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Abstract: In this work, we develop mathematical models of the immune response to respiratory viral
infection, taking into account some particular properties of the SARS-CoV infections, cytokine storm
and vaccination. Each model consists of a system of ordinary differential equations that describe
the interactions of the virus, epithelial cells, immune cells, cytokines, and antibodies. Conventional
analysis of the existence and stability of stationary points is completed by numerical simulations
in order to study the dynamics of solutions. The behavior of the solutions is characterized by large
peaks of virus concentration specific to acute respiratory viral infections. At the first stage, we
study the innate immune response based on the protective properties of interferon secreted by virus-
infected cells. Viral infection down-regulates interferon production. This competition can lead to the
bistability of the system with different regimes of infection progression with high or low intensity.
After that, we introduce the adaptive immune response with antigen-specific T- and B-lymphocytes.
The resulting model shows how the incubation period and the maximal viral load depend on the
initial viral load and the parameters of the immune response. In particular, an increase in the initial
viral load leads to a shorter incubation period and higher maximal viral load. The model shows that
a deficient production of antibodies leads to an increase in the incubation period and even higher
maximum viral loads. In order to study the emergence and dynamics of cytokine storm, we consider
proinflammatory cytokines produced by cells of the innate immune response. Depending on the
parameters of the model, the system can remain in the normal inflammatory state specific for viral
infections or, due to positive feedback between inflammation and immune cells, pass to cytokine
storm characterized by the excessive production of proinflammatory cytokines. Finally, we study the
production of antibodies due to vaccination. We determine the dose–response dependence and the
optimal interval of vaccine dose. Assumptions of the model and obtained results correspond to the
experimental and clinical data.

Keywords: innate immune response; adaptive immune response; cytokine storm; vaccination;
mathematical modeling

1. Introduction

Despite medical and technological advances, infectious diseases represent the leading
causes of mortality worldwide. According to the WHO data, respiratory infections appear
in the list of primary causes of death globally [1], and its mortality rate has increased in
the last decades [2,3]. The ongoing COVID-19 pandemic emphasizes the need for a deeper
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understanding of the interaction of respiratory infections and the immune response of the
host, especially in the case of viral pathogens.

The immune response to viral infection has some generic properties common for all
pathogens, but it also has some particular features corresponding to the specific type of
virus [4,5]. In general, after the ingress of virus into the host, two forms of immune defense
are triggered. The first one, innate immunity, is the immediate reaction mechanism to limit
tissue damage and prevent viral spread. It is characterized by its broad specificity, which is
mediated through certain cell types (e.g., macrophages), cytokines and chemokines [6].

Cells of the innate immune response recognize antigen-infected cells, exhibit cytotoxic
activity and begin to rapidly produce interferon inhibiting virus replication [7]. The most
important members of the superfamily that belong to type I are IFN-α/β, and only IFN-γ
belongs to type II [8,9]. Both type I and II interferon have antiviral activity [10]. The
functions of type III interferon largely coincide with the functions of type I interferon. Both
of these groups modulate the immune response after the pathogen is detected in the body,
their functions being mainly antiviral and antiproliferative. However, type III interferon
is less inflammatory and exhibits slower kinetics than type I interferon. In addition, the
immunomodulatory effect of type III interferon is limited [11,12].

Interferon affects the virus indirectly by triggering the transcription of a number of
genes after binding to the corresponding receptor on the cell, which leads to the production
of proteins that block the replication of the virus in this cell [13].

Non-specific innate immune response provide the organism with more time for the
development of the adaptive immune response. Naive T- and B-lymphocytes, after their
differentiating into more specific immune cells (e.g., CD8+ and plasma cells) contribute
to the elimination of infected cells, to the secretion of pathogen-specific immunoglobulins
and to the generation of immunological memory [14].

Respiratory disease viruses enter the host with inhaled liquid droplet or via direct
contact with the nose or eyes with infected surfaces [15]. Once it reaches the respiratory
tract, the virus begins to spread in the host by infecting epithelial cells. Antigen-presenting
cells (APCs), such as dendritic cells (DCs), macrophages (MP) and monocytes are also
subjected to the presence of infection [16]. Infected antigen-presenting and epithelial cells
stimulate the secretion of various cytokines, including interferon, which modulates the
functions of the immune system and induces antiviral defense [17]. It is worth mentioning
that certain viruses, such as MERS-CoV, are capable of replicating in naive and activated
human monocytes, macrophages and DCs [18]. This differentiates SARS-CoV and SARS-
CoV-2 viruses, which abortively infect these cells [19,20].

Specific cells of the adaptive immune response T- and B-lymphocytes undergo clonal
expansion stimulated in an antigen-specific manner. Naive T-lymphocytes from thymus and
naive B-lymphocytes from the bone marrow [21] circulate throughout the lymphatic system
until they meet the APCs. The latter carry MHC molecules on their surface through which
they present antigen fragments (peptides). Some T-lymphocytes recognize the presence
of foreign peptides due the affinity of their T-cell receptor (TCR) to the antigen [22]. This
antigen presentation process stimulates the activation of T-lymphocytes, leading to their
proliferation and differentiation, mainly in cytotoxic T-lymphocytes (CTL) or CD8+ cells, T
helper cells or CD4+ cells, and regulatory T cells [23]. CD8+ cells, also known as T killers,
are responsible for destroying infected cells, while T helper cells, when contacting naive
B-lymphocytes, activate them and stimulate their proliferation [24]. Effector B-lymphocytes,
also known as plasma cells, initiate the production of virus-specific immunoglobulins or
antibodies [25].

Mathematical modelling is widely used for the investigation of the immune response
to viral infections (see the literature review in [26]). The most recent immunological models
are described in [27]. Antigen presentation by the MHC molecules is considered in [28] in
the framework of a multi-scale model of immune response. An ODE system describing
the innate immune response to the influenza virus was proposed in [29–31]. Other models,
also proposed for the influenza virus, analyze the effects of the adaptive immune response,
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leaving aside the innate immune response and the role of APCs [32,33]. There are also
more general models that describe the evolution of different infections considering the
implicit effect of the host adaptive immune response [34]. In [35,36], the main stages of the
immune response, including APCs, are considered. In [37], the authors propose a system
of 15 differential equations with 48 parameters to predict the innate and adaptive immune
response to the influenza A virus infection. It takes into account the role of APCs, including
DCs and use delay differential equations (DDEs) to account for the time delays between
viral infection, immune cell activation, and migration of immune effector cells between
tissue and lymphoid compartments.

Recent articles have focused on the interaction between SARS-CoV-2 and the immune
response. A model with three ODEs was proposed [38] to describe the elements of the
adaptive immune response, such as CD8+, IgG and IgM. The DDE model in [39] contains
11 equations, including one for body temperature. The ODE models presented in [40,41]
highlight the importance of natural killer cells in viral containment at the stage of innate
immune response. In [42], the authors proposed a multi-scale model for the evaluation
of various therapeutic strategies for the treatment of infected patients. A mathematical
model that considers the immune response associated with COVID-19 reproduces the
clinical observations recorded after carrying out the Cuban immunotherapy protocols [43].
However, these models, for the most part, based on the pre-existing models of influenza A
virus, leave out some parts of the immune response, such as cytokines, including mainly
interferon, or particular features of SARS-CoV-type viruses.

Proinflammatory citokines are intrinsically related to the immune response. During
the COVID-19 pandemic, the acute increase in proinflammatory cytokine levels has become
a common complication. Similarly, mathematical models of the immune response have
been focused on the understanding the emergence of cytokine storm. In [44], the authors
proposed a set of 15 ODEs, which includes an equation representing cytokines, in order
to study this phenomenon. The ODEs system analyzed in [45] focuses on the balance
between pro- and anti-inflammatory cytokines. A biochemical model was considered
in [46] specifying cytokines involved in this process. In [47], the normal immune response to
infection was simulated and, through the variation of the system parameters, the conditions
in which cytokine storm can arise were established. Finally, a previous version of the
cytokine storm model, evaluated in Section 3.3 of this study, was presented in [48]. Despite
the importance of better understanding the cytokine storm, mathematical models in this
area are still scarce.

In this work, we develop a model of immune response to SARS-CoV-2 infection
beginning from the innate immune response. Further, we include the adaptive immune
response, investigate cytokine storm and vaccination. Section 2 provides the proposed
mathematical models and the parameters identification process is described. Section 3
includes the main results of this work. Section 3.1 is devoted to the study of the interaction
between the viral infection and innate immune response. In Section 3.2, we analyze
the dynamics of the innate and adaptive immune responses together and determine the
influence of antibodies in the containment and elimination of the virus. In Section 3.3, we
introduce proinflammatory cytokines in the model of the innate immune response in order
to study the emergence of cytokine storm. Section 3.4 describes the pathway of antibody
production due to vaccination. In Section 3.5, a sensitivity analysis of the parameters used
in the models is carried out. We conclude with Section 4, where we discuss the biological
interpretation of the results, the validation of the proposed models and their limitations.

2. Materials and Methods

Considering the complexity of the immune response to the antigen, we use in this
study the multi-compartment modeling method. The kinetics of the immune response to
viral infection is considered in consecutive mathematical models described below.
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2.1. Mathematical Model of Innate Immune Response

A pathogen entering the host initially confronts the first defense line of the organism
constituted by the innate immune response. Adhering to lex parsimoniae, we schematize the
innate immune response in Figure A1. This scheme contains the key aspects of the innate
immune response, taking into account the peculiarities of SARS-type viruses, described in
the introduction.

The following assumptions were considered for the innate immune response model. In-
fected epithelial cells produce new viral particles [49] and stimulate interferon secretion [17].
Viruses infect macrophages and dendritic cells [16]. SARS-CoV-infected macrophages and
dendritic cells do not produce viral particles [19,20] but they stimulate interferon secre-
tion [17]. The virus down-regulates interferon secretion [50], while interferon suppresses
the production of viral particles by infected epithelial cells [50,51].

We consider the following system of differential equations for the interaction between
the innate immune response and viral infection:

dE
dt

= k1(E0 − E)− k2EV, (1)

dEv

dt
= k2EV − σ1Ev, (2)

dC
dt

= k3(C0 − C)− k4CV, (3)

dCv

dt
= k4CV − σ2Cv, (4)

dV
dt

= f (I)Ev − σ3V, (5)

dI
dt

= g(V)(Cv + κEv)− σ4 I, (6)

where
f (I) =

f0

1 + f1 I
, g(V) = g0e−g1V .

In Equation (1) for the concentration of uninfected epithelial cells E, the first term in
the right-hand side describes their influx proportional to the difference with the normal
physiological value E0. Epithelial cells are differentiated from basal cells which are not
infected by the SARS-CoV-2 virus. Expression k2EV in this equation characterizes the rate
of infection of uninfected cells by virus.

The same term determines the production rate of infected cells Ev in Equation (2),
while the second term in the right-hand side of this equation characterizes their death rate.
Equations (3) and (4) for the concentrations of uninfected antigen presenting cells C and
infected cells Cv are similar to the previous two equations.

Equation (5) for the virus concentration V describes virus production by infected
epithelial cells and virus death. The virus replication rate is inversely proportional to the
interferon concentration I. Interferon down-regulates virus replication by activating the
Jak-STAT signaling pathway [52]. The interferon kinetic is described by Equation (6) with
its production by infected epithelial cells κEv and mainly by infected APCs Cv, and its
degradation σ4 I. Interferon production is down-regulated by the virus, as it is shown for
SARS-CoV-2 [51]. Let us note that functions f (I) and g(V) are considered in different forms,
the first one being inversely linear while the second one is exponential. This choice of down-
regulating functions appears to be more appropriate for the analysis of this model. For the
same starting decay rate at 0, the exponential function decays faster. This corresponds to
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more efficient interferon down-regulation by virus than the vice versa, which seems to be
the case for SARS-CoV-2.

Innate Immune Response Model Reduction for the Study of Stationary Solutions

In this subsection, we carry out the model reduction to determine stationary points of
system (1)–(6). Equating the right-hand sides of Equations (1)–(4) to 0, we obtain

E =
k1E0

k1 + k2V
, Ev =

k1k2E0V
σ1(k1 + k2V)

, C =
k3C0

k3 + k4V
, Cv =

k3k4C0V
σ2(k3 + k4V)

.

We substitute these expressions into Equations (5) and (6):

dV
dt

= f (I)
k1k2E0V

σ1(k1 + k2V)
− σ3V, (7)

dI
dt

= g(V)

(
k3k4C0V

σ2(k3 + k4V)
+ κ

k1k2E0V
σ1(k1 + k2V)

)
− σ4 I. (8)

Set
f (I) =

f0

1 + f1 I
.

From Equation (7) for V 6= 0 we obtain

I =
a1

1 + b1V
− d1 ≡ F(V) ,

where
a1 =

k2E0 f0

f1σ1σ3
, b1 =

k2

k1
, d1 =

1
f1

,

and from Equation (8)

I = Vg(V)

(
a2

1 + b1V
+

a3

1 + b2V

)
≡ G(V) ,

where
a2 =

κk2E0

σ1σ4
, a3 =

k4C0

σ2σ4
, b2 =

k4

k3
.

Then from the equality F(V) = G(V), we get

Vg(V) =
(a1 − d1(1 + b1V))(1 + b2V)

a2(1 + b2V) + a3(1 + b1V)
. (9)

The study of stability of stationary points and dynamics of solutions is described in
Section 3.1.

2.2. Mathematical Model of Innate and Adaptive Immune Response

After clonal expansion of T- and B-lymphocytes stimulated by APCs, the adaptive
immune response acts to eliminate infected cells by means of cytotoxic T-lymphocytes
(CTL) and neutralize free virions by antibodies. Figure A2 shows the joint action of innate
and adaptive immune responses.

The following assumptions were considered for the model of adaptive immune re-
sponse. The adaptive immune response begins with the CTL response from about day 6
after infection, and early antibodies appear from day 8 [53]. Infected antigen-presenting
cells initiate an adaptive immune response by activating naive T-lymphocytes [54,55].
T-lymphocytes differentiate into CD4+ and CD8+ cells [23,56–58]. Activated cytotoxic
T-lymphocytes eliminate cells infected by the virus [59,60]. Activated T helpers induce
the differentiation of B-lymphocytes [24,61,62]. B-lymphocytes differentiate into plasma
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cells [63,64] which produce antibodies [25,65,66]. Antibodies recognize and neutralize
foreign objects, such as viruses [67–69].

The interaction between the immune response and antigen (viruses of the SARS type)
is modeled by the system of equations with two sub-systems. The first one corresponds to
the innate immune response:

dE
dt

= k1(E0 − E)− k2EV, (10)

dEv

dt
= k2EV − σ1Ev − γ1T8Ev, (11)

dC
dt

= k3(C0 − C)− k4CV, (12)

dCv

dt
= k4CV − σ2Cv − γ2T8Cv, (13)

dV
dt

= f (I)Ev − σ3V − γ3 AV, (14)

dI
dt

= g(V)(Cv + κEv)− σ4 I, (15)

and the second one to the adaptive immune response:

dTn

dt
= h0 − h1(Cv)Tn − h2(Cv)Tn, (16)

dT4

dt
= h1(Cv)Tn − σ5T4, (17)

dT8

dt
= h2(Cv)Tn − σ6T8, (18)

dBn

dt
= q0 − q1(T4)Bn, (19)

dB
dt

= q1(T4)Bn − σ7B, (20)

dA
dt

= k5B− σ8 A− γ3 AV, (21)

where

f (I) =
f0

1 + f1 I
, g(V) = g0e−g1V , h1(Cv) =

h0
1Cv

1 + h1
1Cv

,

h2(Cv) =
h0

2Cv

1 + h1
2Cv

, q1(T4) =
q0

1T4

1 + q1
1T4

.

Equations (10)–(15) correspond to the action of the innate immune response just as
in the previous section, but now we take into account its interaction with the adaptive
immune response. Thus, in Equation (11), the term γ1T8Ev describes the removal of
infected epithelial cells by CD8+ cells with an elimination rate γ1. A similar meaning has
the term γ2T8Cv in Equation (13) with the parameter γ2 that characterizes the elimination
rate of infected APCs cells Cv by CD8+ cells T8. Equation (14) is completed by the term
representing the elimination of free virions V by antibodies A with a rate constant γ3.

Equations (16)–(21) characterize the dynamics of adaptive immunity. The pool of
naive CD4 and CD8 cells we define as naive T-lymphocytes (Tn). In Equation (16), for
the concentration Tn of naive lymphocytes, h0 characterizes their influx with a constant
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rate. They differentiate into CD4+ cells with concentration T4 and CD8+ cells with T8,
with the rate depending on APC concentration Cv. The corresponding terms appear
in Equations (17) and (18) followed by the terms describing cell death.

Equation (19) describes the concentration of naive B-lymphocytes Bn with a constant
production rate q0. The second term describes the decrease in the concentration of these
B cells due to their differentiation induced by T helper cells. We neglect cell death in
Equations (16) and (19) since it is negligible in comparison with cell differentiation in the
presence of antigen. In Equation (20), the term q1(T4)Bn describes the production of plasma
cells B, and the next term characterizes their death rate. Finally, Equation (21) corresponds
to the kinetics of antibodies. Plasma cells B secrete antibodies with a production rate k5.
The antibody concentration in the host is reduced by its death rate σ8 and their depletion
in the process of virus neutralization. The analysis of this model allows us to evaluate the
action of the innate immunity together with adaptive immunity to counteract respiratory
virus infection of the SARS type.

2.3. Mathematical Model of Cytokine Storm

Cytokine storm or hypercytokinemia is a physiological reaction in which there is ex-
cessive stimulation of the innate immune system. Cytokines are mediators that participate
in the inflammatory regulation of all branches of the immune system and can act locally as
well as globally by intensifying their signal.

In the case of respiratory viruses, the infected epithelial cells and infected antigen pre-
senting cells stimulate the secretion of interferon I as the first line of defense of the organism.
Interferon in turn activates the secretion of pro-inflammatory cytokines S, such as IL-6, IL-1,
IL-2, IL-7, IL-10, granulocyte colony-stimulating factor (G-CSF), IP-10, MCP1, macrophage
inflammatory protein 1α (MIP1α) and tumor necrosis factor (TNF) [70,71]. The very pres-
ence of the virions also stimulates the secretion of these pro-inflammatory cytokines. These
secreted pro-inflammatory cytokines are responsible for regulating the proliferation and
influx of other cells of the immune system, such as dendritic cells, macrophages, prime
adaptive T and B cells C, which in turn also contribute to the secretion of pro-inflammatory
cytokines S. A dysfunctional immune response can cause this common modus operandi
of innate immunity to incite a cascade reactions that can cause the hyper-production of
cytokines [72]. This super strong reaction of the innate immune response can have a fatal
outcome for the host, as it does not give way to adaptive immune response through cyto-
toxic T cells and T helpers and can induce programmed cell death (apoptosis, necroptosis,
and autophaguia). Figure A3 visualizes the scheme of this interaction between cytokines
and immune cells.

We take into account in the model that viral infection can stimulate production of
inflammatory cytokines by infected cells and by the cells of the immune response [73,74].
Recent studies indicate that inflammatory cytokines can activate cell death, which in turn
leads to further cytokine secretion [75,76].

We consider the following system of equations to characterize the action of inflamma-
tory cytokines in innate immunity:

dE
dt

= k1(E0 − E)− k2EV, (22)

dEv

dt
= k2EV − σ1Ev, (23)

dC
dt

=
r1S

1 + r2S
+ k3(C0 − C)− k4CV, (24)

dCv

dt
= k4CV − σ2Cv, (25)
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dV
dt

= f (I)Ev − σ3V, (26)

dI
dt

= g(V)(Cv + κEv)− σ4 I, (27)

dS
dt

=
r3S

1 + r4S
C + p(V, I)− σSS, (28)

where
f (I) =

f0

1 + f1 I
, g(V) = g0e−g1V , p(V, I) =

p1V
1 + p2V + p3 I

.

The initial conditions for this system of equations and the values of parameters are
given in Appendix A.2.

For the cytokine storm study, the main changes in the model of the innate immune
response analyzed in Section 3.1 concern Equation (24) and an additional equation for
pro-inflammatory cytokines (28). Pro-inflammatory cytokines stimulate the proliferation of
macrophages with the rate r1S/(1 + r2S), as described in the first term in the right-hand
side of Equation (24). In Equation (28), the first term characterizes the secretion of pro-
inflammatory cytokines by macrophages stimulated by these cytokines. The second term
corresponds to the secretion of pro-inflammatory cytokines stimulated by the presence of
virus and down-regulated by interferon. Finally, the third term characterizes the clearance
of pro-inflammatory cytokines. The analysis of this model allows us to determine conditions
of normal and excessive inflammatory response, the latter interpreted as cytokine storm.

Model Reduction for the Study of Stationary Solutions

We begin to study system (22)–(28) with the analysis of stationary points. We obtain
from the right-hand sides of these equations the following relations:

E =
k1E0

k1 + k2V
, Ev =

k1k2E0V
σ1(k1 + k2V)

,

C =
k3C0(1 + r2S) + r1S
(k3 + k4V)(1 + r2S)

, Cv =
k4V(k3C0(1 + r2S) + r1S)

σ2(k3 + k4V)(1 + r2S)
.

Substituting them into Equations (26)–(28), we obtain

dV
dt

= f (I)
k1k2E0V

σ1(k1 + k2V)
− σ3V, (29)

dI
dt

= Vg(V)

(
k4(k3C0(1 + r2S) + r1S)
σ2(k3 + k4V)(1 + r2S)

+ κ
k1k2E0

σ1(k1 + k2V)

)
− σ4 I, (30)

dS
dt

=
r3S

1 + r4S

(
k3C0(1 + r2S) + r1S
(k3 + k4V)(1 + r2S)

)
+ p(V, I)− σSS, (31)

and from (31) we deduce

σSS =
r3S(k3C0(1 + r2S) + r1S)

(1 + r4S)(1 + r2S)(k3 + k4V)
+ p(V, I). (32)

The study of stability of stationary points and dynamics of solutions is described in
Section 3.3.

2.4. Vaccination Model

The model of immune response developed in Section 2.2 can be used to study antibody
production due to vaccination. Hence, we consider the immune response model without
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virus replication and without infected epithelial cells, which corresponds to the system
of equations:

dC
dt

= k3(C0 − C)− k4CVac, (33)

dCv

dt
= k4CVac − σ2Cv − γ2T8Cv, (34)

dVac

dt
= −σ3Vac − γ3 AVac, (35)

dTn

dt
= h0 − h1(Cv)Tn − h2(Cv)Tn, (36)

dT4

dt
= h1(Cv)Tn − σ5T4, (37)

dT8

dt
= h2(Cv)Tn − σ6T8, (38)

dBn

dt
= q0 − q1(T4)Bn, (39)

dB
dt

= q1(T4)Bn − σ7B, (40)

dA
dt

= k5B− σ8 A− γ3 AVac, (41)

where

h1(Cv) =
h0

1Cv

1 + h1
1Cv

, h2(Cv) =
h0

2Cv

1 + h1
2Cv

, q1(T4) =
q0

1T4

1 + q1
1T4

.

Here the main difference from the model proposed in Section 2.2 is the absence of the
viral replication term in the equation of viral dynamics (35); the equations corresponding
to the dynamics of epithelial cells are also absent since they are not infected and do not
participate in virus replication. Furthermore, the equation for interferon concentration is
also omitted since there is no virus replication where the interferon interferes.

2.5. Parameter Indentification

The model of innate immune response consists of 6 equations and 15 parameters. For
cytokine storm modelling, 1 equation and 8 parameters are added to the innate immune
response model. For a complete immune response model, we add 6 equations and 16 param-
eters to the model of the innate immune response, which correspond to the characteristics of
adaptive immune response. Certain parameters correspond to the values established in [37],
where a mathematical model of the immune response to influenza A virus is proposed.
These parameters include initial number of epithelial cells (E0 = 5 · 105 cells/mL), immune
response cells (C0 = 103 cells/mL), such as macrophages and dendritic cells, as well as
the rate constant of virus neutralization by an antiviral antibody unit (γ3 = 0.004 (day)−1

(units/mL)). The death rate of uninfected and infected antigen-presenting cells (k3 = 0.001
and σ2 = 2.9 day−1, respectively). Other fixed parameters, such as death rates of infected
epithelial cells (σ1 = 1.2 day−1) and virus decay rate (σ3 = 1 day−1) are established on the
basis of Refs. [29,36].

Values of parameters of the adaptive immune response, such as the killing rate of
infected epithelial cells by T8 (γ1 = 1.19 · 10−3 (cells·day)−1) and T-helper cells’ differentia-
tion rate (h0

1 = 1.51 (cells·day)−1) are determined in the works of [77] and [78], respectively.
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The parameter corresponding to the rate of antibody death (σ8 = 0.04 day−1) is determined
in Refs. [35,37,79].

The value of the interferon degradation constant (σ4 = 1 day−1) agrees with the
half-life of type I interferon ≈16 h [80,81]. Established rates of T-helper cells elimination
(σ5 = 0.023 day−1) and cytotoxic T cells elimination (σ6 = 0.031 day−1) are equivalent
to ≈30.13 and ≈22.36 days, respectively. These values are within the confidence inter-
val established for the lifetime of these cells [82]. The rate of effector B-cell elimination
(σ7 = 0.028 day−1) ≈ 24.75 days is consistent with that observed in [83].

In the model of cytokine storm, the rate constant of the elimination of proinflammatory
cytokines (σS = 0.25 day−1) is equivalent to a lifetime of 66 h. This approximation falls
within the observed elimination interval of various cytokines [84].

The next group of parameters was established on the basis of the values given in other
works. The value for the death rate of uninfected epithelial cells (k1 = 4 · 10−3 day−1) allows
us to investigate the case of the bistability of the system. This value retains the order of a
similar parameter in [37]. The virus production rate ( f0 = 1900 (cells · day)−1 (copies/mL))
is four times higher than a similar value in the work of [35]; however, this is consistent
with the observation that about 103–104 viral particles are released from one infected cell
in a day. The value of interferon secretion rate by infected cells (g0 = 500 (pg/mL) (cells
· day)−1) is four times less than in the same work. We consider such assumptions to be
permissible since the current values of the parameters do not differ radically from those
previously estimated in similar works. In addition, given the peculiarities of SARS-CoV
viruses and the construction of the model itself, these parameters may be different.

We note that for the primary qualitative assessment of the inflammatory response of
the organism in a cytokine storm, due to the generality of the model, the values of some
parameters are estimated for the first time. All parameter values are varied to assess their
role on the behavior of the system. The influence of each of the parameters on results is
evaluated and detailed below.

3. Results
3.1. Innate Immune Response
3.1.1. Stationary Solutions and Dynamical Behaviour

The variation of parameters around the reference values allowed us to identify differ-
ent regimes in the infection progression.

• Virus bi-stability. Applying the estimated values from Appendix A Table A1 in
Equation (9), we determine the presence of three positive stationary points. This
corresponds to the case of system bistability, where the first and third stationary points
are stable. The virus concentration is essentially larger in the second point compared
with the first one. The system bistability implies different dynamics depending on the
initial viral loads (Figure 1).

• Virus monostability with a large stability value. The case with a single stable point and
large virus concentration is realized for a sufficiently small interferon production
rate (g0 ≤ 373, here and further, the dimensions of the parameters are indicated in
Tables A1–A4 in Appendix A) or for a small virus clearance rate (σ3 ≤ 0.75). Decreas-
ing the value of σ3 increases the stationary virus concentration. As might be expected,
the increase in interferon clearance rate (σ4 ≥ 1.34) or in turn the increase in the virus
production rate ( f0 ≥ 2.53) also lead the system to this type of stability. Characteristic
of this stability case is the appearance of a large virus peak with either a low or high
initial viral load. For higher initial viral load, the peak is larger, and it is reached faster
(Figure 2).

• Virus monostability with a small stability value. For a small virus production rate
( f0 ≤ 1.54 or k1 ≤ 0.0031), the system becomes monostable with a small stability
value. Low virus influence on interferon production (g1 ≤ 0.0048) or high interferon
influence on virus production ( f1 ≤ 0.0008) can also induce this effect.
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• Periodic oscillations. If we decrease at the same time the values of k1 and g0, the system
manifests periodic dynamics. As can be seen in Figure 3, the position of the stationary
point coincides with that of Figure 2, which corresponds to monostability. However,
because the value of the stationary point is not large enough, the kinetics of the system
becomes characterized by a periodic behavior. The simulations in this case lead us
to deduce that the period of oscillations decreases for smaller interferon production
rate g0.

Figure 1. Left: graphical solutions of Equation (9) in the bistable case. Middle: convergence to the
first stationary point, initial viral load = 1.48 · 105. Right: convergence to the third stationary point,
initial viral load = 1.5 · 105.

Figure 2. Left: graphical solution of Equation (9) in the monostable case with a large stationary value.
Convergence to single large stationary point. Middle: initial viral load = 104. Right: initial viral
load = 106. Interferon secretion rate g0 = 350.

Figure 3. Left: graphical solution of Equation (9). Right: numerical simulations in the case of periodic
oscillations with the initial viral load=104, interferon secretion rate g0 = 275, influx rate of uninfected
epithelial cells k1 = 0.001.

Other parameters, such as the infection rate of epithelial cells by virus k2, death rate
of uninfected APCs k3, infection rate of APCs by virus k4 and death rate of infected APCs
σ2, are less essential in the sense that significant changes in their values cause only slight
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changes in the stationary values and do not affect their type of stability. The decrease in
σ1 causes a significant increase in the large stationary value. On the contrary, increasing
the value of f1 causes the small stationary value to decrease even more in the cases of
monostability with a small stability value or the first stable point in bistability.

3.1.2. Infection Dynamics with the Innate Immune Response

The system of Equations (1)–(6) was solved numerically with an ordinary differential
equation solver (solve_ivp) using the Runge–Kutta method of the fourth-order accuracy
with error estimates less than 10−8 in the programming language Python. The parameter
values and initial values of variables are described in Appendix A, Tables A1 and A4,
respectively.

Convergence to the stationary solution takes approximately t = 100 time units, though
the convergence rate depends on the initial viral load. It should be noted that the virus
monostability cases with small and with big stability values adopt the behaviors that
correspond to the first and third stable points in bistability, respectively. Due to this, we
will focus on the analysis of the behavior of the system in the bistable case. In addition, this
case is more appropriate from the point of view of the dependence of the solution on the
initial viral load.

In the case of a low initial viral load (V(0) < 148,325), the system converges to the
first stable point with the maximal viral load reached approximately after 1.5 days. The
presence of infection stimulates the production of interferon that rapidly reaches a high
concentration and stabilizes there. The moment of the maximal interferon concentration
corresponds to the inflection point on the virus graph, after which the virus concentration
tends to its stationary value. The lower the viral load is, the faster the virus converges to
its stationary value with a low virus concentration in the organism. An example of such
behavior is shown in the left panel of Figure 4.

Figure 4. Numerical simulations of system (1)–(6). Behavior of solution for different initial viral loads
in the bistable case. Left two columns: initial viral load V(0) = 141 · 103 leads to the convergence
to the first stable stationary solution. Right two columns: initial viral load V(0) = 28 · 104 leads
to convergence to the second stable stationary solution. The colors of the curves correspond to the
colors of rectangles in Figure A1.

In the case of high initial viral loads (V(0) ≥ 148,325), solution converges to the second
stable stationary solution with behavior related to observed clinical manifestations. With
small initial viral load, there is certain incubation period before the virus concentration
begins noticeable growth. The higher the initial viral load is, the shorter the incubation
period. It reaches 25.67 days for V(0) = 148,325. Additionally, a higher initial viral load leads
to a larger peak in virus concentration. Figure 5 allows us to visualize these statements.
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Figure 5. Maximal viral load (left) and incubation period (right) as functions of the initial viral
load in numerical simulations of system (1)–(6). The vertical lines are the viral load values at which
the system switched in convergence from the first to the third stationary point. The violet line
corresponds to the monostable case with one large stationary point.

One of the important properties of the considered model is that the incubation period
and maximal viral load depend on the initial viral load (Figure 5). For a high interferon
production rate (g0 = 700), the initial viral loads resulting in the change from the first to
the third stationary point should be also sufficiently large. For small initial viral loads,
the system remains at low virus concentrations without a peak of the viral load and
without a clearly identifiable incubation period. For this value of g0, transition occurs
for V(0) ≈ 2 · 105. A further increase in the initial viral load leads to the increase in the
maximal viral load and to a decrease in the incubation period.

On the other hand, a low interferon production rate (g0 = 350) leads to monostability
with a high stable stationary value. Since any initial viral load converges to a single stable
point, after reaching its peak concentration, there is no threshold value. A similar system
behavior is observed for different values of the coefficient f1, characterizing the interferon
influence on the virus production rate.

Therefore, we can deduce that a high initial viral load not only shortens the incuba-
tion period but also stimulates a more intensive virus multiplication with a larger viral
load. These conclusions are consistent with clinical observations of hospitalized and non-
hospitalized patients carried out during the SARS-CoV-2 epidemic [85,86]. Regarding
interferon, its secretion is rapidly stimulated by infection with a maximum of its concen-
tration attained shortly after that. However, an increase in the initial virus load leads to a
decrease in interferon production. We can see an example of such a behavior in Figure 4:
for the initial viral load 141 · 103, the interferon concentration reaches the value 7.62 · 104,
while with the initial viral load 28 · 104, the maximum of interferon reaches 3.84 · 103.

3.2. Innate and Adaptive Immune Response

The results of the previous section describe the reaction of the innate immune system
to respiratory infections. However, the innate immune response operates alone until about
days 6–8 post infection, with the adaptive immune response emerging after that [53].

The values of parameters of system (10)–(21) are specified in the Appendix A in
Table A1 for the innate and Table A2 for the adaptive immune response. Some param-
eter values corresponding to the adaptive immune response are unknown and they are
determined in numerical simulations based on the predicted behavior of the adaptive
immune response.

As described in [53], the adaptive immune response begins with cellular response
approximately from day 6 post infection, while early antibodies are produced from day 8.
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Based on this information, Equations (16)–(18) are incorporated into the system from day 6
of the simulated time, and Equations (19)–(21) from day 8. Figure 6 shows an example of
numerical simulations of the joint action of innate and adaptive immune responses.

Figure 6. Numerical simulation of innate and adaptive immune response in system (10)–(21). The
color code corresponds to Figure A2. Figures in the first two rows for the variables E, Ev, C, Cv, V
and I show the action of the innate immune response only (solid lines), innate immune response
with CTLs beginning from day 6 (dashed lines) and with antibodies from day 8 (dash-dot lines). The
figures of the last row show the T cells, B cells and antibodies. The initial conditions and parameter
values are specified in Tables A1–A3. Other values: initial viral load = 1.495 · 105, k5 = 1205.63.

As previously described in Section 3.1 for the innate immune response, the system
behavior differs for low and high initial viral loads. In the case of a low viral load, the
virus concentration remains sufficiently small, while the interferon concentration is high.
In the case of a high initial viral load, the virus concentration attains high values after the
incubation period, which depends on the initial viral load and other parameters.

We study how the adaptive immune response influences the dynamics of viral infec-
tion. Analysis of solutions of system (10)–(21) shows that antibodies play a key role at
this stage of immune response. It should be emphasized that the action of lymphocytes
from day 6 along with the T killers and T helpers already causes a decrease in the max-
imum concentration of the viral load and slows down the development of the disease
(Figures 6 and 7, dashed lines). However, the mere action of T cells is not sufficient to
contain the infection. The containment of the infection depends on the antibodies.

The antibodies efficacy in virus elimination can be regulated through the antibody
production rate k5. For the high initial viral loads, if the incubation period is greater than
6 days, it can be shown that a strong and effective adaptive immune response can reduce the
virus concentration even before the peak of infection appears, as observed in Figure 6. On
the other hand, if the adaptive immune response is not effective enough, i.e., the antibody
production coefficient k5 is not large enough, the incubation period can be extended up to
three times. However, since the adaptive immune response fails to eliminate the virus, a
high virus concentration is reached with a pronounced peak (maximal viral load) with the
values about 108 (copies/mL), in agreement with the clinical data (Figure 7).
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Figure 7. Numerical simulations of innate and adaptive immune responses in system (10)–(21).
Notation is similar to Figure 6. A slight decrease in the parameter k5 = 1205.62 essentially changes
the dynamics of the system due to transitioning to another regime.

Thus, Figures 6 and 7 show two different dynamics of the adaptive immune response
for the same innate immune response with a threshold transition determined by the value
of k5. For larger values of this parameter, the immune response successfully stops infection
and does not allow it to progress to high virus loads. In the second case, for slightly smaller
values of this parameter, the adaptive immune response increases the incubation period,
but it stops infection progression only after a large virus outbreak.

Figure 8 shows the dependence of the maximal viral load and of the incubation
period on the parameter k5, characterizing the antibody production rate. We consider
three different values of the initial viral load, for which the incubation period, as noted
in Section 3.1, is slightly greater than 10 days. This selection of initial viral loads allows
us to evaluate the influence of the parameter k5 in the incubation period. For each of
them, there is a critical value of parameter k5 with very different behavior of the system
below or above it (e.g., k5 = 1205.63 for V(0) = 1.495 · 105). If the antibody production
rate is below the critical value, then the maximal viral load increases with the increase in
this parameter. This seemingly paradoxical result is explained by the fact that antibodies
cannot stop infection progression but increase the incubation period. The latter leads to the
increase in the maximal viral load (Figure 7). If the antibody production rate exceeds the
critical value, then they stop infection progression and the outbreak of the viral load is not
observed (Figure 6).

Increase in the initial viral load decreases the incubation period and, as a consequence,
decreases the maximal viral load. The critical value of the parameter k5 increases with the
increase in the initial viral load.
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Figure 8. Numerical evaluations of the behavior of the virus depending on the antibodies secretion
rate k5. The vertical lines are the k5 values at which the antibodies do not allow the development of
viral infection, preventing the appearance of peaks with high virus concentrations. Left: maximal
virus load. Right: incubation period.

3.3. Cytokine Storm
3.3.1. Stationary solutions

To simplify the analysis of Equation (32), to start, we consider the case p(V, I) = 0.
The parameter values correspond to the values used in the innate immune response

model and are given in Appendix A, Table A1. Let V be a constant. Then, depending
on the values of the parameters r1, r2, r3, r4 and σS, we obtain three cases when solving
Equation (32):

• One stationary point (Figure 9b). It is globally asymptotically stable. The solution
converges to 0 under all initial conditions (Figure 9e).

• Two stationary points (Figure 9c). Stationary point S = 0 becomes unstable, while
the positive stationary point is stable. For any positive initial condition, the solution
converges to the positive stationary point (Figure 9f).

• Three stationary points (Figure 9a). The convergence of the solution to the first or
third stationary points depends on the initial value of S(0). If the initial condition
is less than the value of the second stationary point (green line S2 = 6.53), then the
solution converges to the first stationary point S1 = 0. For all other initial conditions,
the solution converges to the third stationary point S3 = 13.35 (Figure 9d).

The proposed parameter values allow us to observe cases of mono- and bistability.
Taking into account the above parameters, we now proceed to study the behavior of the
system at p(V, I) > 0.

3.3.2. Different Regimes of Inflammatory Response

In this section, we analyze the dynamics of the behavior of the system of Equations (22)–(28)
to study the cytokine storm, assuming the initial concentration of the virus given (V(0) =
2.6 · 105). We vary the concentration of immune response cells producing inflammatory
cytokines. Depending on the value of the parameters, this system may have one or two
stable stationary points (Figures 10 and 11).
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Figure 9. Graphical solutions of Equation (32) with V = 0, p(V, I) = 0 and the values of parameters
(a) r1 = 3, r2 = 0.1, r3 = 1, r4 = 0.1, σS = 0.25; (b) r1 = 3, r2 = 0.1, r3 = 1, r4 = 0.1, σS = 0.3;
(c) r1 = 1.4, r2 = 0.8, r3 = 1, r4 = 0.5, σS = 0.01. Figures (d), (e) and (f) show the convergence to
the stable stationary points (a), (b) and (c), respectively.

Let V and I be positive constants. Then from (32) and Figure 9, we can conclude that
all stationary points take positive values other than zero.

• Monostability of the system with pro-inflammatory cytokines. For the parameter values
used in Figure 10 (on the left), there is a single positive stationary point. The solution
of Equation (28) corresponding to pro-inflammatory cytokines converges to this sta-
tionary value (Figure 10, right). The choice of the initial viral load affects only the time
of convergence of the solution to a stationary value.

• Bistability of the system with pro-inflammatory cytokines. For the parameter values used
in Figure 11, there are three positive stationary points. The initial condition C(0) = 0
corresponds to the zero concentration of uninfected dendritic cells and macrophages.
Under this initial condition, the concentration of S(t) converges to the first station-
ary value of S1 = 0.2 (Figure 11, middle). When the initial concentration changes
C(0) = 103, the concentration of pro-inflammatory cytokines S converges to the third
stationary value S3 = 14.208 (Figure 11, right). It should be noted that C(0) = 103 is
the initial value used in the study of the innate immune response.

Figure 10. Left: graphical solution of Equation (32) in monostable case. Right: convergence of
the concentration of proinflammatory cytokines to their stationary value, S(0) = 0. The values of
parameters: r1 = 1.4, r2 = 0.8, r3 = 1, r4 = 0.5, σS = 0.01, p1 = 0.4, p2 = 10, p3 = 0.2.
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Figure 11. Left: graphical solution of Equation (32) in the bistable case. Middle: convergence
of proinflammatory cytokines to the first stable stationary point, C(0) = 0. Right: convergence
of proinflammatory cytokines to the second stable stationary point, C(0) = 103. The values of
parameters: r1 = 3, r2 = 0.1, r3 = 1, r4 = 0.1, σS = 0.25, p1 = 0.4, p2 = 10, p3 = 0.2. Initial S = 0.

Note that the bistable case is observed for the value of the parameter p1 ∈ (0; 1.78].
At the same time, if p1 ∈ (0; 1.59], then the concentration of S pro-inflammatory cytokines
tends to the first stationary point. If p1 ∈ [1.6; 1.78], then the concentration of S(t) converges
to the third stationary point regardless of the initial concentration of macrophages C. In
this case, with the values of the parameters indicated in Tables A1 and A3, there is a
rapid increase in the concentration of pro-inflammatory cytokines to the maximum value
corresponding to the third stationary point. If the infection rate of APCs decreases (e.g.,
k4 = 10−6), the concentration of S(t) first approaches the first stationary point with a low
concentration of proinflammatory cytokines, and then moves to the third stationary point
with a high concentration of pro-inflammatory cytokines. In Figure 12, the results of the
numerical solution of the system (22)–(28) are presented for the parameter value k4 = 10−6.
Thus, cytokine storm may not occur immediately, but at a certain stage of the development
of the disease.

Figure 12. Numerical simulation for system (22)–(28). The values of parameters for the numerical
experiment are detailed in Appendix A Tables A1 and A3. The initial conditions correspond to those
listed in Appendix A Table A4.

3.3.3. Systemic Inflammation

Inflammatory cytokines can provoke inflammatory cell death that leads to the produc-
tion of even more inflammatory cytokines [75]. This positive feedback loop can influence
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the onset and progression of the cytokine storm. In order to study this effect, we com-
plete the previous model by the equation for the concentrations R of cells susceptible to
inflammatory death:

dR
dt

= −a1RS + k5(R0 − R). (42)

The first term in the right-hand side of this equation describes cell death due to
the action of inflammatory cytokines, while the second term characterizes cell influx or
proliferation till its concentration reaches its normal physiological value. The equation for
the concentration S of inflammatory cytokines contains an additional term corresponding
to the increase in their concentration due to cell death:

dS
dt

=
r3S

1 + r4S
C + a2RS + p(V, I)− σSS. (43)

Let us note that the depletion of the cytokine concentration due to the interaction
with cells is compensated by its larger production due to cell death. All other terms in this
equation and all other equations remain the same as before. For simplicity, we consider
here this interaction term in the form of the mass action law. All conclusions below remain
valid in the case of saturation kinetics S/(1 + kS) with respect to the concentration of
inflammatory cytokines.

Consider, first, the case where the concentration of inflammatory macrophages C and
the concentration of virus V equal 0. Then, Equation (43) becomes as follows:

dS
dt

= a2RS− σSS. (44)

Together with Equation (42), they form a closed system for the two concentrations. This
system has two stationary points: R = R0, S = 0 and R1 = σS/a2, S1 = k5(R0−R1)/(a1R1).
Hence, there are two possible cases:

• If σS > a2R0, then R1 > R0 and S1 < 0. In this case, the point (R0, 0) is globally
asymptotically stable. All solutions of system (42), (44) with non-negative initial
conditions converge to it. The concentration of inflammatory cytokines, if is initially
non-zero, exponentially decays.

• If σS < a2R0, then R1 < R0 and S1 > 0. In this case, the point (R0, 0) becomes unstable,
while the point (R1, S1) becomes stable. Solution of system (42), (44) with any positive
S(0) converges to it.

In the second case, inflammatory cell death is initiated by any small concentration
of inflammatory cytokines. Hence, in normal physiological conditions, σS > a2R0, and
inflammatory cell death does not occur. However, the values of these parameters remain
the same during inflammation. Therefore, we conclude that σS > a2R0, even during
viral infection.

We can now describe a different scenario of behavior of solutions of the complete model
(22)–(27), (42), (43) with the corresponding biological interpretations. If system (22)–(28)
(without inflammatory cell death) describes a cytokine storm, then the introduction of
inflammatory cell death increases it due to additional cytokine production. If system
(22)–(28) describes a normal inflammatory response, then additional cytokine production
due to inflammatory cell death can move it to a cytokine storm.

On the other hand, if the virus is eliminated from the organism and proinflammatory
macrophages vanish, then inflammatory cell death cannot sustain the cytokine storm by
itself. The concentration of inflammatory cytokines will decay.

Thus, inflammatory cell death can reinforce the cytokine storm or initiate it from the
normal inflammatory response, but it cannot initiate it or keep it going without an innate
immune response.
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3.4. Vaccination

In this version of the model, APCs described by the variable C are not infected but
they still serve as antigen-presenting cells and stimulate the adaptive immune response
and production of antibodies specific to the pathogen through plasma cells B.

Figure 13 shows the concentration of virus, antibodies and lymphocytes in numerical
simulations of system (33)–(41). In the beginning of the simulations, the virus concentration
decays exponentially since there is no virus replication. From day 8, it is neutralized by
the antibodies.

Figure 13. Numerical simulation of system (33)–(41) with virus concentration (upper left), antibodies
(upper right), T cells (lower left) and plasma cells (lower right). Adaptive immune response (dash-
dot lines) starts on day 6 and antibody production from day 8. Note the difference in time scales
(along the x-axes) in all graphics.

The graph of antibody concentration is extended to 360 days for a better visualization
of its dynamics. The maximal antibody concentration is reached after about 90 days and
then their concentration gradually decreases. Similar dynamics are observed for plasma
cells secreting antibodies.

Figure 14 shows the dose–response curve with the maximal antibody concentration
depending on vaccine dose and antibody concentrations 1, 4 and 6 months after vaccination.
According to the simulations, the optimal vaccine dose is in the range between 104 and 105

(copies/mL) where the antibodies reach maximum concentrations in a minimum period of
time equivalent to approximately 42 days. A further increase in the vaccine dose can even
decrease the antibody concentration, which is known as the Goldilocks effect [87,88].

3.5. Sensitivity Analysis

Sensitivity analysis allows us to rank the parameters of the model according to the
degree of influence on certain characteristics of its behavior. In this analysis, we changed
each parameter individually by ±20%, in relation to the observed value that was the
maximum concentration of the virus. By changing the latter, we calculated the sensitivity
coefficients (Figure 15). When the parameters were changed to ±10%, the results were
similar, with only minor changes (not shown).
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Figure 14. Numerical evaluations of antibody production depending on the vaccine dose (Vac initial).
Left: maximal antibody concentration on 30th, 120th and 180th days after vaccination. Right: time to
reach the maximal concentration of antibodies depending on vaccine dose.

Figure 15. Sensitivity analysis of the innate immune response model (left) and the cytokine storm
model (right) to the parameters. Upper row: the maximum viral load with an increase of 20%
(triangles) and a decrease of 20% (dots) of each parameter compared to its value from the control set
of parameters (solid line). Lower row: the corresponding sensitivity coefficients calculated by the

formula C20% =
Vmax
+20%−Vmax

−20%
0.4·Vmax . The control set of parameters is specified in the Tables A1, A3 and A4.

In all calculations, the initial value of the viral load was set to V(0) = 28 · 104 (copies/mL). In the
cytokine storm simulations, we used the value k4 = 10−6 day−1 (copies/mL).

With an innate immune response (Figure 15, left), increase of the rate of virus influence
on interferon production (g1) and of the virus production rate ( f0) significantly increases the
peak concentration of the virus in the body, and the corresponding sensitivity coefficients
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are the largest. An increase in the interferon elimination rate (σ4) has a slightly smaller effect.
On the other hand, an increase in the values of parameters, such as death rate of infected
epithelial cells (σ1), virus decay rate (σ3), interferon secretion rate (g0) and rate of interferon
influence in virus production ( f1), leads to a decrease in the maximum concentration of
the virus. Less influence is exerted by infection rate of APCs by virus (k4) and the relative
activity of infected epithelial cells during interferon secretion describing by (κ). Parameters
k3, k1, σ2 and k2 do not affect the maximum virus concentration.

In the cytokine storm model (Figure 15, right), all sensitivity coefficients are about a
quarter less than in the innate immune response model. The most influential parameters
remain the the virus production rate ( f0) and the rate of virus influence in interferon
production (g1), the interferon elimination rate (σ4) has a lesser effect. σ1, σ3, g0, f1 and
κ have an inhibitory effect. The infection rate of APCs by virus (k4) and death rate of
infected APCs (σ2) cease to affect the maximum concentration of the virus in this model.
The sensitivity to the infection rate of epithelial cells by virus (k2) remains small but changes
its sign to the opposite.

For a complete model of innate and adaptive immune responses, a control set of
parameters is indicated in the Tables A1, A2 and A4 with the exception of the anti-
body secretion rate parameter k5 = 1200 [(cells·day)−1(units/mL)] and initial viral load
V(0) = 1.495 · 105 (copies/mL).

This set of values corresponds to the dynamics of adaptive immune response shown
in Figure 7, in which an increase in the incubation period is observed; however, the
development of the infection stops only after the peak of infection. In addition, this specific
set of parameters is close to the boundary of the existence of the two observed regimes
(with/without virus peak). For this reason, in Figure 16, it is observed how changing the
parameter in one direction entails a sharp transition to another mode. If we change the
parameter in the other direction, then the mode will remain the same, but this mode will
have a decrease in viral load. This can be explained by the fact that as we move away from
this regimen, the viral load decreases.

Figure 16. Sensitivity analysis of the adaptive immune response model parameters. Maximal viral
load with an increase of 20% (triangles) and a decrease of 20% (dots) of each parameter compared to
its value from the control set of parameters (solid line).
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The parameters h1
1, h0, σ8, q0, γ3 and σ5 do not affect the maximum concentration of

the virus, while σ7 has little effect. Varying other parameters entails switching between the
modes. An increase in the values of the parameters cytotoxic T cells (CD8+) differentiation
rate (h0

2), killing rate of infected epithelial cells by T8 (γ1), effector B-cells differentiation
rate (q0

1) and antibody secretion rate (k5) prevents a viral peak (Figure 16, lower part).
A similar effect is observed with a decrease in the values of the parameters antibodies

clearance rate (σ8), cytotoxic T cells (CD8+) differentiation rate (h1
2), effector B-cells differen-

tiation rate (q1
1), T-helper cells (CD4+) differentiation rate (h1

1) and killing rate of infected
APCs by T8 (γ2). At first glance, the observation regarding the γ2 parameter may seem
contradictory; however, it should be remembered that it is the infected APCs that trigger
the acquired immune response by activating naive T cells.

4. Discussion

The main objective of this work was to study the interaction between the immune
response and SARS-CoV type viruses. When studying the innate immune response, we
observed different modes of infection development depending on the initial viral load
and parameters of the immune response. We showed that in the case of a low initial viral
load, the innate immune response stops the development of the infection even without
an adaptive immune response. In this case, the infection is present in the body, but the
viral load is not high enough and the disease is asymptomatic or with mild symptoms. In
particular, we showed that the duration of the incubation period can vary in large limits.
These observations agree with what was recorded in the meta-analysis carried out in [89]
where the shortest mean incubation reported was 1.8 days and the longest incubation was
18.87 days. Furthermore, the initial viral load determines infection progression possibly
leading to low or high values of maximal viral load [90]. This difference in the course of
the disease depending on the initial viral load highlights the role of preventive measures
(masks, social distancing, etc.), which, although they cannot completely eliminate the
possibility of infection, can reduce the initial viral load and the severity of the disease [91].

At the second stage of this study, we included the adaptive immune response after
6–8 days post infection. We observe how the adaptive immune response can either stop
infection progression, mainly due to virus elimination by antibodies, or if their action is
insufficient, increase the incubation period and maximal viral load. This increase in the
maximum viral load leads to an increase in the total viral concentration and therefore a
more severe course of the disease.

One of the most relevant questions during the COVID-19 pandemic has been under-
standing the cytokine storm. Therefore, in Section 3.3, we extended the innate immune
response model by introducing pro-inflammatory cytokines to study the occurrence of a
cytokine storm. The inflammatory response to a viral infection can have different dynamics,
with either low levels of inflammatory cytokines or high levels, or coexistence of both.
The latter is the most interesting case with switching between two stable equilibria. As
shown in Figure 12, inflammation stimulated by a viral infection can go to high levels,
corresponding to a cytokine storm, and remain there even with a decrease in viral load.
Also note that inflammation can slow down the progression of the infection due to an
increase in the concentration of immune cells [92].

It should be noted that the physiological processes leading to the emergence of a
cytokine storm are still not well understood. According to [73,93,94], the interaction of
a viral infection with cells of the innate immune response can lead to their modification
and a shift toward a pro-inflammatory phenotype that contributes to the development of a
cytokine storm. In order to take into account the appearance of modified cells in the cytokine
storm model, we assume in the calculations the initial concentration C = 0 (Figure 12),
bearing in mind that these macrophages differ from normal macrophages involved in the
innate immune response. Note that in this model, we studied the emergence of a cytokine
storm without taking into account the adaptive immune response. This simplification
allowed us to reveal the main features of these process without unnecessary complications.
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The influence of the adaptive immune response on the cytokine storm will be considered in
future studies.

Finally, the model proposed in Section 3.4 allowed us to study the production of
antibodies due to vaccination. This model is built on the basis of the model studied in
Section 3.2 omitting the terms and equations related to viral replication. Simulations show
the dose–response curve and allow us to establish intervals of maximum immune response
to different viral loads in the vaccine. We also observed that higher viral loads in the vaccine
dose can lead to decreased antibody concentrations, which is qualitatively consistent with
the search for the Goldilocks effect in vaccine doses [87,88].

The models developed in this work have certain limitations. We restrict the number
of cytokines and immune cell types in order to avoid excessive complexity of the model.
On the basis of systematic analysis presented in this work, we can introduce some other
features of the immune response, such as regulatory T cells, cross immunity, etc., in the
future investigations.
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Appendix A. Models Schemes, Parameters and Stationary Solutions Figures

Appendix A.1. Models Schemes

Figure A1. Schematic representation of the innate immune response to a viral respiratory infection.
Green boxes indicate cells with constant presence in the organism. Orange boxes note virus-affected
cells. Violet boxes show an induced immune response.
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Figure A2. Schematic representation of the innate and adaptive immune responses to respiratory
viral infection. Green boxes indicate cells with constant presence in the organism. Orange boxes note
virus-affected cells. Blue boxes represent the cells responsible for stimulating the specific immune
response. Violet boxes show effectors of innate and adaptive immune response.

Figure A3. Representation of the mathematical model considered for the study of the emergency of
the cytokine storm. The propose model is based on the model of the innate immune response by
adding the corresponding member to describe the pro-inflammatory cytokines.

Appendix A.2. Model Variable Definitions and Initial Values

Table A1. Parameters for innate immune response.

Parameter Value Definition

E0 5 · 105 [37] Initial number of epithelial cells (cells/mL)
C0 103 [37] Initial number of dendritic cells

and macrophages (cells/mL)
k1 4 · 10−3 [37] Death rate of uninfected epithelial cells (day−1)
k2 7 · 10−8 Infection rate of epithelial cells

by virus [day−1 (copies/mL)−1]
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Table A1. Cont.

Parameter Value Definition

k3 0.001 [37] Death rate of uninfected APCs (day−1)
k4 10−5 Infection rate of APCs

by virus [day−1 (copies/mL)−1]
σ1 1.2 [29,37] Death rate of infected epithelial cells (day−1)
σ2 2.9 [37] Death rate of infected APCs (day−1)
σ3 1 [27,37] Virus decay rate (day−1)
σ4 1 [80,81] Interferon clearance rate (day−1)
f0 1900 [35] Virus production

rate [(cells· day)−1 (copies/mL)]
f1 0.001 Rate of interferon influence in virus

production [(pg/mL)−1]
κ 0.1 Coefficient of infected ECs that

stimulates the Interferon secretion
g0 500 [35] Interferon secretion rate [(pg/mL) (cells · day)−1]
g1 7.5 · 10−6 Rate of virus influence in interferon

production [(copies/mL)−1]

Table A2. Parameters for adaptive immune response.

Parameter Value Definition

h0 1 Naive T-lymphocytes production
rate cells/day

h0
1 1.51 [37,78] T-helper cells (CD4+) differentiation

rate [(cells · day)−1]
h1

1 0.001 T-helper cells (CD4+) differentiation
rate (cells−1)

h0
2 0.85 Cytotoxic T cells (CD8+) differentiation

rate [(cells · day)−1]
h1

2 0.1 Cytotoxic T cells (CD8+) differentiation
rate (cells−1)

q0 1 Naive B-lymphocytes production
rate cells/day

q0
1 6.25 · 10−3 Effector B-cells differentiation

rate [(cells · day)−1]
q1

1 1.68 · 10−2 Effector B-cells differentiation
rate (cells−1)

σ5 0.023 [82] T-helper cells (CD4+) elimination
rate (day−1)

σ6 0.031 [82] Cytotoxic T cells (CD8+) elimination
rate (day−1)

σ7 0.028 [83] Effector B-cells elimination
rate (day−1)

σ8 0.04 [35,37,79] Antibodies decay
rate (day−1)

k5 1205.63 Antibodies secretion
rate [(cells·day)−1 (units/mL)]

γ1 1.19 · 10−3 [37,77] Killing rate of infected epithelial cells
by T8 [(cells · day)−1]

γ2 0.01 Killing rate of infected APCs
by T8 [(cells · day)−1]

γ3 0.004 [37] Rate constant of virus neutralization by
unit antivirus antibody
[(day)−1 (copies or units/mL)]
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Table A3. Parameters for cytokine storm.

Parameter Value Definition

r1 3 Antigen presenting cells production rate by
cytokines [(cells/day) (pg/mL)−1]

r2 0.1 Antigen presenting cells production rate by
cytokines [(pg/mL)−1]

r3 1 Pro-inflammatory cytokines
secretion rate [(cells · day)−1]

r4 0.1 Pro-inflammatory cytokines
secretion rate [(pg/mL)−1]

p1 0.4 Pro-inflammatory cytokines secretion rate by
virus [(pg) (copies · day)−1]

p2 10 Rate of virus influence in cytokines
secretion [(copies/mL)−1]

p3 0.2 Rate of interferon influence in cytokines
secretion [(pg/mL)−1]

σS 0.25 [84] Pro-inflammatory cytokines elimination rate (day−1)

Table A4. Variables, definitions and initial values.

Variable Definition Initial Condition

E Uninfected epithelial cells (cells/mL) 5 · 105 [37]
Ev Infected epithelial cells (cells/mL) 0
C Uninfected dendritic cells 0 and 103 [37]

and macrophages (cells/mL)
Cv Infected dendritic cells 0

and macrophages (cells/mL)
V Virus load (copies/mL) it varies
I Interferon (pg/mL) 0

Tn Naive T-lymphocytes cells 2 · 103

T4 T-helper cells 0
T8 T-killer cells 0
Bn Naive B-lymphocytes cells 1 · 103 [37]
B Plasma cells 0
A Antiviral antibody titer 0
S Pro-inflammatory cytokines (pg/mL) 0
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