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Simon Toupance1, and Denis Villemonais3,7

October 15, 2023

Abstract

We build and study an individual based model of the telomere length’s evolution
in a population across multiple generations. This model is a continuous time typed
branching process, where the type of an individual includes its gamete mean telom-
ere length and its age. We study its Malthusian’s behaviour and provide numerical
simulations to understand the influence of biologically relevant parameters.

1 Introduction

A telomere is a non-coding region of repetitive nucleotide sequences located at each end
of a chromosome. It is a key element in the duplication of genetic material during cell
division and it also protects the end of a chromosome, preventing replication error muta-
tions that may lead to cancers and other diseases of extreme gravity. When the telomeres
of a cell are too short, this cell ceases to divide and enters a senescence phase [49]. We
refer the reader to : [17] for an account on telomeres and on their length’s dynamics with
respect to the age of individuals, [48] for a study of the relation between telomere length
and life span across different species, and [33] for a survey on the effect of telomere length
on individuals health. Within the human species, it is acknowledge that shorten telomere
lengths are also responsible of age related diseases such as atherosclerosis [5]. Telomere
lengths also have a strong impact on the lifespan of an individual, but the statistical link
remains unclear [21].
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Somatic cells are responsible for a significant number of diseases that are suspected
to arise from problems with the replication of the genetic code, and thus potentially with
telomere length. These cells show different phases of telomere length degradation [19].
From embryonic phase up to childhood, the mean telomere length decreases strongly,
while it decreases slowly in adulthood. The erosion speed is similar among adults, but
the first phase is individual dependent and is influenced by many environmental factors
(for instance intrauterine stress exposure [18], childhood obesity [8], exposure to violence
during childhood [44]). But all these mechanisms reduce a starting length that is inherited
from parents, and consequently from previous generations. Understanding the transmis-
sion of telomere lengths across generations within a population is therefore essential.

The telomere length of a child is strongly influenced by the gamete cells telomere
lengths of its parents, particularly of its father [1, 16, 39]. The telomere lengths dynamics
of male gamete cells are very different from those of somatic cells since they are subject to
the activity of telomerase, an enzyme responsible for maintenance of the length of telom-
eres [50]. It results a tendency of telomere lengths in male gametes to increase with age [1].
The birth-rate as a function of age in a population is thus expected to have an influence
over the evolution of telomere lengths distribution within a population. Therefore, know-
ing that parents in many countries are having children at an older age than half a century
ago (see Figure 1), one might expect children to have longer telomeres on average. As ex-
plained in [1], higher paternal age at conception has well-documented detrimental effects;
these could be offset by beneficial effects due to telomere lengthening induced by later pa-
ternity. At the same time, the average length of telomeres in the population changes over
relatively short time scales. A striking consequence of this fact is the difference in telomere
shortening with age measured in longitudinal versus cross-sectional studies [25] and with
potential implications for public health. This blurs the impact of heredity and prompts
the development of models to better understand its real effect.

We propose a probabilistic process that models the evolution through generations of
the size of a population as well as the average length of the telomeres of its individuals
(see e.g. [7, 34, 36, 41] for models of telomere length’s dynamic at the microscopic level).
Each individual carries the telomere length of its gametes at breeding age, this does not
detract from the generality because it would be possible to obtain the average telomere
length of an individual’s somatic cells at any age by applying a transfer function obtained
by regression to the telomere length. The individuals are asexual; we can imagine that
they are a reproductive couple of human. This is a first model, and we do not want to
introduce too much complexity. Age is the second characteristic of an individual since
the length of the telomeres of the gametes depends on it. Individuals reproduce during a
given period, in the context of a human couple it emulates the time between the formation
of a couple, which is a sort of breeding age, and the menopause of the woman, and at a
certain rate depending on age but not on the telomere length of gametes. Individuals
also reproduce independently. Finally, the length of the telomeres at puberty is given by
a transition function taking into account age and simulating the action of telomerase on
the telomeres of gametes. We will specify its choice later.

Mathematically speaking, the model is a Crump Mode Jagers typed branching process
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Figure 1: Birth-rate as a function of age in 1950, 1975, 2000 and 2018 (INSEE)

with age (abreviated CMJ) which is a generalization of the age dependent branching pro-
cesses described in [24, Chapter VI]. We refer the reader to [28] (age structured branching
processes without types) and [27] (age structured branching processes with types) for an
introduction; [40] provides refined convergence results and [6] a construction in a growth
fragmentation setting. In these branching models, one considers the genealogy of the
population, each individual being marked by its type (say si for individual i ) and its birth
time (say ti ), as represented in Figure 2. The age of an individual is denoted by a ∈ [0,+∞)
and evolves linearly in time; the mean telomere length of its gametes, abbreviated by GTL,
is designated by l ∈ [0,+∞]. The breeding age ap > 0 is assumed to be fixed across the
population. The birth rate is a function of age b : [0,+∞) 7→ [0,+∞) satisfying b(a) = 0 for
a < ap (see Figure 1). With these notations, the dynamics describe right above reads as
follows. Each alive individual in the population gives birth to one new individual at ran-
dom times, independently from each others and from their GTL at puberty at rate b(a)
at age a. The GTL of an individual at age a ≥ ap grows linearly with time, with a fixed
slope α > 0, so that it is given by (a − ap )α. When a newborn appears in the population,
its initial age is 0 and its GTL at puberty parameter is chosen randomly, depending on
the GTL of its parent at the time of birth, denoted by GT Lb . It follows a truncated Gaus-
sian distribution with mean GT Lb −µ, µ> 0 being the mean erosion of telomeres during
the pregnancy/childhood phase, and variance σ2 > 0; truncation occurs in the interval
[lmi n , lmax], where lmi n > 0 and lmax > 0 are respectively the minimal and maximal length
of any individual. Finally, we suppose that each individual dies at a same age ad > ap

(this last assumption could be weakened, at the expense of additional technicalities). Of
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Figure 2: Example of a CMJ branching process.

course, one can represent the process by unfolding the genealogy along the time dimen-
sion, as done in Figure 3.
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Figure 3: Same CMJ process but unfolded along a time axis.

We provide theoretical results and illustrative numerical experimentations. The first
main theoretical result is a many-to-one formula for CMJ branching processes, where
we show that the potential kernel of those models can be represented via two different
Feynman-Kac formulas whose equivalence relies on a simple and classical, yet powerful,
argument : their associated semi-groups have the same infinitesimal generators [43]. The
second relevant result concerns some spectral properties of the non-conservative semi-
group involved : it converges exponentially fast to a ground state, thanks to some recent
results on quasi-stationary distributions [9]. At the end, it gives a representation of the
Malthusian parameter of the model. These theoretical results are independent of the
choices of the parameters b, α, µ, σ, lmi n , lmax and ad , and they apply to more general
CMJ branching processes.

In numerical simulations, the birth-rate function b is chosen according to Figure 1,
α = 0.017 (a value justified in [1]), lmi n = 5 kb and lmax = 25 kbp (the quantity 1 kbp cor-
responds to a length of DNA of one thousand base pairs), and σ = 0.1 (this is chosen so
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that the standard deviation in the whole population is of the same order as in [16] for the
telomere length distribution in their cohort of male adults), although different measure-
ments may be relevant. Different values of µ and shifted birth rate functions (correspond-
ing to shifts in the parental reproduction age) are considered, and we observe qualitatively
the changes implied by these perturbations on the equilibrium (long time) distribution of
telomeres in the population, and on the relations between telomere length distribution,
father age at birth and parental birth year.

In Section 2.1, we introduce the CMJ branching process that models the behavior of
the GTL in a population. Then we state in Section 2.2 a Feynman-Kac representation
(via a many-to-one formula) of the potential kernel of our branching process under a
Poisson branching time assumption. Another many-to-one formula related to a different
Feynman-Kac representation of the potential kernel is stated in Section 2.3. The exponen-
tial convergence of these non-conservative semi-groups is given in Section 3. Finally, we
present numerical simulations to illustrate the effect of changes in µ and of the right shift
of the birth-rate curves on the GTL distribution in a population (see Section 4).

Notations : R+ denotes the set of non-negative real numbers, MP (E) the set of finite
discrete measures on E , and ‖ · ‖T V the total variation distance between measures. As
usual, for a mathematical object x belonging to a set X , δx stands for the Dirac mass at x.

2 Definition of the model and many-to-one formulas

2.1 Definition of the model

We define an age-dependent branching process with a type belonging to a Polish spaceS.
Each individual is represented by an atom δs,t , where s ∈S is the type of the individual and
t ∈R+ is the birth date of the individual. The nth generation is a finite discrete measure on
S×R+, denoted by Xn ∈MP (S×R+).

Remark 1. In the introduction and in our simulations section, S = [lmin, lmax]. However,
it may be desirable to include additional traits in the type space, that may be transmitted
from parents to childrens or shared among brotherhood, for instance the social environ-
ment, childhood exposition to violence, ethnicity or genetic diseases.

Let b :S×R+ →R+ be a measurable, compactly supported and bounded function and
γ a continuous probability kernel from S×R+ to S. In our model, b(s0, a) represents the
reproduction rate for an individual with type s0 and age a, and γs0,a(ds) is the type’s law of
a child born from a father with type s0 and age a. Said differently, we denote by Ps0 the law
of a Poisson point process in S×R+, with intensity b(s0, a)γs0,a(ds)da, and assume that
the progeny’s distribution of an individual with type s0 ∈S at time 0 is given by Ps0 .

The branching process is constructed recursively, generation after generation. Let
X0 = δs0,0 be a fixed punctual measure representing the original state of the population
at time 0, constituted of one individual with type s0 and birth date 0. Assuming that
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Xn = ∑Xn
i=1δsn

i ,t n
i

, where Xn := Xn(S×R+) is the number of individuals in generation n,
we define

Xn+1 =
Xn∑
i=1

θt n
i
◦ξn+1

sn
i

,

where the ξn+1
sn

i
, 1 ≤ i ≤ Xn , i <∞, are random independent discrete measures with respec-

tive laws Psn
i

, and where, for all (s1, t1), . . . , (sk , tk ) ∈S and all t ∈R+,

θt ◦
k∑

i=1
δsi ,ti :=

k∑
i=1

δsi ,ti+t .

Informally, Xn(A×B) should be interpreted as the number of individuals of the nth gener-
ation, with type in A and with birth date in B .

We emphasize that, since b has compact support and is bounded, each random mea-
sure Xn can be written under the form

Xn =
Xn∑
i=1

δsn
i ,t n

i
,

where Xn < +∞ and t n
1 < t n

2 < ·· · . Given s0 ∈ S, we denote by P(s0,t0) the law of (Xn)n∈Z+
when X0 = δ(s0,t0) almost surely, and by E(s0,t0) the corresponding expectation.

Following [27, Section 5], we define the reproduction kernel µ from S×R+ to S×R+ as

µ(s, A×B) =
∫
MP (S×R+)

ξ(A×B)Ps(dξ), s ∈S, A ∈B(S),B ∈B(R+).

Hence, given an individual with type s ∈S at time 0, the quantityµ(s, A×B) gives the mean
number of its children whose type are in A and whose birth date is in B . We also define
the iterates of µ as µ0(s, ·) = δ(s,0) and, by iteration,

µn+1(s, A×B) =
∫
S×R+

µ(r, A× (B −u))µn(s,dr ×du).

Since this is not stressed out in [27], we give a short proposition giving the meaning of
µn in terms of the composition Xn of the population at generation n: µn(s, A×B) gives the
mean number of individuals of the nth generation whose type is in A and whose birth date
is in B .

Proposition 1. For all n ∈Z+, all s0 ∈S and all measurable sets A ⊂S and B ⊂R+, we have

E(s0,0) [Xn(A×B)] =µn(s0, A×B).

Proof. We show this result by iteration over n. The cas n = 0 is immediate. Assume now
that the property holds true for n ∈Z+. Then, by definition of Xn+1,

E

(
Xn+1(A×B) | Xn =

Xn∑
i=1

δsn
i ,t n

i

)
=

Xn∑
i=1

∫
MP (S×R+)

θt n
i
◦ξ(A×B)Psn

i
(dξ).
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Taking the expectation and using the induction assumption, we obtain

E (Xn+1(A×B)) =
∫
S×R+

∫
MP (S×R+)

θu ◦ξ(A×B)Pr (dξ)µn(s0,dr ×du)

=
∫
S×R+

∫
MP (S×R+)

ξ(A× (B −u))Pr (dξ)µn(s0,dr ×du)

=
∫
S×R+

µ(r, A× (B −u))µn(s0,dr ×du)

=µn+1(s, A×B).

Similarly, for any λ ∈R, we define as in [28] the kernel µλ as

µλ(r,ds ×du) = e−λuµ(r,ds ×du),

µ0
λ

(s, ·) = δ(s,0) and, iteratively,

µn+1
λ (s, A×B) =

∫
S×R+

µλ(r, A× (B −u))µn
λ(s,dr ×du).

The proof of the following result is similar to the previous one and is thus left to the reader.

Proposition 2. For all λ ∈ R, n ∈ Z+, all s0 ∈ S and all measurable sets A ⊂ S and B ⊂ R+,
we have

E(s0,0)

[
Xn∑
i=1

δsn
i ,t n

i
e−λt n

i

]
=µn

λ(s0, A×B).

2.2 Many-to-one formula for Poissonian reproduction times

The aim of this section is to provide a first many-to-one formula, which allows to express
the potential kernel (which involves expectations over many individuals) as a Feynman-
Kac type expression (which only involves one trajectory).

In order to do so, we consider the piecewise-deterministic Markov process (Zt )t∈[0,+∞)

with values in S×R+, which evolves according to the flow ((s0, a), t ) 7→ (s0, a + t ) and, at
a rate b(Zt ), jumps according to the probability measure γZt (ds)⊗δ0(da). We refer the
reader to [15, 14, 2] for general aspects of the theory of piecewise-deterministic Markov
processes. We denote respectively by Z (s)

t and by Z (a)
t the first and second component of

Zt , respectively in S and R+. The component Z (a)
t should be interpreted as the age of an

individual (since the last jump), so that t − Z (a)
t is the birth date of the individual (that

is the last jump time before time t ). In what follows, the law of Z with initial position
(s, t ) ∈S×R+ is denoted by PZ

s,t and its associated expectation EZ
s,t .

Following [27], we consider the potential kernel ν, defined by

ν(s, A×B) =
∞∑

n=0
µn(s, A×B),
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for all s ∈ S and all measurable subsets A ⊂ S and B ⊂ R+. The following many-to-one
formula is the main result of this section.

Proposition 3. We have, for all t ≥ 0, all s0 ∈S and all measurable sets A ⊂S and B ⊂R+,

ν
(
s0, A× (B ∩ [0, t ])

)= EZ
s0,0

[
1Z (s)

t ∈A, t−Z (a)
t ∈B exp

(∫ t

0
b
(
Zu

)
du

)]
.

The proof of this proposition is postponed to Section A.3. Our proof’s strategy is first
to represent ν as the expectation with respect to a process exploring a random branch of
the model (see next section), and second to prove that both representations coincide.

We also define, for all λ ∈R, νλ =
∑∞

n=0µ
n
λ

and obtain the following corollary.

Corollary 1. We have, for all λ ∈R, all t ≥ 0 and all s0 ∈S,

νλ(s0,S× [0, t ]) = e−λtEZ
s0,0

(
eλZ (a)

t e
∫ t

0 b(Zu )du
)

2.3 Random exploration of a CMJ branch

We describe now a continuous time random process (Yt )t∈[0,+∞ which explores randomly
a branch of the generation tree of a CMJ branching process. This process takes values in
X := S×R+×MP (S×R+), the first component corresponding to the type of the current
individual, the second component is the age of the current individual, and the third one
is the total progeny of the current individual (starting at its birth time). Informally, the
process Y starts at the ancestor position (which includes its type, its birth time, and its
progeny) at time 0 and stays idle up to the first reproduction time. Then it either jumps
on the position of the newborn (with probability 1/2), or it remains at its position (with
probability 1/2). Then it stays at the same position up to the next reproduction time and so
on (see Figure 4).
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1/2

1/2

1/2

1/2
1/2

1/2
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1/2

•
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•
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•
t22

•
t212
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Figure 4: Example of a trajectory of the process Y : at each reproduction time, the process
chooses one of the branches with probability 1/2.

Let us now define more formally the process Y . Let τ : X→ R+ and Λ : X→ S be de-
fined, for all (s, a,ξ) ∈X, by

τ(s, a,ξ) = inf{t > 0, ξ(S× (a, a + t ]) = 1}
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and
Λ(s, a,ξ) = l such that ξ{(l ,τ(s, a,ξ))} = 1,

with the convention inf ; = +∞ and, if τ(s, a,ξ) = +∞, Λ(s, a,ξ) = s. Informally, τ(s, a,ξ)
gives the first reproduction time after time a, whileΛ(s, a,ξ) gives the type of the then born
child. Now letΠ0 andΠ1 be two probability kernels defined by

Π0 : X×X → [0,1]

((s, a,ξ), A×B ×C ) 7→ δ(s,a+τ(s,a,ξ),ξ)(A×B ×C )

and

Π1 : X×X → [0,1]

((s, a,ξ), A×B ×C ) 7→ δΛ(s,a,ξ),0(A×B) PΛ(s,a,ξ)(C ),

where X is the product σ-field on X and we recall that Ps is the law of the progeny of an
individual with type s ∈S. On the one hand, given (s, a,ξ), Π0(s, a,ξ) is a Dirac measure at
(s, a+τ(s, a,ξ),ξ) and will be used as the jump kernel in the event where Y remains on the
father’s branch at the reproduction time a+τ(s, a,ξ). On the other hand,Π1(s, a,ξ) will be
used as the jump kernel when Y jumps on the branch of the new-born, since Λ(s, a,ξ) is
the type of the child, 0 is its age at the time of birth, and PΛ(s,a,ξ) is the law of its progeny.

We first define the included chain of Y at jump times, denoted by (σk ,Wk )k≥0, where
σk denotes the k th jump time, while Wk denotes the k th position after the jump (note that
the size of a jump might be 0 if the process remains on the father’s branch). Let (σ0,W0) ∈
R+×X and define the process iteratively as follows. Given (σk ,Wk ), k ≥ 0,

• we set σk+1 =σk +τ(Wk ),

• we choose Wk+1 according toΠεk+1 (Wk , ·), where εk+1 is a Bernoulli random variable
with parameter 1/2 independent from the rest of the process.

If σk+1 =+∞, then the Markov chain is stopped. We then formally define (Yt )t∈[0,+∞) as

Yt =
+∞∑
k=0

1σk≤t<σk+1ϑt−σk Wk ,

where, for all u ∈R+ and (s, a,ξ) ∈X, ϑu(s, a,ξ) = (s, a+u,ξ). Note that the first component
of Yt represents the current individual’s type, the second component its age at time t , and
the third component its progeny.

We also define the process (Nt )t≥0 counting the number of jumps

Nt =
+∞∑
k=1

1σk≤t .

Note that, since b is assumed to be bounded, we have

σn −−−−−→
n→+∞ +∞ almost surely.

We define the filtration (Gt )t≥0 by

Gt =σ
(
(σk ≤ t <σk+1)∩ A, where k ≥ 0 and A ∈σ(W0,W1, . . . ,Wk )

)
.
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Proposition 4. The process (N ,Y ) is a Markov process with respect to the filtration G . More
precisely, for all f ∈ L∞ (Z+×X) and all t ,u ≥ 0,

E
(

f (Nt+u ,Yt+u) | Gt
)=Qu f (Nt ,Yt )

where Q is the semi-group1 associated to the process (N ,Y ), and is equal to

Qu f (k, y) = 1u<τ(Yt ) f (Nt ,ϑuYt )+
+∞∑
j=0

∫
X
Π(Yt ,dw)Eσ,W

τ(Yt ),w

(
1σ j≤t+u<σ j+1 f (Nt +1+ j ,ϑu−σ j W j )

)
,

with Π = 1
2Π0 + 1

2Π1 and where Eσ,W
σ0,W0

denotes the expectation with respect to the law of
(σk ,Wk )k starting from (σ0,W0).

The proof of Proposition 4 is detailed in Section A.1. We emphasize that it does not
make direct use of the Poissonian nature of the jump mechanism.

In the construction of Y , and more precisely for the construction of (σk ,Wk ), we use
a sequence of independent Bernoulli random variables (εk )k≥0, which encodes the choice
of Y to remain on the father’s branch (εk = 0) or to continue on the child’s branch (εk = 1)
at each time σk . The following result gives a representation of µn in terms of (N ,Y ). In the
following proposition, Y (s)

t and Y (a)
t denote respectively the first and second component

of Yt , with value in S and R+ respectively. In particular, since Y (a)
t should be interpreted

as the age of the individual chosen by Y at time t , the quantity t −Y (a)
t corresponds to its

birth date.

Proposition 5. For all measurable sets A ⊂ S and B ⊂ R+ and all n ∈ Z+, we have, for all
t ≥ 0 and all s0 ∈S,

µn(s0, A× (B ∩ [0, t ])) =
∫
MP (S×R+)

Ps0 (dξ)EY
s0,0,ξ

(
1Y (s)

t ∈A,t−Y (a)
t ∈B 2Nt 1∑Nt

i=1 εi=n

)
,

where EY
s0,0 denotes the expectation with respect to te law of Y when the law of Y0 is δs0 ⊗

δ0 ⊗PJ
s0

. In particular,

ν(s0, A×B) =
∫
MP (S×R+)

Ps0 (dξ)EY
s0,0,ξ

(
1Y (s)

t ∈A,t−Y (a)
t ∈B 2Nt

)
.

The proof of Proposition 5 is detailed in Section A.2. As the proof of Proposition 4, it
does not make direct use of the Poissonian nature of the jump mechanism.

3 Malthusian properties of the associated semi-group of op-
erators

In this section, we check that our model defines a Malthusian process, as coined by Olofs-
son [40]. For the sake of simplicity, we assume in this section that S is compact, and that

1by a semi-group, we mean that Qs+t =QsQt for all s, t ≥ 0.
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there exists bm < bM ∈ R+ such that b(s, a) is positive for all (s, a) ∈ S× [bm ,bM ]. We also
assume that, for all s0, a0 ∈ S×R+, γs0,a0 admits a positive density with respect to a refer-
ence measure π on S, denoted by gs0,a0 (s) ∈ (0,+∞) at point s, and which is continuous
with respect to (s0, s, a0) ∈S2 ×R+.

The Malthusian parameter associated to the process X (see [27, Section 5]) is given by

α := inf
{
λ ∈R, such that νλ(s,S ×R+) <+∞ for some s ∈S}

.

Defining the semi-group (Rt )t≥0 by

δ(s0,a0)Rt := E(s0,a0)

(
1Zt∈· exp

(∫ t

0
b(Zu)du

))
, ∀(s0, a0) ∈S×R+,

we prove that α is equal to the leading eigenvalue −λ0 of the semi-group (Rt )t≥0 when
λ0 is negative. We first state some spectral properties of R, including the existence of λ0,
related to the theory of quasi-stationary distributions (we refer the reader to [11, 46, 37]
for general references to quasi-stationary distributions). The proof of the following result
is postponed to Section B.1.

Theorem 1. Under the above assumptions, there exists a non-negative measurable function
η :S×R+ →R+, constants λ0 ∈R, λ1 ∈ (0,+∞), C > 0 and a probability measureΥ onS×R+
such that, for all t ≥ 0 and all (s0, a0) ∈S×R+,∥∥∥eλ0tδ(s0,a0)Rt −η(s0, a0)Υ

∥∥∥
T V

≤Ce−λ1t .

Moreover, if λ0 < 0, the Malthusian parameter α of the branching process X equals −λ0.

Remark 2. The proof of Theorem 1 can be adapted to a more general setting (for instance
with S not compact, or b(s, ·) positive on a segment that depends on s), at the expense of
additional technicalities both in the presentation of the assumptions and in the proofs.

For any measurable function f :S×R+ →R and all t ≥ 0, we define the function

ft (s0, a0) = 1a0≤t f (s0, t −a0),

so that, if s0 and a0 are respectively the type and the birth time of one individual, the num-
ber ft (s0, a0) is the function f of the type and age of the individual at time t . This is similar
to the χ-counted population introduced in Section 7 of [27]. The next result thus describes
the evolution of the expectation of the types and ages distribution across the population
and is an immediate corollary of Theorem 1 and Proposition 3 (recall that Xn denotes the
empirical measure of types and ages in the population at generation n). In particular, in
this situation, it shows that the population size evolves exponentially fast with exponential
parameter −λ0 and that the telomere length distribution across the population converges
to a limit which does not depend on the initial distribution of the population ages and
telomere lengths.
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Corollary 2. For all bounded measurable function f :S×R+ →R and all t ≥ 0,

E(s0,a0)

( ∑
n≥0

Xn( ft )

)
= δ(s0,a0)Rt f .

In particular, for all s0 ∈S,∣∣∣∣eλ0tE(s0,a0)

( ∑
n≥0

Xn( ft )

)
−η(s0, a0)Υ( f )

∣∣∣∣≤Ce−λ′
1t‖ f ‖∞,

where λ0,Υ are from Theorem 1 and for some constants C ,λ′
1 > 0.

We expect that e−λ0t ∑
n≥0 Xn( ft ) converges almost surely toward η(s0, a0)Υ( f ) times a

non-negative random variable. This type of results is classical in the setting of multi-types
branching processes and for branching processes with irreducible reproduction measure
(see for instance [40]). The extension of these results to the situation at hand (where the
reproduction measure is allowed to be reducible) is the subject of an ongoing work.

4 Numerical simulations

We analyze numerically the influence of the attrition parameter µ and the birth rate curve
on the limit distributionΥ, and on the dynamic of the telomere length distribution across
the population. We set: S= [lmin, lmax], where lmin = 5 kbp and lmax = 25 kbp; α= 0.017;

γ(s0,a)(ds) = cγ1s∈[lmin,lmax] exp

(
− (s − (s0 + (a −ap )α−µ))2

2σ2

)
ds, ∀(s0, a) ∈S×R+ →R+,

where σ= 0.1, cγ = 1/
∫ lmax

lmin
e− (u−µ)2

2σ2 du and µ= 20α (different values of µ in {0, . . . ,25α} will
also be considered); and

b(a) = b0(a + s f ), ∀a ≥ 0,

where b0 is chosen according to the demographical empirical curve of year 1960 (see Fig-
ure 1) and s f = 0 is a shift parameter (different values of s f in [−10,10] will be considered).

We first investigate the influence of the parametersµ (see Figure 5) and s f (see Figure 6)
on the long time limiting distribution Υ (see Theorem 1), which should be interpreted as
the equilibrium telomere length distribution. As expected, a higher attrition before repro-
duction age (i.e. a higher parameterµ) leads to lower telomere lengths in the population at
equilibrium, while a higher parental age at birth (i.e. a higher parameter s f ) entails higher
telomere lengths in the population at equilibrium. An important feature of the model is
that the equilibrium distribution is highly concentrated on the boundaries of the admissi-
ble limits. Figure 7 (resp. Figure 8) displays the influence of µ (resp. s f ) on the population’s
mean telomere length at equilibrium. We observe that the influences of µ and s f are non-
linear. Depending on the parameters value, even a slight decrease in the attrition parame-
ter µ or an increase in the parental age at birth s f can have drastically different effects; the

12



Figure 5: Density of the telomere’s length distribution for values of µ in
{8α,10α,12α,14α,16α,18α}, where α = 0.017 is fixed (µ = 8α corresponds to the
rightmost curve and µ= 18α to the leftmost curve).

Figure 6: Density of the telomere’s length distribution for values of s f in
{10,12,14,16,18,20} (s f = 10 corresponds to the leftmost curve and s f = 20 to the right-
most curve).
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Figure 7: Population mean telomere length at equilibrium, as a function of µ/α, when µ

ranges from 8×α to 18×α, and α= 0.017 is fixed.

Figure 8: Population mean telomere length at equilibrium, as a function of s f , when s f

ranges from 10 to 20.
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model displays a transition phase phenomenon, with approximate critical values µ= 12.5
and s f = 15.

To investigate the time evolution of the telomere length in the population, we study the
speed of convergence toward the equilibrium distributionΥ (see Theorem 1) and the time
evolution of the mean telomere length in the population. We display the total variation
distance between the population telomere length distribution at time t and the telomere
length distribution at equilibrium, given an initial population of individuals with age 0 and
telomere length 18 kbp. Figure 9 (resp. Figure 10) displays the evolution of this distance
to equilibrium for different values of µ (resp. s f ). We observe that the speed of conver-
gence to the equilibrium depends on the parameters, and that, in all cases, the conver-
gence to equilibrium arises after several thousands years. Figure 11 (resp. Figure 12) dis-
plays the evolution of the population’s mean telomere length over time for several values
of µ (resp. s f ). The mean also stabilises after several thousand years for most parameter
choices, and a drift in the telomere length can be sustained for several thousand years. In
such a time frame, mean attrition before reproduction and parental age at birth is subject
to important changes, because of the demographic evolution.

As a result, our model suggests that the limiting distributionΥ does not materialize in a
population where the parameters may change in a time window of less than one thousand
year, so that, in empirical measures, the population is not observed at equilibrium, and
that the drift in the population’s mean telomere length can be sustained during very long
periods of time. This is coherent with the findings of [25].

Figure 9: Total variation distance as a function of time between the population’s telom-
ere distribution and telomere length distribution at equilibrium. Values of µ are in
{8α,10α,12α,14α,16α,18α}, with α= 0.017.

Finally, we investigate the situation where the parameters µ or s f undergo a change at
some time point. Namely, we consider the situation where µ or s f are constant for 5000
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Figure 10: Total variation distance as function of time between the population’s telomere
length distribution and the telomere length distribution at equilibrium. Values of s f are in
{10,12,14,16,18,20}.

years and then shift to a new value for 1000 years. Our main focus is to study the impact
of this evolution on the relations among individuals between telomere length at puberty
(s0), father age at birth (FAB), parental birth year (PBY) and birth date (BD), and to com-
pare the behaviour of our model to the findings of [25]. Figure 13 displays the evolution
of the individual telomere length as a function of PBY adjusted for FAB, when µ = 13 for
individuals born in the time interval [0,5000] and µ = 16 for individuals born in the time
interval (5000,6000]. Figure 14 displays the evolution of the individual telomere length as
function of BD adjusted for PBY and FAB for individuals born after time 5000. Contrarily
to the findings of [25], we do not observe a significant negative correlation in this last fig-
ure (different time frames do not change this fact). The negative impact of the change of µ
at time 5000 does not materialize in this plot and thus our model can not support the hy-
pothesis of [25] that an event negatively impacted the human population telomere length
a century ago. This suggests that other mechanisms (either a statistical artefact or another
type of demographical event) are the cause of the negative correlation found in the above
cited study.

5 Conclusion

We constructed a probabilistic model representing the evolution of telomere length in a
population across multiple generations. Various mathematical results, including many-
to-one formulas and Perron-Frobenius type results, have allowed us to exhibit interesting
properties concerning the asymptotic behaviour of the average telomere length in a pop-
ulation. These results were confirmed empirically by experiments in silico. In particular,
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Figure 11: Population mean telomere length as a function of time, for different values of
µ. The highest trajectory corresponds to µ= 8α and the lowest trajectory to µ= 18α, with
α= 0.017.

we found the definite influence of the attrition parameter, as well as that of a particular
modification of the reproduction rate using a time shift of the fertility curve.

We also studied the link between the length of the telomeres of individuals and the
date of birth of their ancestor, adjusted by its age at the birth of the descendants. We were
able to compare these numerical results with the literature. In particular, we could not
confirm that an increase in the attrition parameter led to a negative correlation between
telomere length and date of birth adjusted by FAB and PBY, as observed in [25]. Under-
standing the discrepancy between the empirical and numerical datas will require further
investigations.

The proposed model contains important simplifications; it therefore appears neces-
sary to study richer models. The integration of heterogeneity within the population with
attrition factors depending on the geographical or societal environment would be more
realistic, using a richer type space S (see also [23] and references therein) or building a
model using branching processes in random environment (see e.g. [3, 29, 31, 32, 45]). Tak-
ing into account the influence of certain migratory phenomena would also be interesting
(see for instance [4, 30, 35, 42]). Finally, it seems essential to move towards the implemen-
tation of a bisexual model (see e.g. [12, 13, 20, 22, 26, 38]).
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Figure 12: Population mean telomere length as a function of time, for different values of
s f . The highest trajectory corresponds to s f = 20 and the lowest trajectory to s f = 10.

A Proof of the results of Sections 2.2 and 2.3

We first prove Propositions 4 and 5 from Section 2.3 and conclude with Proposition 3 from
Section 2.2.

A.1 Proof of Proposition 4

We have, setting f = 1A×B ,

E0,y0

(
f (Nt+u ,Yt+u) | Gt

)= +∞∑
k=0

+∞∑
i=k

E0,y0

(
1Nt=k 1Nt+u=i f (i ,Yt+u) | Gt

)
.

Fix i ,k ∈Z+. Assume first that i ≥ k +1, and set j = i − (k +1). We define the σ-algebra
Fk+1 = σ

(
(σ0,W0), (σ1,W1), . . . , (σk+1,Wk+1)

)
. Then, for any Gt -measurable non-negative

random variable Z , the random variable Z 1Nt=k is Fk+1-measurable and hence

E0,y0

(
Z 1Nt=k 1Nt+u=i f (i ,Yt+u)

)
= E0,y0

[
E
(
Z 1Nt=k 1Nt+u=i f (i ,Yt+u) |Fk+1

)]
= E0,y0

[
Z 1Nt=k E

(
1σi≤t+u<σi+1 f (i ,ϑt+u−σi Wi ) |Fk+1

)]
= E0,y0

[
Z 1Nt=k E

W
σk+1,Wk+1

(
1σ j≤t+u<σ j+1 f (i ,ϑt+u−σ j W j )

)]
,

where EW
u,w is the expectation with respect to the law of (σn ,Wn)n≥0 whenσ0 = u and W0 =
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Figure 13: Sample of the population and linear regression lines for s0 as a function of PBY
adjusted for FAB, when µ= 13 for individuals born in the time interval [0,5000] and µ= 16
for individuals born in the time interval (5000,6000]. The regression line has coefficient
−2.97×10−4.

w . Now, since σk+1 = t +τ(Yt ), we have

E0,y0

(
Z 1Nt=k 1Nt+u=i f (i ,Yt+u)

)
= E0,y0

[
Z 1Nt=k E

W
t+τ(Yt ),Wk+1

(
1σ j≤t+u<σ j+1 f (i ,ϑt+u−σ j W j )

)]
= E0,y0

[
Z 1Nt=k E

W
τ(Yt ),Wk+1

(
1σ j≤t+u<σ j+1 f (i ,ϑu−σ j W j )

)]
.

Using the fact that Wk+1 ∼Π(Yt , ·), we deduce that

1Nt=k E
(
1Nt+u=i f (i ,Yt+u) |Gt

)= 1Nt=k

∫
X
Π(Yt ,dw)EW

τ(Yt ),w

(
1σ j≤t+u<σ j+1 f (i ,ϑu−σ j W j )

)
.

Assume now that i = k ∈Z+, so that

E
[
1Nt=k 1σi≤t+u<σi+1 f (i ,Yt+u) | Gt

]= 1Nt=k 1u<τ(Yt ) f (k,ϑuYt )

Using the last two equations, we deduce that, for all k ≥ 0,

E
(
1Nt=k f (i ,Yt+u) | Gt

)= 1Nt=k

[
1u<τ(Yt ) f (k,ϑuYt )

+
+∞∑
j=0

∫
X
Π(Yt ,dw)EW

τ(Yt ),w

(
1σ j≤t+u<σ j+1 f (Nt +1+ j ,ϑu−σ j W j )

)]
Summing over k ≥ 0, we finally obtain

E
(

f (Yt+u) | Gt
)= 1u<τ(Yt ) f (Nt ,ϑuYt )

+
+∞∑
j=0

∫
X
Π(Yt ,dw)EW

τ(Yt ),w

(
1σ j≤t+u<σ j+1 f (Nt +1+ j ,ϑu−σ j W j )

)
,
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Figure 14: Sample of the population and linear regression lines for s0 as a function of BD
adjusted for FAB and PBY, when µ = 13 for individuals born in the time interval [0,5000]
and µ = 16 for individuals born in the time interval (5000,6000]. The regression line has
coefficient −2.97×10−4.

which concludes the proof.

A.2 Proof of Proposition 5

Let us introduce the sequence of random indices (In)n≥1, defined inductively by I0 = 0
and, for all n ≥ 0,

In+1 = inf{k ≥ In +1, such that εk = 1}.

One easily checks that, with this notation, W (a)
In

= 0 for all n ≥ 1 almost surely and that, for
all t ≥ 0,

(Y (s)
t ,Y (a)

t ) = ∑
n≥0

1τn≤t<τn+1 (V (s)
n , t −τn), (1)

where τn :=σIn and Vs =WIn (so that V (s)
n :=W (s)

In
). We prove the result by induction on n.

Step 1. Initialization of the inductive procedure.
For all w0 = (s0,0,ξ0) ∈X, we have, setting f = 1A×B ,

E
σ,W
0,w0

[
f (V (s)

0 ,τ0)2Nt 1τ0≤t<τ1

]
= f (w0,0)Eσ,W

0,w0

[
2Nt 1τ0≤t<τ1

]= f (w0,0).
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Then, for all w0 = (s0,0,ξ0) ∈X, we have, setting f = 1A×B ,

EW
0,w0

[
f (V (s)

1 ,τ1)2Nt 1τ1≤t<τ2

]
= EW

0,w0

[
f (V (s)

1 ,τ1)2Nτ1 1τ1≤t E
W
τ1,V1

(
2Nt−u 1t−u<τ1

)
|u=τ1

]
= EW

0,w0

[
f (V (s)

1 ,τ1)2Nτ1 1τ1≤t

]
= ∑

k≥0
EW

0,w0

[
1I1=k f (ξ(s)

0 (k),ξ(a)
0 (k))2k 1

ξ(a)
0 (k)≤t

]
= ∑

k≥0
f (ξ(s)

0 (k),ξ(a)
0 (k))1

ξ(a)
0 (k)≤t 2k PW

0,w0
(I1 = k)

= ∑
k≥0

f (ξ(s)
0 (k),ξ(a)

0 (k))1
ξ(a)

0 (k)≤t .

Integrating with respect to PJ
s0

and using (1), we deduce that∫
MP (S×R+)

PJ
s0

(dξ0)EY
(s0,0,ξ0)

[
f (Y (s)

t , t −Y (s)
t )2Nt 1τ1≤t<τ2

]
=µ(s0, A×B ∩ [0, t ]).

This concludes the first step, since
∑Nt

k=0εk = 1 is equivalent to τ1 ≤ t < τ2.

Step 2. Induction.
Fix n ≥ 1 and assume that the property holds true for this value of n. For all w0 = (s0,0,ξ0) ∈
X, we have

EW
0,w0

[
f (V (s)

n+1,τn+1)1τn+1≤t<τn+2 2Nt
]

= EW
0,w0

[
1τ1≤t 2Nτ1 EW

τ1,V1

(
f (V (s)

n ,τn)1τn≤t<τn+1 2Nt−u
)
|u=τ1

]
= EW

0,w0

[
1τ1≤t 2Nτ1 EW

0,V1

(
f (V (s)

n ,τn +u)1τn≤t−u<τn+1 2Nt−u
)
|u=τ1

]
= EW

0,w0

[
1τ1≤t 2Nτ1 µn(

V (s)
1 , A× ((B −τ1)∩ [0, t −τ1])

)]
,

where we used the law of V1 conditionally to V (s)
1 and the induction assumption. Similarly

as in Step 1, we now decompose over the possible values of I1 and obtain

EW
0,w0

[
f (V (s)

n+1,τn+1)1τn+1≤t<τn+2 2Nt
]

= ∑
k≥0

µn(
ξ(s)

0 (k), A× ((B −ξ(a)
0 (k))∩ [0, t −ξ(a)

0 (k)])
)

1
ξ(a)

0 (k)≤t .

Using (1) and integrating with respect to PJ
s0

, we obtain∫
MP (S×R+)

PJ
s0

(dξ0)EY
(s0,0,ξ0)

[
f (Y (s)

t , t −Y (s)
t )2Nt 1τn+1≤t<τn+2

]
=

∫
S×R+

µ(s0,ds ×du)µn(
s, A× ((B −u)∩ [0, t −u])

)
1u≤t

=
∫
S×R+

µ(s0,ds ×du)µn(
s, A× (B ∩ [0, t ]−u)

)
=µn+1(s0, A× (B ∩ [0, t ])).

This concludes the proof.
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A.3 Proof of Proposition 3

We denote by (Rt )t≥0 the semi-group associated to the Feynman-Kac expression of the
proposition. Namely, for all f ∈ L∞(S×R+) and all (s0, t0) ∈S×R+, we set

Rt f (s0, t0) = EZ
s0,t0

[
f (Zt ) exp

(∫ t

0
b
(
Zu

)
du

)]
.

In the setting of Poissonian reproduction mechanism of Section 2.2, it is also clear that
Z := (Y (s),Y (a)) is a continuous time pure jump Markov process, with jump rate b(Z) and
jump distribution 1

2

(
δZt +γZ ⊗δ0

)
. We denote by T the semi-group of defined by

Tt f (s0, t0) = EZ
s0,t0

(
f (Zt )2Nt

)
,

were Nt is the number of jumps of Z before time t . Of course, this coincides with the last
expression of Proposition 5.

Our aim is to show that R and T coincide when they are considered as semi-group
over the set of uniformly continuous functions UC 0

b . This will imply that they coincide
on bounded measurable functions and hence, using Proposition 5, that the equality of
Proposition 3 holds true.

We first show that both semi-groups can be restricted to UC 0
b .

Lemma 1. For all f ∈UC 0
b and all t ≥ 0, Rt f ∈UC 0

b and Tt f ∈UC 0
b .

Proof. The process (Zt ,
∫ t

0 b(Zu)du)t≥0 is a PDMP which satisfies the conditions of [14,
Theorem 27.6]. Hence, for any value of m > 0, the application

gm : (s0, t0) 7→ EZ
s0,t0

[
f (Zt ) exp

(
m ∧

∫ t

0
b
(
Zu

)
du

)]
is bounded and continuous. But

∫ t
0 b

(
Zu

)
du is uniformly bounded by t ‖b‖∞, which im-

plies that, choosing m large enough, Rt f is continuous and bounded. Moreover, b has
compact support, say K . Hence, for all (s0, t0) ∉ K , (Zt )t≥0 starting from (s0, t0) is equal to
(s0, t0 + t ) almost surely and hence Rt f (s0, t0) = f (s0, t0 + t ) which is uniformly compact
over (s0, t0) ∉ K . Since Rt f is continuous over K , it is also uniformly continuous over K ,
and we deduce that Rt f ∈UC 0

b .
Similarly, the process (Zt , Nt )t≥0 is a PDMP which satisfies the conditions of [14, Theo-

rem 27.6]. Hence, for any value of m > 0, the application

hm : (s0, t0) 7→ EZ
s0,t0

[
f (Zt ) 2m∧Nt

]
is bounded an continuous. But∣∣EZ

s0,t0

[
f (Zt ) 2Nt

]−EZ
s0,t0

[
f (Zt ) 2m∧Nt

]∣∣≤ ‖ f ‖∞EZ
(s0,t0)

∣∣2Nt 1Nt>m
∣∣ ,

where the right hand side converges to 0 uniformly in (s0, t0) ∈S×R+ since b is bounded.
This implies that Tt f is the uniform limit of a sequence of bounded continuous functions,
and hence that it is itself bounded continuous. As in the case of Rt f , we deduce that
Tt f ∈UC 0

b .
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We then obtain the strong continuity (see [43, Definition 2.1]) of the semi-groups when
they are defined over UC 0

b .

Lemma 2. The semi-groups R and T are strongly continuous semi-groups on UC 0
b , which

means that ∥∥Rt f − f
∥∥∞ −−−→

t→0
0,

and similarly for T .

Proof. Since the proof is similar for both semi-group, we only detail it for T . Let f ∈UC 0
b ,

ε> 0 and δ> 0 such that

∀ z1, z2, d(z1, z2) < δ⇒| f (z1)− f (z2| < ε.

For any z0 = (s0, a0) ∈S×R and t < δ, we have∣∣Tt f (s0, a0)− f (s0, a0)
∣∣= ∣∣Es0,a0

(
f (Zt )2Nt 1Nt=0

)+Es0,a0

(
f (Zt )2Nt 1Nt≥1

)− f (s0, a0)
∣∣

≤ ∣∣ f (s0, a0 + t )P(Nt = 0)− f (s0, a0)
∣∣+‖ f ‖∞Es0,a0

(
2Nt 1Nt≥1

)
≤ ∣∣ f (s0, a0 + t )− f (s0, a0)

∣∣+‖ f ‖∞P(Nt ≥ 1)+‖ f ‖∞Es0,a0

(
2Nt 1Nt≥1

)
.

The term
∣∣ f (s0, a0 + t )− f (s0, a0)

∣∣ goes to 0 when t → 0, uniformly in (s0, a0), since f
is uniformly continuous. Moreover, Es0,a0

(
2Nt 1Nt≥1

)
is bounded (since Nt is stochastically

dominated by a Poisson random variable) and goes to 0 since Nt is non-decreasing right
continuous at time 0, with N0 = 0.

This concludes the proof of Lemma 2.

We now use the characterization of strongly continuous semi-groups by their infinites-
imal generators (see [43] Definition 1.1 and Theorem 2.6).

Lemma 3. Fix f ∈UC 0
b . Then there exists a constant C > 0 such that∥∥∥∥Rt f − f

t
− Tt f − f

t

∥∥∥∥∞
≤C t .

In particular, R and T have the same infinitesimal generator over UC 0
b and hence they

coincide.

Proof. Let z0 = (s0, a0) ∈S×R+. We have

Rt f (z0) = EZ
z0

(
f (Zt )1N t=0e

∫ t
0 b(Zu )du

)
+EZ

z0

(
f (Zt )21N t=1e

∫ t
0 b(Zu )du

)
+EZ

z0

(
f (Zt )2Nt 1N t≥2e

∫ t
0 b(Zu )du

)
= f (s0, a0 + t )e

∫ t
0 b(s0,a0+u)du e−∫ t

0 b(s0,a0+u)du

+
∫ t

0
du b(s0, a0 +u)e−∫ u

0 b(s0,a0+v)dv

×
∫
S
γs0,a0+u(ds) f (s, t −u)e

∫ u
0 b(s0,a0+v)dv+∫ t−u

0 b(s,v)dv

+O (t 2),
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with O (t 2) uniform in the initial position z0 ∈S×R+, where the first term is obtained from
the definition of the process Z before its first jump-time, the second term from the jump
rate of the process and its jump measure, and the third one from the fact that b is uniformly
bounded and Nt is stochastically dominated by a Poisson random variable with intensity
‖b‖∞ (hence uniformly in z0 ∈S×R+).

Similarly,

Tt f (z0) = EZ
z0

(
f (Zt ) 2Nt 1Nt=0

)+EZ
z0

(
f (Zt ) 2Nt 1Nt=1

)+Ez0

(
f (Zt ) 2Nt 1Nt≥2

)
= f (s0, a0 + t )+

∫ t

0
du b(s0, a0 +u)e−∫ u

0 b(s0,a0+v)dv
∫
S
γs0,a0+u(ds) f (s, t −u)+O (t 2),

where O (t 2) is uniform in (s0, a0) (since the increment rate of Nt is uniformly bounded,
the probability that 2 or more jump occur in time t is of order t 2).

Hence we obtain∣∣Rt f (z0)−Tt f (z0)
∣∣= ∫ t

0
du b(s0, a0 +u)e−∫ u

0 b(s0,a0+v)dv
∫
S
γs0,a0+u(ds)| f (s, t −u)|

×
∣∣∣e∫ u

0 b(s0,a0+v)dv+∫ t−u
0 b(s,v)dv −1

∣∣∣+O (t 2).

But the term
∣∣∣e∫ u

0 b(s0,a0+v)dv+∫ t−u
0 b(s,v)dv −1

∣∣∣ is of smaller than 2‖b‖∞t for t small enough

(uniformly in z0 ∈S×R+), and we then deduce that∥∥Rt f (z0)−Tt f (z0)
∥∥=O (t 2),

which concludes the proof of the first assertion.
The fact that R and T have the same infinitesimal generator is a direct consequence of

its definition (see [43, Definition 1.1]). Since they are strongly continuous semi-group, we
deduce from [43, Theorem 2.6] that they are equal.

We have proved that, for all fixed t ≥ 0, Tt f = Rt f for all functions f ∈ UC 0
b . Since

S×R+ is a metric space, this implies that Tt f = Rt f for all bounded Borel function f (see
for instance [47, Lemma 2.3]). This and Proposition 5 conclude the proof of Proposition 3.

B Proof of the results of Sections 3

This section is devoted to the proof of Theorem 1 and Corollary 2.

B.1 Proof of Theorem 1

Let RM be the sub-Markov semi-group defined as

δ(s0,a0)R
M
t : = e−‖b‖∞tEZ

a0,s0

[
exp

(∫ t

0
b(Zu)du

)
1Zt∈·1t<τM

]
= EZ

a0,s0

[
exp

(∫ t

0
−κ(Zu)du

)
1Zt∈·1t<τM

]
,
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where τM = inf{t ≥ 0, Z (a)
t ≥ bM } and κ(z) = ‖b‖∞−b(z) for all z ∈S×R+. The semi-group

RM is the semi-group of the process Y M , defined as follows : it evolves as Z but with an
additional killing rate κ and killed when its age reaches τM . By killed, we mean as usual
that the process is sent to a cemetery point ∂ ∉S×R+ at the killing time, in a càdlàg way.
We denote by τM

∂
:= inf{t ≥ 0, Y M

t ∈ ∂} its killing time, and by EM (resp. PM ) the expectation
(resp. the probability) associated to the law of Y M , so that

δ(s0,a0)R
M
t = EM

s0,a0

[
1Y M

t ∈·1t<τM
∂

]
, ∀(s0, a0) ∈S× [0,bM ).

Lemma 4. There exists positive constants λM
0 ∈ (0,‖b‖∞), λ1 > 0, C > 0, t0 ≥ 0, a probability

measure ΥM on S× [0,bM ) and a bounded function η : [0,bM ) → (0,+∞) such that, for all
t ≥ t0 and all (a0, s0) ∈ [0,bM )×S,∥∥∥eλ

M
0 tδ(s0,a0)R

M
t −η(s0, a0)ΥM

∥∥∥
T V

≤C e−λ1t η(s0, a0).

Proof. Our strategy if to check that Assumption A from [9] is satisfied by the process Y M .
Once this is done, Theorem 1.1 in this reference states that∥∥∥eλ

M
0 tδ(s0,a0)R

M
t −δ(s0,a0)R

M
t 1S×[0,bM )ΥM

∥∥∥
T V

≤C e−λ1t δ(s0,a0)R
M
t 1S×[0,bM ).

Now, using Theorem 2.1 and Equation (3.2) in [10], we deduce that there exists t0 > 0 such
that, for all t ≥ t0, ∣∣∣eλM

0 tδ(s0,a0)R
M
t 1S×[0,bM ) −η(s0, a0)

∣∣∣≤Cη(s0, a0)e−λ1t ,

up to a change in the constant C , and for some positive bounded function η :S×[0,bM ) →
R+. The last two equations allow to conclude the proof of Lemma 4 (the fact that 0 <λM

0 <
‖b‖∞ is a consequence of the fact that κ≤ ‖b‖∞ and 0 <ΥM (κ) < ‖b‖∞).

It remains to check Assumption A, which is stated as follows.
Assumption A. There exists a probability measure β on S× [0,bM ) and positive constants
tA, cA,c ′A, such that

A1. for all x ∈S× [0,bM ),
PM (

Y M
tA

∈ · | tA < τM
∂

)≥ cAβ,

A2. for all x ∈S× [0,bM ) and all t ≥ 0,

PM
β (t < τM

∂ ) ≥ c ′AP
M
x (t < τM

∂ ).

The end of the proof, divided in two steps, is dedicated to checking A1 and A2 respectively.

Step 1. Checking A1. We denote by τ1 ≤ ·· · ≤ τn ≤ ·· · the successive jump times of Y M ,
with τn = +∞ if there are less than n jumps. Using the definition of Y M and the strong
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Markov property at time τn , we obtain that, for all s0 ∈S and all n ≥ 0,

PM
(s0,0)

(
Y M
τn+1

∈ dsn+1 × {0},τn+1 ∈ dan+1
)

=
∫
S×R+

PM
(s0,0)

(
Y M
τn

∈ dsn × {0},τn ∈ dan
)
PM

(sn ,0)

(
Y M
τ1

∈ dsn+1, τ1 ∈ dan+1 −an
)

≥
∫
S×R+

PM
(s0,0)

(
Y M
τn

∈ dsn × {0},τn ∈ dan
)

1an≤an+1≤an+bM e−2‖b‖∞bM

× b(sn , an+1 −an) gsn ,an+1−an (sn+1)π(dsn+1)λ(dan+1)

≥
∫
S×R+

PM
(s0,0)

(
Y M
τn

∈ dsn × {0},τn ∈ dan
)

b g π(dsn+1)λ|[an+bm ,an+bM ](dan+1),

whereλdenotes the Lebesgue measure onR, and where b := e−2‖b‖∞bM infs∈S,a∈[bm ,bM ] b(s, a)
and g := infs0,s∈S,a∈[bm ,bM ] gs0,a(s) are positive (by continuity of b and g and by the com-
pactness of S). Using an iterative procedure, we deduce that, for all n ≥ 1,

PM
(s0,0)

(
Y M
τn

∈ dsn × {0},τn ∈ dan
)≥ bn g nπ(dsn)

(
λ|[bm ,bM ]

)⊗n(dan).

But
(
λ|[bm ,bM ]

)⊗n admits a positive continuous density on (nbm ,nbM ), hence there exist
n ≥ 1, c > 0 and d > bM such that(

λ|[bm ,bM ]
)⊗n(dan) ≥ cλ|[d−bM ,d+bm ](dan),

so that
PM

(s0,0)

(
Y M
τn

∈ dsn × {0},τn ∈ dan
)≥ c bn g nπ(dsn)λ|[d−bM ,d+bm ](dan). (2)

Now, let s0 ∈ S and a0 ∈ (0,bM ). We have, for all measurable A ⊂ S and all ` < `′ ∈
[0,bm],

PM
(s0,a0)

(
Y M

d+bm
∈ A× [`,`′]

)
≥PM

(s0,a0)

(
Y M

d+bm
∈ A× [`,`′], τn+1 ∈ [d ,d +bm]

)
≥PM

(s0,a0)

(
Y M
τn+1

∈ A× {0}, d +bm −τn+1 ∈ [0,bm]∩ [`,`′], τn+2 > τn+1 +bm
)

≥PM
(s0,a0)

(
Y M
τn+1

∈ A× {0}, d +bm −τn+1 ∈ [`,`′]
)

e−2‖b‖∞bm ,

where we used the strong Markov property at time τn+1 and the fact that the total jump rate
of Y M (including the killing rate) is uniformly bounded by 2‖b‖∞. Using the strong Markov
inequality at time τ1, we deduce that, for all measurable A ⊂S and all `< `′ ∈ [0,bm),

PM
(s0,a0)

(
Y M

d+bm
∈ A× [`,`′]

)
≥ e−2‖b‖∞bm

∫
[a0,bM ]

λ(da1)e−2‖b‖∞bM b(s0, a1)
∫
S
γs0,a1 (ds1)

×PM
(s1,0)

(
Y M
τn

∈ A× {0}, d +bm −τn −a1 ∈ [`,`′]
)

≥ e−4‖b‖∞bM

∫
[a0,bM ]

λ(da1)b(s0, a1)
∫
S
γs0,a1 (ds1)c bn g nπ(A)

×λ|[d−2bM ,d+bm ]([d +bm −a1 +`,d +bm −a1 +`′])
= e−4‖b‖∞bM

∫
[a0,bM ]

λ(da1)b(s0, a1)c bn g nπ(A)λ([l , l ′]),
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where we used (2) for the second inequality. Since {d +bm < τ∂} ⊂ {τ1 ∈ [a0,bM ]}, we also
have

PM
(s0,a0) (d +bm < τ∂) ≤

∫
[a0,bM ]

λ(da1)b(s0, a1),

so that Assumption A1 holds true with tA = d +bm , cA = e−4‖b‖∞bM c bn g n bm , and

β(ds ×da) =π(ds)λ|[0,bm ](da)/bm .

Step 2. Checking A2. On the one hand, for all (s0, a0) ∈S× [0,bM ) and all t ≥ bm +bM , we
obtain, using the strong Markov property at time τ1,

P(s0,a0) (t < τ∂) ≤ g
∫
S
π(ds)P(s,0) (t −a0 < τ∂)

≤ g
∫
S
π(ds)

∫
[0,bm ]

da

bm
P(s,a) (t −a0 −a < τ∂)

≤ g
∫
S
π(ds)

∫
[0,bm ]

da

bm
P(s,a) (t −bM −bm < τ∂) , (3)

where we used the fact thatP(s,a) (u < τ∂) decreases with u, and where g := sup(s0,a,s)∈S×[0,bM ]×S,
which is finite by continuity of g and compactness of S. On the other hand, using Step 1
(where we can and do assume without loss of generality that tA ≥ bm +bM ),

Pβ
(
X tA ∈ ·)≥Pβ(tA < τ∂)cAβ,

so that, using the Markov property at time tA,

Pβ (t < τ∂) ≥Pβ(tA < τ∂)cAPβ (t − tA < τ∂) ≥Pβ(tA < τ∂)cAPβ (t −bm −bM < τ∂) . (4)

Since Pβ(tA < τ∂) > 0, we deduce from (3) and (4) that Assumption A2 holds true with

c ′A = Pβ(tA < τ∂)cA

g
.

This conludes the proof of Lemma 4.

We introduce now the semi-group R∞ defined by

δ(s0,a0)R
∞
t := e−‖b‖∞tδ(s0,a0)Rt = EZ

a0,s0

[
exp

(∫ t

0
−κ(Zu)du

)
1Zt∈·

]
,

which is the semi-group of the Markov process Y ∞ defined as follows : it evolves as Z
but with an additional killing κ (without killing when at time τM , contrarily to Y M ). Then
we have, denoting by E∞ the expectation associated to the law of Y ∞, for all (s0, a0) ∈
S× [0,bM ) and all bounded measurable function f :S×R+∪ {∂} →R such that f (∂) = 0,

E∞(s0,a0)

(
f (Y ∞

t )1t<τ∂
)= EM

(s0,a0)

(
f (Y M

t )1t<τ∂
)+E∞(s0,a0)

(
f (Y ∞

t )1τM≤t<τ∂
)

. (5)
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We will need the following technical result to exhibit the limiting behavior of R∞
t , when

t →+∞. Our strategy can be used in general when a reducible process satisfies Assump-
tion A in a given communication class, and can go into another set where the killing rate
is strictly larger than the parameter λM

0 associated to the process restricted to the initial
communication class.

Lemma 5. There exists a constant C > 0 such that, for all t ≥ 0 and all (s, a) ∈S×R+,

P∞
(s,a) (τM ≤ t < τ∂) ≤C e−λM

0 t .

Proof. We have, using the Markov property at time τM ,

P∞
(s,a) (τM ≤ u < τ∂) ≤

∫ t

0
PM

(s,a)(τ∂ ∈ du)e−‖b‖∞(t−u)

≤ ‖b‖∞e−‖b‖∞t
∫ t

0
dv PM

(s,a)(v < τ∂)e‖b‖∞v

≤ ‖b‖∞e−‖b‖∞t
∫ t

0
dv c e−λM

0 v e‖b‖∞v ,

where c > 0 is a constant (see Equation (2.4) of [9]). The computation of the right hand
term concludes the proof.

We denote byΥexit the law of Y M
τM
∂
− under PM

ΥM
.

Lemma 6. There exist positive constants C ,λ′′ such that, for all bounded measurable func-
tion f and all∣∣∣∣eλM

0 tE∞ΥM

(
f (Y ∞

t )1τM≤t<τ∂
)−λ0

∫ ∞

0
du eλ

M
0 u

∫
S×{bM }

Υexit(ds,da)E∞(s,a)

(
f (Y ∞

u )1u<τ∂
)∣∣∣∣≤ ‖ f ‖∞Ce−λ′′t .

Proof. Under PM
ΥM

, τM
∂

is independent from Y M
τM
∂
− and is an exponential random variable

with parameter λM
0 (these are well known results from the theory of quasi-stationary dis-

tributions, see for instance [11]). Hence, using the strong Markov property at time τM for
Y ∞ and using the facts that Y ∞

τM
= Y ∞

τM− and that, up to time τM ∧τ∂ (excluded), Y M and
Y ∞ have the same law, we obtain

E∞ΥM

(
f (Y ∞

t )1τM≤t<τ∂
)= EM

ΥM

(
1τM

∂
≤t , Y M

τM
∂

−∈S×{bM }E
∞
Y M
τM
∂

−

(
f (Yt−v )1t−v<τ∂

)
|v=τM

)
.

Then

eλ
M
0 tE∞ΥM

(
f (Y ∞

t )1τM≤t<τ∂
)= ∫ t

0
dv λM

0 eλ
M
0 (t−v)

∫
S×{bM }

Υexit(ds,da)E∞(s,a)

(
f (Y ∞

t−v )1t−v<τ∂
)

=λ0

∫ t

0
duλM

0 eλ
M
0 u

∫
S×{bM }

Υexit(ds,da)E∞(s,a)

(
f (Y ∞

u )1u<τ∂
)

.
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Now, since a = bM entails that E∞(s,a)

(
f (Y ∞

u )1u<τ∂
) ≤ ‖ f ‖∞e−‖b‖∞u with ‖b‖∞ > λM

0 , one
obtains∫ +∞

t
duλM

0 eλ
M
0 u

∫
S×{bM }

Υexit(ds,da)E∞(s,a)

(
f (Yu)1u<τ∂

)≤ ‖ f ‖∞ e−(‖b‖∞−λM
0 )t

‖b‖∞−λM
0

,

which concludes the proof.

The first term on the right hand side of (5) multiplied by eλ
M
0 t converges, according to

Lemma 4. Let us focus on the second term. We fix ε > 0 such that (1− ε)‖b‖∞ > λM
0 and

obtain

E∞(s0,a0)

(
f (Yt )1τM≤t<τ∂

)= E∞(s0,a0)

[
1εt<τM≤tE

∞
YτM

(
f (Yt−u)1t−u<τ∂

)
|u=τM

]
(6)

+E∞(s0,a0)

(
1τM≤εtE

∞
YτM

(
f (Yt−u)1t−u<τ∂

)
|u=τM

)
. (7)

On the one hand, the term (7) is bounded by ‖ f ‖∞e−‖b‖∞(1−ε)t . On the other hand, setting
g (y,u) = Ey

(
f (Yt−u)1t−u<τ∂

)
, we have

E∞(s0,a0)

[
1εt<τM≤t g (YτM ,τM )

]= EM
(s0,a0)

[
1εt<τME

∞
Yεt

(
g (YτM ,τM +εt )1τM≤(1−ε)t

)]
= e−εtλM

0 η(s0, a0)E∞ΥM

(
g (YτM ,τM +εt )1τM≤(1−ε)t

)
+O (e−(λM

0 +λ1)εt ) sup
(s,a)∈S×R+

E∞(s,a)

(
g (YτM ,τM +εt )1τM≤(1−ε)t

)
,

where O (e−λ1t ) is uniform in (s0, a0) by Lemma 4. We note that, according to Lemma 5,

E∞(s,a)

(
g (YτM ,τM +εt )1τM≤(1−ε)t

)≤ ‖ f ‖∞P∞
(s,a) (τM ≤ (1−ε)t < τ∂) ≤C‖ f ‖∞e−(1−ε)λM

0 t .

As a consequence (using also the bound on (7)), there exists a constant λ′ > 0 such that

E∞(s0,a0)

(
f (Yt )1τM≤t<τ∂

)= e−εtλM
0 η(s0, a0)E∞ΥM

(
g (YτM ,τM +εt )1τM≤(1−ε)t

)+O (e−(λM
0 +λ′)t ),

(8)

= e−εtλM
0 η(s0, a0)EM

ΥM

(
g (YτM−,τM +εt )1τM≤(1−ε)t

)+O (e−(λM
0 +λ′)t ),

(9)

uniformly in (s0, a0) ∈ S× [0,bM ). But the same procedure as in the proof of Lemma 6
shows that

EM
ΥM

(
g (YτM−,τM +εt )1τM≤(1−ε)t

)= ∫ (1−ε)t

0
duλM

0 e−λM
0 u

∫
S×{bM }

Υexit(dy)g (y,u +εt )

= eελ
M
0 t

∫ t

εt
dvλM

0 e−λM
0 v

∫
S×{bM }

Υexit(dy)g (y, v).
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Since,Υexit(dy)-almost surely, g (y, v) is bounded by ‖ f ‖∞e−‖b‖∞(t−v), we have∣∣∣e−ελM
0 tEM

ΥM

(
g (YτM−,τM +εt )1τM≤(1−ε)t

)−EM
Υ0

(
g (YτM ,τM )1τM≤t

)∣∣∣
≤ ‖ f ‖∞

∫ εt

0
dvλM

0 e−λM
0 v e−‖b‖∞(t−v)

= ‖ f ‖∞λM
0 e−‖b‖∞t eε(‖b‖∞−λM

0 )t −1

‖b‖∞−λM
0

= e−λM
0 t O (e−(1−ε)(‖b‖∞−λM

0 )t ).

Using the last inequality, combined with (9), (5) and Lemma 6, we deduce that∣∣∣eλM
0 tE∞(s0,a0)

(
f (Yt )1t<τ∂

)−η(s0, a0)Υ( f )
∣∣∣≤C ‖ f ‖∞ e−λt ,

for some positive constants C > 0 and λ> 0, where

Υ( f ) =ΥM ( f )+λ0

∫ ∞

0
du eλ

M
0 u

∫
S×{bM }

Υexit(ds,da)E∞(s,a)

(
f (Yu)1u<τ∂

)
. (10)

The previous analysis was valid for (s0, a0) ∈S× [0,bM ). When (s0, a0) ∈S× [bM ,+∞),
then the killing rate of the process is ‖b‖∞, so that the last inequality holds true (up to a
modification of C and λ) with η(s0, a0) = 0.

Taking λ0 =λM
0 −‖b‖∞, this concludes the proof of the first part of Theorem 1.

Let us now prove the last assertion of the theorem. Fix λ>−λ0. From Corollary 1, we
now that, for all s0 ∈S and all t ≥ 0,

νλ(s0,S× [0, t ]) = e−λtEZ
s0,0

(
eλZ (a)

t e
∫ t

0 b(Zu )du
)
= e(‖b‖∞−λ)tE∞(s0,0)

(
eλY (a)

t 1t<τ∂
)

where Z is the process described in Section 2.2. Note that Y (a)
t ≤ bM for all t ≤ τM and

since Y (a)
t = t −τM for all t ∈ [τM ,τ∂). Hence, ne the one hand,

E∞(s0,0)

(
eλY (a)

t 1t<τ∂∧τM

)
≤ eλbMP∞

s0,0 (t < τ∂∧τM ) .

But ‖b‖∞−λ< ‖b‖∞+λ0 =λM
0 , so that, according to (10),

e(‖b‖∞−λ)tE∞(s0,0)

(
eλY (a)

t 1t<τ∂∧τM

)
−−−−→
t→+∞ 0. (11)

On the other hand, we have

E∞(s0,0)

(
eλY (a)

t 1τM≤t<τ∂
)
= eλtE∞(s0,0)

(
e−λτM 1τM≤t<τ∂

)
≤ eλtEM

(s0,0)

(
e−λτM 1τM=τ∂

)
≤ eλtEM

(s0,0)

(
e−λτ∂

)
.
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But the killing time τ∂ under PM
(s0,a0)has an exponential queue with parameter λM

0 (see for
instance Proposition 2.3 in [9]), so that there exists a constant C > 0 such that

E∞(s0,0)

(
eλY (a)

t 1τM≤t<τ∂
)
≤Ceλt

∫ t

0
e−λue−λM

0 u du =C exp(λt )
e−(λ+λM

0 )t −1

λ+λM
0

Hence, using the fact that ‖b‖∞−λM
0 =−λ0 <λ,

E∞(s0,0)

(
eλY (a)

t 1τM≤t<τ∂
)
≤C

e(‖b‖∞−λ−λM
0 )t

λ+λM
0

−−−−→
t→+∞ 0.

Finally, we have proved that, for all λ>−λ0,

νλ(s0,S×R+) = lim
t→+∞νλ(s0,S× [0, t ]) = 0,

so that α≤−λ0.
Finally, one observes that, according to the already proved first part of Theorem 1,

ν−λ0 (s0,S× [0, t ]) ≥ eλ0tδs0,0Rt −−−−→
t→+∞ η(s0, a0)Υ(1S×R+) > 0,

so that α≥−λ0. This concludes the proof of Theorem 1.

References

[1] A. Aviv and E. Susser. Leukocyte telomere length and the father’s age enigma: implica-
tions for population health and for life course. International journal of epidemiology,
42(2):457–462, 2013.

[2] R. Azaï s, J.-B. Bardet, A. Génadot, N. Krell, and P.-A. Zitt. Piecewise deterministic
Markov process—recent results. In Journées MAS 2012, volume 44 of ESAIM Proc.,
pages 276–290. EDP Sci., Les Ulis, 2014.

[3] V. Bansaye. Surviving particles for subcritical branching processes in random envi-
ronment. Stochastic Process. Appl., 119(8):2436–2464, 2009.

[4] V. Bansaye and S. Méléard. Stochastic models for structured populations, volume 16.
Springer, 2015.

[5] A. Benetos, S. Toupance, S. Gautier, C. Labat, M. Kimura, P. M. Rossi, N. Settembre,
J. Hubert, L. Frimat, B. Bertrand, et al. Short leukocyte telomere length precedes clini-
cal expression of atherosclerosis: the blood-and-muscle model. Circulation research,
122(4):616–623, 2018.

[6] J. Bertoin. Markovian growth-fragmentation processes. Bernoulli, 23(2):1082–1101,
2017.

31



[7] T. Bourgeron, Z. Xu, M. Doumic, and M. T. Teixeira. The asymmetry of telomere repli-
cation contributes to replicative senescence heterogeneity. Scientific reports, 5(1):1–
11, 2015.

[8] J. L. Buxton, R. G. Walters, S. Visvikis-Siest, D. Meyre, P. Froguel, and A. I. Blakemore.
Childhood obesity is associated with shorter leukocyte telomere length. The Journal
of Clinical Endocrinology & Metabolism, 96(5):1500–1505, 2011.

[9] N. Champagnat and D. Villemonais. Exponential convergence to quasi-stationary
distribution and Q-process. Probab. Theory Related Fields, 164(1):243–283, 2016.

[10] N. Champagnat and D. Villemonais. Uniform convergence to the q-process. Electron.
Commun. Probab., 22:7 pp., 2017.

[11] P. Collet, S. Martínez, and J. San Martín. Quasi-stationary distributions. Probability
and its Applications (New York). Springer, Heidelberg, 2013. Markov chains, diffu-
sions and dynamical systems.

[12] D. J. Daley. Extinction conditions for certain bisexual galton-watson branching pro-
cesses. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 9(4):315–
322, 1968.

[13] D. J. Daley, D. M. Hull, and J. M. Taylor. Bisexual galton–watson branching processes
with superadditive mating functions. Journal of applied probability, 23(3):585–600,
1986.

[14] M. H. Davis. Markov models & optimization, volume 49. CRC Press, 1993.

[15] M. H. A. Davis. Piecewise-deterministic markov processes: A general class of non-
diffusion stochastic models. Journal of the Royal Statistical Society: Series B (Method-
ological), 46(3):353–376, 1984.

[16] T. De Meyer, E. R. Rietzschel, M. L. De Buyzere, D. De Bacquer, W. Van Criekinge, G. G.
De Backer, T. C. Gillebert, P. Van Oostveldt, and S. Bekaert. Paternal age at birth is
an important determinant of offspring telomere length. Human molecular genetics,
16(24):3097–3102, 2007.

[17] S. Entringer, K. de Punder, C. Buss, and P. D. Wadhwa. The fetal programming of
telomere biology hypothesis: an update. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences, 373(1741):20170151, 2018.

[18] S. Entringer, E. S. Epel, R. Kumsta, J. Lin, D. H. Hellhammer, E. H. Blackburn, S. Wüst,
and P. D. Wadhwa. Stress exposure in intrauterine life is associated with shorter
telomere length in young adulthood. Proceedings of the National Academy of Sci-
ences, 108(33):E513–E518, 2011.

32



[19] R. W. Frenck, E. H. Blackburn, and K. M. Shannon. The rate of telomere sequence loss
in human leukocytes varies with age. Proceedings of the National Academy of Sciences
of the United States of America, 95 10:5607–10, 1998.

[20] C. Fritsch, D. Villemonais, and N. Zalduendo. The multi-type bisexual galton-watson
branching process. arXiv preprint arXiv:2206.09622, 2022.

[21] D. A. Glei, N. Goldman, R. A. Risques, D. H. Rehkopf, W. H. Dow, L. Rosero-Bixby, and
M. Weinstein. Predicting survival from telomere length versus conventional predic-
tors: a multinational population-based cohort study. PLoS one, 11(4), 2016.

[22] M. González and M. Molina. On the limit behaviour of a superadditive bisexual
galton–watson branching process. Journal of applied probability, 33(4):960–967,
1996.

[23] P. Haccou, P. Haccou, P. Jagers, V. A. Vatutin, and V. Vatutin. Branching processes: vari-
ation, growth, and extinction of populations. Number 5. Cambridge university press,
2005.

[24] T. E. Harris. The theory of branching processes. Die Grundlehren der Mathematis-
chen Wissenschaften, Bd. 119. Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1963.

[25] B. Holohan, T. De Meyer, K. Batten, M. Mangino, S. C. Hunt, S. Bekaert, M. L.
De Buyzere, E. R. Rietzschel, T. D. Spector, W. E. Wright, et al. Decreasing initial
telomere length in humans intergenerationally understates age-associated telomere
shortening. Aging Cell, 14(4):669–677, 2015.

[26] D. M. Hull. A survey of the literature associated with the bisexual galton-watson
branching process. Extracta mathematicae, 18(3):321–343, 2003.

[27] P. Jagers. General branching processes as markov fields. Stochastic Processes and their
Applications, 32(2):183–212, 1989.

[28] P. Jagers and O. Nerman. The growth and composition of branching populations.
Advances in applied probability, 16(2):221–259, 1984.

[29] N. Kaplan. Some results about multidimensional branching processes with random
environments. The Annals of Probability, pages 441–455, 1974.

[30] K. Kawazu and S. Watanabe. Branching processes with immigration and related limit
theorems. Theory of Probability & Its Applications, 16(1):36–54, 1971.

[31] N. Keiding. Population growth and branching processes in random environments.
Proceedings of the 9th Internatmnul Biometric ConJrrmce, pages 149–165, 1976.

[32] G. Kersting and V. Vatutin. Discrete time branching processes in random environment.
John Wiley & Sons, 2017.

33



[33] C. Laberthonnière, F. Magdinier, and J. D. Robin. Bring it to an end: Does telomeres
size matter? Cells, 8(1), 2019.

[34] K. H. Lee and M. Kimmel. Stationary distribution of telomere lengths in cells with
telomere length maintenance and its parametric inference. Bulletin of Mathematical
Biology, 82(12):150, 2020.

[35] Z.-h. Li. Branching processes with immigration and related topics. Frontiers of Math-
ematics in China, 1:73–97, 2006.

[36] S. Mattarocci, P. Berardi, R. Langston, S. Marcand, M. Doumic, Z. Xu, and M. T. Teix-
eira. The effect of the shortest telomere on cell proliferation. In TELOMERES &
TELOMERASE, 2021.

[37] S. Méléard and D. Villemonais. Quasi-stationary distributions and population pro-
cesses. Probab. Surv., 9:340–410, 2012.

[38] M. Molina. Two-sex branching process literature. In Workshop on branching processes
and their applications, pages 279–293. Springer, 2010.

[39] K. Nordfjäll, Å. Larefalk, P. Lindgren, D. Holmberg, and G. Roos. Telomere length and
heredity: Indications of paternal inheritance. Proceedings of the National Academy of
Sciences, 102(45):16374–16378, 2005.

[40] P. Olofsson. Size-biased branching population measures and the multi-type x log x
condition. Bernoulli, 15(4):1287–1304, 2009.

[41] P. Olofsson and M. Kimmel. Stochastic models of telomere shortening. Mathematical
biosciences, 158(1):75–92, 1999.

[42] A. Pakes. Branching processes with immigration. Journal of Applied Probability,
8(1):32–42, 1971.

[43] A. Pazy. Semigroups of linear operators and applications to partial differential equa-
tions, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

[44] I. Shalev, T. E. Moffitt, K. Sugden, B. Williams, R. M. Houts, A. Danese, J. Mill, L. Ar-
seneault, and A. Caspi. Exposure to violence during childhood is associated with
telomere erosion from 5 to 10 years of age: a longitudinal study. Molecular psychia-
try, 18(5):576–581, 2013.

[45] W. L. Smith and W. E. Wilkinson. On branching processes in random environments.
The Annals of Mathematical Statistics, pages 814–827, 1969.

[46] E. A. van Doorn and P. K. Pollett. Quasi-stationary distributions for discrete-state
models. European J. Oper. Res., 230(1):1–14, 2013.

34



[47] V. S. Varadarajan. Weak convergence of measures on separable metric spaces.
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