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Quantification of Time-Domain Truncation Errors

for the Reinitialization of Fractional Integrators

Andreas Rauh∗ and Rachid Maltia

Abstract

In recent years, fractional differential equations have received a significant
increase in their use for modeling a wide range of engineering applications.
In such cases, they are mostly employed to represent non-standard dynamics
that involve long-term memory effects or to represent the dynamics of system
models that are identified from measured frequency response data in which
magnitude and phase variations are observed that could be captured either
by low-order fractional models or high-order rational ones. Fractional mod-
els arise also when synthesizing CRONE (Commande Robuste d’Ordre Non
Entier) and/or fractional PID controllers for rational or fractional systems.
In all these applications, it is frequently required to transform the frequency
domain representation into time domain. When doing so, it is necessary to
carefully address the issue of the initialization of the pseudo state variables
of the time domain system model. This issue is discussed in this article for
the reinitialization of fractional integrators which arises among others when
solving state estimation tasks for continuous-time systems with discrete-time
measurements. To quantify the arising time-domain truncation errors due to
integrator resets, a novel interval observer-based approach is presented and,
finally, visualized for a simplified battery model.

Keywords: Fractional differential equations (FDEs), Observer design, Un-
certain cooperative dynamics, Temporal truncation errors, State estimation

1 Introduction

Fractional differential equations (FDEs) are powerful modeling tools in many en-
gineering applications in which non-standard dynamics, characterized by infinite
horizon states, can be observed. An example for such applications is modeling the
charging and discharging dynamics of batteries [?]. Previous work for an interval-
based state estimation of such systems has accounted for a cooperativity preserving

∗Carl von Ossietzky Universität Oldenburg, Department of Computing Science, Group:
Distributed Control in Interconnected Systems, D-26111 Oldenburg, Germany, E-mail:
Andreas.Rauh@uni-oldenburg.de

aIMS Laboratory, University of Bordeaux, 33405 Talence, France, E-mail:
Rachid.Malti@u-bordeaux.fr

DOI: 10.14232/actacyb.?



2 Andreas Rauh and Rachid Malti

or cooperativity enforcing design of observers [?, ?]. These interval observers ex-
ploit specific monotonicity properties of positive dynamic systems and provide lower
and upper bounding trajectories for all pseudo state variables1 as soon as suitable
initialization functions for the fractional dynamic system model are specified.

Moreover, FDEs arise naturally if the CRONE design methodology for efficient
shaping of frequency response characteristics of linear control systems and/or if frac-
tional PID controllers [2] are employed. FDEs then arise independently of whether
the plant to be controlled is represented by a classical integer-order or fractional
system model, and if the resulting closed-loop system dynamics are subsequently
represented in the time domain.

In contrast to the case of integer-order models, the time responses of fractional
systems significantly depend on the initialization of the pseudo state. This is shown
exemplarily in this paper with the help of the Grünwald-Letnikov definition of
fractional derivatives to illustrate further that the Caputo initialization corresponds
to the special case that an FDE model is initialized with an initial condition that
also represents a perfectly constant, infinitely long history of the pseudo states
in the past. Although this may holds (at least in good approximation) for the
initialization of a dynamic system which is fully in rest, this is obviously not true
when resetting integrators after a finitely long time interval.

Apart from the discussions above, interval-valued iteration procedures have been
developed in [?] for a verified simulation of FDE models. These iteration proce-
dures, based on Mittag-Leffer function parameterizations of the pseudo-state en-
closures, are not a priori restricted to cooperative models but are applicable also
to nonlinear systems with interval parameters. So far, this procedure assumes that
— for the initialization — a fractional derivative definition according to Caputo is
used. This verified simulation, however, allows for resetting the integration after
a finite time span by applying (to our knowledge, for the first time in a verified
simulation of FDEs) an error quantification originally published in the book ... by
Podlubny.

In this paper, we aim at improving this error quantification scheme by a novel
interval observer-based approach that allows for estimating guaranteed interval
bounds for time-domain truncation errors in scenarios in which fractional integra-
tors need to be reset. Such cases occur when state estimation for continuous-time
FDE models with discrete-time measurements is considered. So far, the state-of-
the-art in the evaluation of observer-based pseudo-state estimation procedures for
continuous-time FDE models supposes that measurements are also available in a
continuous-time form or at least at each sampling period [?]. If measurements are
available only at discrete time instants, continuous-time pseudo-state predictions
need to be performed between the measurements’ sampling instants.

Then, the measured pseudo-state information (described by intervals to rep-
resent bounded measurement errors) can be intersected with the predicted state

1The notion pseudo state is used throughout this manuscript to indicate the existence of the
infinite memory problem of FDEs in contrast to the classical notion of state variables that only
need to be specified at distinct points in time to unambiguously solve initial or boundary value
problems for classical integer-order dynamic system models.
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information to enhance the knowledge of the actual system dynamics. However,
this intersection demands reinitializing the integration of the fractional model. As
already mentioned above, a similar requirement is discussed in [?], where temporal
sub-slices were considered to reduce the overestimation of interval-based simula-
tion approaches. Moreover, such integrator resets also help to limit memory de-
mands that would grow continuously with increasing integration times if solutions
to FDEs were approximated with the help of series expansion techniques based on
the Grünwald-Letnikow definition of fractional derivatives.

Due to the infinite horizon memory property of fractional systems, the reinitial-
ization of time-domain simulations requires a rigorous consideration of the arising
truncation errors. Although guaranteed outer bounds for these errors were derived
by Podlubny in [?], they may be unnecessarily conservative due to an assumption of
the time invariance of these bounds for all future points after the integrator reset.
We aim at using Podlubny’s initial bounds as a basis for a novel error refinement
strategy between discrete reinitialization points in an observer-based setting.

After an introduction into the infinite memory problem of FDE models in Sec.
..., an approach that accounts for handling non-constant pseudo-state initializations
from a bounded past time window in terms of uncertain initial conditions at a
single point is derived. This approach is based on a conservative interval-valued
correction of the FDE model. It forms the basis for implementing an observer-based
quantification of truncation errors for simulations of FDEs in which a periodic
reinitialization is employed in Sec ... This approach is then applied in Sec ... to
an academic benchmark example as well as to the interval contractor-based state
estimation of a continuous-time battery model [?] with discrete-time measurements,
before the paper is concluded with an outlook on future work in Sec. ....

2 Influence of the Initialization of FDE Models

To visualize the influence of the initialization of the pseudo state of FDE models on
their future behavior, consider the representation of the solution of a commensurate
autonomous FDE

x(ν)(t) = f
(
x(t)

)
, f : Rn 7→ Rn , (1)

in terms of the infinite series

x(tk+1) = νI · x(tk) + ∆T ν
k · f

(
x(tk)

)
−

∞∑
i=2

ci · x(tk+1−i) (2)

with the sufficiently short step size ∆Tk = tk+1 − tk. This series expansion results
from the Grünwald-Letnikov definition2 of a non-integer derivative of order 0 <
ν ≤ 1 with the coefficients

ci = (−1)
i ·

(
ν

i

)
= (−1)

i · Γ (ν + 1)

Γ (i+ 1) · Γ (ν − i+ 1)
, (3)

2This representation corresponds to the one discussed in ..., except for the correction of a small
typo in the quoted previous work of the first author.
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in which the term
(
ν
i

)
is the Newton binomial coefficient with the gamma function

Γ (ν) =

∞∫
0

ξν−1e−ξdξ (4)

as a generalization of the factorial to the case of non-integer arguments. To avoid
excessive numerical errors when evaluating the coefficients ci, they are typically
computed in a recursive manner according to

ci = ci−1 ·
(
1 +

1 + ν

i

)
with c0 = 0 and i ∈ N . (5)

As it can be seen already in Eq. (2), future pseudo states x(tk+1) do not only de-
pend on the current state x(tk) as a kind of initialization (as it would be the case for
integer-order system models), but they also depend on an infinite horizon of pseudo
states from previous points of time t < tk. Note, stability properties of this series
expansion and properties of its convergence toward the true solution of a fractional
system models have been analyzed in detail in ... In fact, the Grünwald-Letnikov
discretization can be interpreted as a generalization of the well-known Euler dis-
cretization scheme for integer-order models so that the true state evolution can be
a approximated accurately for sufficiently small values of ∆Tk. For methods that
allow a rigorous quantification of time discretization errors, the reader is referred to
..., where an exponential state enclosure technique is generalized to fractional mod-
els by using an iteration scheme exploiting an interval extension of Mittag-Leffler
functions, or to ... where series expansion approaches and Picard iteration schemes
were generalized to the fractional case.

For linear FDEs of Caputo type, typically only initial conditions x(tk) are spec-
ified explicitly at a point of time t0 that is set to t0 = 0 without loss of generality in
the remainder of this paper. As shown in the following example, this specification
implicitly imposes that the pseudo state of the system showed an exactly constant
behavior for an infinitely long time window in the past.

To perform this investigation, consider the FDE

x(0.5)(t) = −x(t) + u(t) (6)

with the pseudo state initialization

x(t) = x0 for t ≤ 0 (7)

and the constant external control input

u(t) =

{
0 for t < 0

u0 for t ≤ 0 .
(8)

Due to the fact that fractional derivatives of constant values in the Caputo sense
are zero, the linear change of variables

x(t) = y(t) + u0 with x(0.5)(t) = y(0.5)(t) (9)
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(a) Pseudo state x(t). (b) Approximation error xML(t)− xN (t).

Figure 1: Influence of the memory length of the pseudo state initialization.

yields the equivalent FDE
y(0.5)(t) = −y(t) (10)

with
y(t) = x0 − u0 for t ≤ 0 (11)

for which the exact solution is given by

y(t) = (x0 − u0) · E0.5,1

(
−t0.5

)
for t ≥ 0 (12)

being equivalent to

x(t) = xML(t) = (x0 − u0) · E0.5,1

(
−t0.5

)
+ u0 for t ≥ 0 . (13)

In (12) and (13), Eν,1 (·) is the Mittag-Leffler function with the fractional deriva-
tive order ν = 0.5 as parameter.

In Fig. 1 different approximations of the solution to the FDE model (6)–(8) are
computed by using the Grünwald-Letnikov approximation with the constant dis-
cretization step size ∆Tk = 0.01 and approximations of the infinitely long constant
initialization of the pseudo state in (7). These latter approximations are defined by

x(t) = x0 for t ∈
[
−T · 10N ; 0

]
(14)

with N ∈ {1, 2, . . . , 8}, where the corresponding approximations to the true so-
lution x(t) are denoted by xN (t). As described above, the exact solution xML(t)
corresponds to a solution representation in terms of the Mittag-Leffler function ac-
cording to (13), which has been evaluated in Fig. 1 by the Matlab implementation
by R. Garrappa in [1].

It can be seen that insufficiently long memory lengths in the state initialization
lead to large deviations between the Grünwald-Letnikov approximation and the
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true solution. These deviations due to an insufficiently long initialization window
are much larger than the influence of the finitely long discretization step size ∆Tk.

In the following section, time domain truncation errors resulting from resetting a
numerical integration of an FDE model after a finitely long time span are quantified
in a rigorous manner under the assumption that the system behavior for t ≤ 0 is
known in advance. For the sake of simplicity, we rely on the temporally constant
initialization according to (7) in the following.

Remark 1. Due to the fact that the numerical solution of an FDE with non-
constant initialization functions is influenced by the change of coordinates in (9),
this linear shift of the coordinate system will form a potential basis for identifying
the pseudo states’ history in future work.

3 Interval Observer Technique for the Identifica-
tion of Improved Bounds of Time-Domain Trun-
cation Errors

3.1 Constant Bounds for Time-Domain Truncation Errors

So far, we have assumed that initial conditions for the pseudo state of the FDE
system model (1) are specified at the instant t = 0 with a temporally constant past
for all times t < 0 in accordance to the Caputo definition of fractional derivatives.
To allow for a notation denoting the influence of the point of time at which the

derivative operator 0D
(ν)
t is initialized, the notation of Eq. (1) is changed to

0D
(ν)
t x(t) = f

(
x(t)

)
(15)

in the following, where the left subscript of 0D
(ν)
t specifies the temporal initializa-

tion point (in the case above, t = 0).
According to the work of Podlubny, guaranteed bounds for the influence of

shifting this initialization point from the time instant tk to another point tk + T ,
T > 0, can be computed component-wise according to∣∣∣tkD(ν)

t x(t)− tk+TD
(ν)
t x(t)

∣∣∣ ≤ XT−ν∣∣Γ(1− ν)
∣∣ =: µ (16)

with
X =

[
X1 . . . Xn

]T
(17)

comprising the suprema

Xi = sup
t∈[tk ; tk+T ]

∣∣xi(t)
∣∣ , i ∈ {1, . . . , n} (18)

of the reachable pseudo states over the time interval t ∈ [tk ; tk + T ] for each
element of the vector x(t).
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As shown in ..., these error bounds can be employed to reset interval-based
verified solution procedures for FDE models after a certain time span and to use
the solution enclosures determined after the reset to reduce overestimation arising
due to pessimism that is introduced by long integration time intervals. For that
purpose, the right-hand side of the system model (15) is inflated by the error bound
interval [−µ ; µ] to obtain the uncertain system model

f̃
(
x(t)

)
∈ f

(
x(t)

)
+ [−µ ; µ] . (19)

Using this modification, the simulation is continued after at the point t = tk+T for
the differential inclusion model defined by the expression f̃

(
x(t)

)
and the pseudo

state values x(tk) as initial condition, while the entire past for t < tk is no longer
required for a further system simulation.

Under the assumption of cooperativity of the state equations, see ... for further
details, independent lower and upper bounding trajectories can be extracted from
the modified system model (19) so that set-based integration routines such as the
one based on interval extensions of the Mittag-Leffler function from ... can be
avoided when solving the corresponding initial value problem for the differential
inclusion problem (19) after the inflation of the original system’s right-hand side
f
(
x(t)

)
.

Remark 2. To limit the pessimism introduced by the additive error bounds in (19),
the following two aspects should be accounted for:

• Define the pseudo state x(t) in such a way that x = 0 corresponds to the
equilibrium of an asymptotically stable FDE. If x = 0 is not the corresponding
steady state after a first-principle modeling, perform a shift of coordinates as
inspired by Eq. (11) so that the absolute values for the bounds X do not
increase for sufficiently large values of tk + T .

• Set the initial point tk in (16) to tk = 0. Together with the first aspect in this
remark, this allows for a computation of values for the error bounds µ that
decrease after sufficiently long integration times and thus lead to less conser-
vative system models than always recomputing the bounds µ with respect to
a previous reset point tk > 0.

Even though these two aspects can be accounted for in many practical situa-
tions, the bounds µ given in (16) remain conservative due to the fact that they are
temporally constant. This property does not explicitly account for the observation
that shifting the initialization point of the fractional derivative operator becomes
less important for increasing integration times3. Therefore, an observer-based re-
finement of the bounds µ — to our knowledge not yet considered in any other
publication — is presented in the following subsection.

3This observation is denoted as short memory principle in [Podlubny].
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3.2 Observer-Based Enhancement of the Bounds for Time-
Domain Truncation Errors

For the observer-based enhancement of the time-domain truncation error bounds
when resetting fractional integrators, we restrict ourselves to the case of cooperative
system models in this paper.

As a generator for virtual measurements of a cooperative dynamic system model,
we compute pseudo state enclosures

x(t) ∈
[
v(t) ; w(t)

]
(20)

for the FDE model (15) with the temporally constant initialization

x(t) ∈ [x0] , ẋ(t) = 0 for t < 0 . (21)

This setting corresponds to uncertain initial conditions in the sense of Caputo,
while the influence of temporally varying initializations is taken into account as
soon as the first integrator reset has been performed.

Cooperativity of the system model (15) is guaranteed as a sufficient condition
if all off-diagonal elements of the Jacobian of the system model’s right-hand side
with respect to the pseudo state vector x(t) (i, j ∈ {1, . . . , n}, i ̸= j) satisfy the
inequalities

∂fi(x)

∂xj
≤ 0 . (22)

Then, all reachable pseudo states can be enclosed by the lower and upper bound-
ing systems

0D
(ν)
t v(t) = fv

(
v(t)

)
, v(t ≤ 0) = x0 and

0D
(ν)
t w(t) = fw

(
w(t)

)
, w(t ≤ 0) = x0 ,

(23)

respectively, where the inequalities

vj(t) ≤ xj(t) ≤ wj(t) (24)

hold for all j ∈ {1, . . . , n}.
If the integration of a cooperative FDEmodel is reinitialized at a point t = T > 0,

an observer-based approach

TD
(ν)
t z(t) =


fv
(
ṽ(t)

)
+ µv(t)

fw
(
w̃(t)

)
+ µw(t)

0
0

+H ·
[
v(t)− ṽ(t)
w(t)− w̃(t)

]
(25)

with the augmented state vector

z(t) =


ṽ(t)
w̃(t)
µv(t)
µw(t)

 ∈ R4n (26)
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can be used to enhance the pseudo state enclosures and the truncation error bounds
in comparison with the ones obtained by the integrator resetting approach according
to the previous subsection that only employs temporally constant truncation error
bounds.

The observer (25) is initialized with the pseudo state vector

z(T ) =


v(T )
w(T )
−µT

µT

 , (27)

where the truncation error bounds [−µT ; µT ] are computed as described in the
previous subsection. Due to the inclusion of the truncation error bounds µv(t)
and µw(t) by means of so-called integrator disturbance models in (25), leading to
constant values if H = 0, the case of the error quantification according to the
previous subsection is included as a special case in this formulation. If H ̸= 0, the
bounds µv(t) and µw(t) are enhanced in such as way that the virtual measurements
and the enhanced bounds for the pseudo state variables approach each other as close
as possible. For that purpose, the augmented system model (25) must be a valid
interval observer.

To make the augmented system model (25) with the estimated lower and upper
bounding trajectories ṽ(t) and w̃(t) a valid observer, the gain matrix H needs to be
chosen so that the error dynamics associated with the bounding trajectories remain
asymptotically stable with∥∥v(t)− ṽ(t)

∥∥ → 0 and
∥∥w(t)− w̃(t)

∥∥ → 0 for t → ∞ (28)

and that [
v(t) ; w(t)

]
⊆

[
ṽ(t) ; w̃(t)

]
(29)

is ensured for all t ≥ T .

For corresponding stability criteria for linear fractional differential equations,
see the eigenvalue domains derived in ... Due to the fact that these domains can
be expressed effectively by linear matrix inequality constraints and that nonlinear
models can be bounded by quasi-linear system models with polytopic uncertainty
representations, stability requirements for the gain matrix H cannot only be ob-
tained for linear system models. They can also be obtained from the existing
literature for nonlinear ones as it has been shown, for example in ..., for the design
of robust state estimation schemes for FDEs.

To ensure the enclosure property (29) and to verify the decoupled nature of
the equations in (25) with respect to ṽ(t) and w̃(t) as well as µv(t) and µw(t),
respectively, the Jacobian of the right-hand side of the augmented model (25) with
respect to the pseudo state vector z(t) needs to satisfy the sign property presented
in the inequalities (22) with now 4n as the dimension of the augmented model.
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3.3 Periodic Reset of Fractional Integrators and Their Ap-
plication to Predictor–Corrector State Estimation

The observer approach from the previous subsection is the basis for a predictor–
corrector approach for state estimation if measurements

y(tm,k) ∈ [y](tm,k) =
[
y(tm,k) ; y(tm,k)

]
(30)

(including interval uncertainty to represent bounded measurement errors with un-
known distributions) are available at the time instants tm,k in the form

g
(
x(tm,k)

)
∈
[
y(tm,k) ; y(tm,k)

]
. (31)

Then, the same observer (25) as in the previous subsection is employed with
virtual measurements obtained from a simulation of the original system dynam-
ics. The actual state measurements [y](tm,k) are then used to tighten the bounds
included in the pseudo state initialization z(T ) at each point T = tm,k.

This tightening is either obtained by a direct intersection of the measured in-
tervals [y](tm,k) with the already computed state bounds

[
ṽ(tm,k) ; w̃(tm,k)

]
in

the case of a direct pseudo state measurement or by applying a suitable con-
traction scheme (forward–backward contractor or Krawczky-type contractor) to
the relation (31), where the bounds for x(tm) are initialized with the interval[
ṽ(tm,k) ; w̃(tm,k)

]
as in the first case. After this tightening step, the procedure

is continued as described in the previous subsection, where the modification of
the pseudo state reinitialization is the only modification in comparison with the
previous subsection.

This approach allows for directly handling the continuous-time dynamics of the
system model between two subsequent discrete time instants at which measured
data are available. In such a way, the sampling times both for the numerical
evaluation of the FDE model and the measurements can be decoupled.

Remark 3. Cases in which the measurement step size is not an integer multiple of
the numerical integration step or in which the measurement times themselves are
uncertain, can be handled with the same procedure as in ...

Remark 4. Future work will aim at removing the precondition of cooperativity of
the original as well as the observed system dynamics in (15) and (25). To solve this
task, the so-called TNL approach for the parameterization of interval observers
as derived in ... is a promising solution which — due to its direct applicability
to descriptor models — can extend the approach presented in this paper also to
cases in which only some of the pseudo state variables are described by the explicit
FDE models studied in (15) and other are expressed implicitly by using algebraic
constraints.
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4 Illustrating Example: Observer Approach

In this section, the observer-based identification of bounds for time-domain trun-
cation errors of FDE models is presented for both a nonlinear academic simulation
scenario and for a close-to-life quasi-linear model for the charging and discharging
dynamics of Lithium-ion batteries.

4.1 Nonlinear Academic Benchmark System

4.1.1 Observer-Based Quantification of Time-Domain Truncation Er-
rors

As a first example, consider the uncertain FDE model

x(0.5)(t) = −x(t)− p · x3(t) (32)

with the interval-based Caputo initialization

x(t) ∈ [x0] = [0.9 ; 1.0] for t ≤ 0 (33)

and the uncertain, time-invariant parameter p ∈ [0.1 ; 0.2]. This system model
is simulated over the time interval t ∈ [0 ; 10] with integrator resets at the time
instants

T ∈ {T ′, 2T ′, 3T ′, . . .} , where T ′ = 1 . (34)

Due to its scalar nature, this system models satisfies the property of cooperativ-
ity, so that (without integrator resetting) the true pseudo state enclosure x(t) ∈[
v(t) ; w(t)

]
according to (23) can be determined by means of the crips system

models

0D
(0.5)
t v(t) = −v(t)− p · v3(t) , v(t ≤ 0) = x0 (35)

and

0D
(0.5)
t w(t) = −w(t)− p · w3(t) , w(t ≤ 0) = x0 . (36)

These bounds, computed with the help of the numerical integration routine
fde12 ..., are visualized by the solid lines in Figs. 2 and 3.

To investigate the observer approach given in Eq. (25), the time- and state-
independent gain matrix

H = 20 ·


1 0
0 1
1 0
0 1

 (37)

is chosen which ensures stability of the estimation error dynamics and cooperativity
of the augmented pseudo state equations.

Fig. 2(a) presents a comparison between the integrator resetting in combina-
tion with piecewise constant bounds µT for each time slice t ∈

[
(i− 1)T ′ ; iT ′],

i ∈ {1, 2, . . . , 10} (determined according to (16), where tk = 0 is chosen in each
reinitialization point T defined in (34)), while Fig. 2(b) shows the observer-based
enhancement of the pseudo state enclosures due to the temporal adaptation of the
truncation error bounds according to Eq. (25) in Sec. 3.2.
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(a) Piecewise constant error bounds µT . (b) Observer-based enhancement of µv , µw.

Figure 2: Simulation of the uncertain, nonlinear benchmark system (32).

4.1.2 Predictor–Corrector State Estimation

For the implementation of the predictor–corrector state estimator according to
Sec. 3.3, we assume that pseudo state measurements are available at the time in-
stants tm,k = T listed in (34).

The results in Fig. 3(a) distinguish the following two cases:

• The measured pseudo state information at the time instants tm,k corresponds
to the enclosures from (35) and (36) with

y(tm,k) ∈
[
v(tm,k) ; w(tm,k)

]
. (38)

This scenario is depicted in Figs. 3(a) and 3(b).

• The measured pseudo state information at the time instants tm,k is obtained
as

y(tm,k) ∈ x̂(tm,k) + 0.001 · [−1 ; 1] (39)

with x̂(t) as the simulation of a nominal parameter model

x̂(0.5)(t) = −x̂(t)− 0.15 · x̂3(t) (40)

with x̂(t) = 0.95 for t ≤ 0, see Figs. 3(c) and 3(d).

From a comparison of Figs. 3(a) and 3(b), it is obvious that the observer-based
approach in combination with resetting the pseudo state to the measured data leads
to significantly tighter enclosures of the solutions than the use of piecewise constant
error bounds µT .

A further tightening of the simulated bounds becomes possible if the uncer-
tainty in the measured data is reduced in Figs. 3(c) and 3(d) in accordance with
the second case above. Then, the new solution approach is capable of determining
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pseudo state enclosures that are partially tighter (in this case for the upper bound-
ing trajectory) than a pure simulation of the uncertain nonlinear model (32) that
still serves as the virtual measurement generator between the points T at which
the actual discrete-time measurements are available. In such a way, the proposed
observer-based enhancement of the time-domain truncation error bounds as well as
the predictor–corrector state estimation scheme form the basis for the development
of set-based parameter identification schemes that are part of our ongoing research
activities.

(a) Piecewise constant error bounds µT , mea-
sured pseudo state information according to
Eq. (38).

(b) Observer-based enhancement of µv , µw for
the measured pseudo state information accord-
ing to Eq. (38).

(c) Observer-based enhancement of µv , µw for
the measured pseudo state information accord-
ing to Eq. (39).

(d) Enlarged view of Fig. 3(c).

Figure 3: Predictor–corrector state estimation for the uncertain, nonlinear bench-
mark system (32).
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4.2 Simplified Fractional Battery Model

As a final application scenario, consider the fractional-order equivalent circuit model
for the charging and discharging dynamics of Lithium-ion batteries depicted in
Fig. 4.

vOC(σ(t))
+
−

i(t) R0

R y(t)

+

−

Q

v1(t)

Figure 4: Equivalent circuit representation of a simplified fractional battery model.

Using the parameter values identified experimentally in [3], continuous-time
state equations

0D
(0.5)
t x(t) = A · x(t) + b · i(t) (41)

with the system and input matrices

A =


0 1 0

η1·sign(i(t))
3600CN

0 0

0 0 − 1
RQ

 and b =

 0
− η0

3600CN
1
Q

 (42)

as well as the pseudo state vector

x(t) =
[
σ(t) 0D

(0.5)
t σ(t) v1(t)

]T
∈ R3 (43)

can be derived by applying Kirchhoff’s voltage and current laws. In (43), σ(t)
denotes the state of charge of the battery, its fractional derivative is included in
the vector x(t) to represent long-term memory phenomena, and v1(t) is the volt-
age across a non-integer constant phase element Q serving as a generalization of
capacitors that are typically employed to represent polarization effects and the
transportation of charge carriers in Thevenin equivalent circuit models of batteries.

For state estimation purposes, the terminal voltage (given in a quasi-linear
representation)

y(t) = g
(
x(t)

)
=

[
4∑

k=0

ckσ
k−1(t) 0 −1

]
·x(t)+

(
−R0 + d0e

d1σ(t)
)
·i(t) (44)

is assumed to be available as a measured system output at specific discrete points
in time.

To obtain further a cooperative system model, we consider the special case with
η1 = 0 and a controlled discharging process of the battery with the terminal current

i(t) = −kT · x(t) (45)
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as the system input in which the controller gain vector kT is determined by pole
assignment so that the eigenvalues of the closed-loop system are located at the
points λ ∈ {0;−0.0002;− 1

RQ}.
This leads to the linear autonomous system model

0D
(0.5)
t x(t) = AC · x(t) (46)

with

AC =

0 1 0
0 a22 0
0 a32 a33

 (47)

in which the entries a22, a32, and a33 are converted into interval parameters ac-
cording to

a22 ∈ [−0.00022000000000 ; −0.00017999999999]
a32 ∈ [ 0.09755718517445 ; 0.11923655965767]
a33 ∈ [−0.53155619600024 ; −0.43490961490928]

(48)

to account for independent uncertainties of each of these quantities in the inter-
vals of ±10% around the respective nominal values obtained with the help of the
parameters given in [3] and ...

The initial conditions of the system are assumed to be uncertain according to
the Caputo definition

x(t) =
[
0.5 0.01 0.1

]T · [0.9 ; 1.1] , t ≤ 0 . (49)

To set up the observer-based enhancement of the time-domain truncation error
bounds according to Eq. (25) with the resetting time instants

T ∈ {T ′, 2T ′, 3T ′, . . .} , where T ′ = 60 s , (50)

the gain matrix

H = 5 ·


1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

 (51)

is chosen in the following subsections. According to the description in Sec. 3.2,
this matrix is specified so that stability and cooperativity of the estimation error
dynamics are ensured.

4.2.1 Observer-Based Quantification of Time-Domain Truncation Er-
rors

Fig. 5 summarizes a simulation of the fractional battery model in terms of a direct
evaluation of the pseudo state equations (46)–(48) by directly exploiting the prop-
erty of cooperativity. These results are shown by solid lines, indicating the lower
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(a) State x1(t) (state of charge σ(t)). (b) State x1(t) (enlarged).

(c) State x2(t). (d) State x2(t) (enlarged).

(e) State x3(t) (voltage v1(t)). (f) State x3(t) (enlarged).

Figure 5: Simulation of the simplified battery model with piecewise constant error
bounds µT ; integrator reset at the points T defined in (50).
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(a) State x1(t) (state of charge σ(t).) (b) State x1(t) (state of charge σ(t)).

(c) State x2(t). (d) State x2(t).

(e) State x3(t) (voltage v1(t)). (f) State x3(t) (voltage v1(t)).

Figure 6: Comparison of piecewise constant error bounds µT (left column) with the
observer-based enhancement µv, µw (right column) according to Sec. 3.2; resetting
to the true state enclosures

[
v(t) ; w(t)

]
at each time instant T defined in (50).
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and upper bounds of each state variable, respectively. As for the previous academic
example, the numerical solver fde12 has been used for this purpose.

When resetting the fractional integrator at the time instants (50) and using con-
stant bounds for the time-domain truncation errors, a rapid inflation of the pseudo
state enclosures can be observed. This inflation is reduced in Fig. 6, where it has
been assumed that the bounds, resulting from the cooperative system simulation,
are available as initial conditions for each of the time slices. This resetting of the
integrator, together with a reinitialization of the pseudo state for each point in
time T is shown in the left column of Fig. 6 for piecewise constant bounds of the
time-domain truncation errors.

Activating the observer-based quantification of the truncation according to
Sec. 3.2 additionally, as illustrated in the right column of Fig. 6, leads to sig-
nificantly tight outer enclosures that satisfy the relation (29) with certainty.

4.2.2 Predictor–Corrector State Estimation

In practical situations, the resetting of the fractional integrator is often combined
with a pseudo state estimation approach as presented in Sec. 3.3. To visualize the
applicability of this technique for the model of a controlled Lithium-ion battery, it
is assumed that uncertain measurements of the terminal voltage of the battery are
available at each time instant tm,k = T . These uncertain measurements are chosen
as the intervals

[y](tm,k) = mid

(
[g]

([
v(tm,k) ; w(tm,k)

]))
+ [−10 ; 10] mV , (52)

where mid
(
[x]

)
= 1

2 · (x+ x) defines the midpoint of an interval [x].
At each measurement instant T , the new pseudo state bounds are then initialized

with the enclosure
[
ṽ(T ) ; w̃(T )

]
obtained at the end of the previous time slice.

From these bounds, an axis-aligned interval box is extracted by a SIVIA-like state
reconstruction for the measured system output (44) that eliminates subboxes that
are incompatible with the measurement intervals (52). To continue the simulation
further, a tight axis-aligned interval hull around the not eliminated boxes is formed,
so that the pseudo state enclosures shown in Fig. 7 are obtained.

Future work will make use of these bounds for an identification of interval
parameters included in both the FDE model and the algebraic output equation of
a dynamic system.

5 Conclusions

In this paper, a novel observer-based approach for the quantification of time-domain
truncation errors of FDE models has been presented. These errors arise inevitably
when resetting fractional integrators. Integrator resets are necessary for the nu-
merical evaluation of FDE models both to restrict the growth of memory demands
when evaluating FDEs over long time spans and to take into account measured
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(a) State x1(t) (state of charge σ(t).) (b) State x1(t) (enlarged).

(c) State x2(t). (d) State x2(t) (enlarged).

(e) State x3(t) (voltage v1(t)). (f) State x3(t) (enlarged).

Figure 7: Simulation using the observer-based enhancement µv, µw according to
Sec. 3.2 and contractor-based resetting of the state variables at each measurement
instant T according to Sec. 3.3.
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state information at distinct points in time between which the system dynamics
are evolving continuously.

Future work will make use of the presented approach to solve the tasks of iden-
tifying past pseudo state information from an observed evolution of these quan-
tities into the future and to identify uncertain system parameters on the basis of
predictor–corrector state estimators. Moreover, the TNL interval observer design
approach for non-cooperative system models will be taken into consideration to
avoid the currently existing necessity to transform non-cooperative models into co-
operative ones by using the approaches presented in ... . Although these approaches
are useful for many practical applications, they always lead to conservative state
enclosures due to the wrapping effect that is inevitable when transforming the state
equations and the domains of uncertain initial conditions with the help of (static)
similarity transformations. This pessimism can be reduced by the TNL approach
due to the introduction of further degrees of freedom for the observer parameteriza-
tion. Moreover, this approach will also make the proposed methodology applicable
to fractional descriptor systems.
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