 7 7 7 7 7 5 , (46) 
and its determinant by:

det(P 1 ⇣,! 0 (! n )) = 4A 2 K 4 ! 6 n ⇡ 2 ! 2 0 D 4 1 (! n ) . ( 47 
)
Finding the maximum of (47), requires solving the equation

d det(P 1 ⇣,! 0 (! n )) d! n = 0.
The numerical solution is plotted in Fig. 5 for ⌫ = 1. 4.4.2. General (fractional) system with ⌫ 2 (0, 2)

Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the two parameters ⇣ and ! 0 are unknown and that the input signal is given by ( 13) with a prescribed A. Left: ⇣ and ⌫ are unknown; in the case (⌫ = 0.4, ⇣ = 0), the corresponding optimal frequency, given by ! n = 0.6, is highlighted by a square. Right: ! 0 and ⌫ are unknown; in the case (⌫ = 0.4, ⇣ = 1), the corresponding optimal frequency, given by ! n = 0.2, is highlighted by a square.

Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by

P 1 ⇣,! 0 (! n ) = A 2⇡ ⇥ 2 6 6 6 6 6 6 6 6 4 4K 2 ! 2⌫ n D 2 2 (! n ) 4K 2 ⌫! 2⌫ n (⇣+! ⌫ n cos(⌫ ⇡ 2 )) ! 0 D 2 2 (! n ) 4K 2 ⌫! 2⌫ n (⇣+! ⌫ n cos(⌫ ⇡ 2 )) ! 0 D 2 2 (! n ) 4K 2 ⌫ 2 ! 2⌫ n (! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) ! 2 0 D 2 2 (! n ) 3 7 7 7 7 7 7 7 7 5 , (48) 
and its determinant by:

det(P 1 ⇣,! 0 (! n )) = 4A 2 K 4 ⌫ 2 ! 6⌫ n ⇡ 2 ! 2 0 ⇥ sin 2 (⌫ ⇡ 2 ) D 4 2 (! n ) . ( 49 
)
The solution of

d det(P 1 ⇣,! 0 (! n )) d! n
= 0 allows obtaining optimal frequencies, plotted in Fig. 5-right for multiple values of ⌫.

Case ⇣ and ⌫ are unknown

Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the two parameters ⇣ and ⌫ are unknown and that the input signal is given by ( 13) with a prescribed A. Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by:

P 1 ⇣,⌫ (! n ) = A 2⇡ ⇥ 2 6 6 6 6 6 6 6 6 4 4K 2 ! 2⌫ n D 2 2 (! n ) 4K 2 ! 2⌫ n ln(! n )(⇣+! ⌫ n cos(⌫ ⇡ 2 )) D 2 2 (! n ) 4K 2 ! 2⌫ n ln(! n )(⇣+! ⌫ n cos(⌫ ⇡ 2 )) D 2 2 (! n ) K 2 ! 2⌫ n (4 ln 2 (! n )+⇡ 2 )(! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) D 2 2 (! n ) 3 7 7 7 7 7 7 7 7 5 , (50) 
and its determinant by

det(P 1 ⇣,⌫ (! n )) = A 2 K 4 ! 4⌫ n ⇡ 2 ⇥ (4 ln 2 (! n ) + ⇡ 2 )(! 2⌫ n + 2⇣! ⌫ n cos(⌫ ⇡ 2 ) + ⇣ 2 ) ln(! n ) 2 (⇣ + ! ⌫ n cos(⌫ ⇡ 2 )) 2 D 4 2 (! n ) . ( 51 
)
The solution of

d det(P 1 ⇣,⌫ (! n )) d! n
= 0 allows obtaining optimal frequencies, plotted in Fig. 6-left for multiple values of ⌫.

Case ! 0 and ⌫ are unknown

Consider the second order elementary fractional transfer function [START_REF] Bombois | Robust optimal identification experiment design for multisine excitation[END_REF] with stability conditions (6) satisfied. Consider that the two parameters ! 0 and ⌫ are unknown and that the input signal is given by ( 13) with a prescribed A.

Then, the FIM, calculated from [START_REF] Tzoumas | Selecting sensors in biological fractional-order systems[END_REF], is given by

P 1 ! 0 ,⌫ (! n ) = A 2⇡ ⇥ 2 6 6 6 6 6 6 6 6 4 4K 2 ⌫ 2 ! 2⌫ n (! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) ! 2 0 D 2 2 (! n ) 4K 2 ⌫! 2⌫ n ln(! n )(! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) ! 0 D 2 2 (! n ) 4K 2 ⌫! 2⌫ n ln(! n )(! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) ! 0 D 2 2 (! n ) K 2 ! 2⌫ n (4 ln 2 (! n )+⇡ 2 )(! 2⌫ n +2⇣! ⌫ n cos(⌫ ⇡ 2 )+⇣ 2 ) D 2 2 (! n ) 3 7 7 7 7 7 7 7 7 5 (52) 
and its determinant by

det(P 1 ! 0 ,⌫ (! n )) = A 2 K 4 ⌫ 2 ! 4⌫ n ! 2 0 ⇥ (! 2⌫ n + 2⇣! ⌫ n cos(⌫ ⇡ 2 ) + ⇣ 2 ) 2 D 4 2 (! n ) . ( 53 
)
The solution of

d det(P 1 ⇣,⌫ (! n )) d! n
= 0 allows obtaining optimal frequencies, plotted in Fig. 6 for multiple values of ⌫.

Fractional systems of the second kind with three or four unknown parameters

When three or four parameters are unknown, then the input signal should have at least two cosine terms, as in [START_REF] Ferdi | Some applications of fractional order calculus to design digital filters for biomedical signal processing[END_REF], to fulfill the requirements for persistent excitation. Consequently, the problem becomes even more di cult to solve because two frequencies and the weighting factor ↵ in ( 14) need to be determined by finding the maximum of the determinant of a 3 ⇥ 3 or a 4 ⇥ 4-matrix with respect to both frequencies and the weighting factor. In the case of 4 unknown parameters, the FIM writes:

P 1 K,⇣,! 0 ,⌫ (! n 1 , ! n 2 , ↵) = A 2⇡ ⇣ ↵M 1 + (1 ↵)M 2 ⌘ (54) 
with 

M i = 2 
1 D 2 (! n i ) 2K! ⌫ n i ⇣ cos(⌫ ⇡ 2 )! 2⌫ n i +2! ⌫ n i ⇣+cos(⌫ ⇡ 2 ) ⌘ D 2 2 (! n i ) 2K! ⌫ n i ⇣ cos(⌫ ⇡ 2 )! 2⌫ n i +2! ⌫ n i ⇣+cos(⌫ ⇡ 2 ) ⌘ D 2 2 (! n i ) 4K 2 ! 2⌫ n i D 2 2 (! n i ) 2K⌫! ⌫ n i (! 3⌫ n i +3⇣ cos(⌫ ⇡ 2 )! 2⌫ n i +(2⇣
⌘ D 2 2 (! n i ) 4K 2 ⌫! 2⌫ n i (⇣+! ⌫ n i cos(⌫ ⇡ 2 )) ! 0 D 2 2 (! n i ) (4K 2 ! 2⌫ n i ln(! n i ))(⇣+! ⌫ n i cos(⌫ ⇡ 2 )) D 2 2 (! n i ) 4K 2 ⌫ 2 ! 2⌫ n i (! 2⌫ n i +2⇣! ⌫ n i cos(⌫ ⇡ 2 )+⇣ 2 ) ! 2 0 D 2 2 (! n i ) 4K 2 ⌫! 2⌫ n i ln(! n i )(! 2⌫ n i +2⇣! ⌫ n i cos(⌫ ⇡ 2 )+⇣ 2 ) ! 0 D 2 2 (! n i ) 4K 2 ⌫! 2⌫ n i ln(! n i )(! 2⌫ n i +2⇣! ⌫ n i cos(⌫ ⇡ 2 )+⇣ 2 ) ! 0 D 2 2 (! n i ) K 2 ! 2⌫ n i (4 ln (! n i ) 2 +⇡ 2 )(! 2⌫ n i +⇣ 2 +2⇣! ⌫ n i cos(⌫ ⇡ 2 )) D 2
2 (! n i ) 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

.

Obviously, solving

d det P 1 K,⇣,! 0 ,⌫ (! n 1 ,! n 2 ,↵) d[! n 1 ,! n 2 ,↵]
= [0, 0, 0] can only be done numerically. In the case of any combination of 3 unknown parameters, the FIM can straightforwardly be deduced from (54) and (55), by simply eliminating the line and the column corresponding to the supposed known parameter, i.e. the first line/column if K is known, the second line/column if ⇣ is know, the third line/column if ! 0 is known, and the fourth line/column if ⌫ is known.

Conclusion

In this paper, experiment design for system identification using fractional transfer functions of the second kind has been considered. First of all, a proposed method computes the optimal frequency allowing to identify a single parameter (gain, pseudo-damping factor, natural frequency, or the commensurate di↵erentiation order) by maximizing the Fisher Information criterion. Then, the proposed method computes the optimal frequency allowing to identify a couple of these parameters by maximizing the Fisher Information criterion. It is shown that the obtained results allow to extend straightforwardly the optimality of rational systems. Finally, the procedure is extended to three and four unknown parameters, though requiring some tedious computations for the determinant and even more for the computation of its optimality conditions. It might be interesting to extend the results of this paper to elementary fractional transfer functions with time delays. Moreover, it is well known that fractional systems are infinite dimensional and that they have polynomial convergence, as compared to the exponential convergence of rational systems. Hence, further insights could be oriented towards setting up time-bounded-criteria in the framework of experiment planning.
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 123 Figure 1: Optimal frequency, ! n , versus ⇣, for di↵erent values of ⌫ in di↵erent cases. Left: only K is unknown; the rational case (⌫ = 1, ⇣ = 0.5) corresponding to ! n = p 2 2 , from (22), is highlighted by a square. Right: only ⇣ is unknown; the rational case (⌫ = 1, ⇣ = 1) corresponding to ! n = p 3 3 , from (29), is highlighted by a square.
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 22 Figure 2: Optimal frequency versus ⇣, for di↵erent values of ⌫, in the case only ! 0 is unknown. The rational case (⌫ = 1, ⇣ = 1) corresponding to an optimal frequency given by ! n = p 2 2 from (33) is highlighted by a square.
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 34 Figure 3: Optimal frequency versus ⇣, for di↵erent values of ⌫, in the case only ⌫ is unknown. Upper-left: values of ⌫ varying from 0.2 to 1.9, with a peak for ⌫ = 0.2 above ! n = 25 (truncated in the Fig.); in the case (⌫ = 1, ⇣ = 1), the optimal frequency, ! n = 0.6, is highlighted by a square. Upper-right: a zoom for 0.36  ⌫  0.38, highlighting a discontinuity for small values of ⌫, around ⇣ = 0. Lower-left: Fisher Information Matrix versus ! n , for ⇣ = 0, illustrating the presence of two global maxima points for ⌫ = 0.2 and ⌫ = 0.3, highlighted by squares, and only one maximum point for ⌫ = 0.5. Lower-right: optimum normalized frequency (frequencies) versus ⌫, for ⇣ = 0; presence of two optima points when ⌫  0.38; the squares highlight the maximum points of the lower left plot.

  The numerical solution is plotted in Fig.4-right for ⌫ = 1.
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 5 Figure5: Optimal frequency versus ⇣, when two parameters are unknown. Left: K and ⌫ are unknown; in the case (⌫ = 0.6, ⇣ = 0), the corresponding optimal frequency, given by ! n = 0.8, is highlighted by a square. Right: ⇣ and ! 0 are unknown; in the case (nu = 0.8, ⇣ = 1.5), the corresponding optimal frequency, given by ! n = 0.5, is highlighted by a square.
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 4 Case ⇣ and ! 0 are unknown In this section, ⇣ and ! 0 are assumed unknown whereas parameters K and ⌫ are assumed known. Start by examining the rational case. 4.4.1. Rational second order system with ⌫ = 1

Figure 6 :

 6 Figure6: Optimal frequency versus ⇣, when two parameters are unknown. Left: ⇣ and ⌫ are unknown; in the case (⌫ = 0.4, ⇣ = 0), the corresponding optimal frequency, given by ! n = 0.6, is highlighted by a square. Right: ! 0 and ⌫ are unknown; in the case (⌫ = 0.4, ⇣ = 1), the corresponding optimal frequency, given by ! n = 0.2, is highlighted by a square.