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Abstract: The maturation of the uncrossed medial olivocochlear (UMOC) efferent remains poorly
documented to date. The UMOC efferent system allows listeners to not only detect but also to process,
recognize, and discriminate auditory stimuli. Its fibers can be explored non-invasively by recording
the effect of contralateral acoustic stimulation (CAS), resulting in a decrease in the amplitude of
transient evoked otoacoustic emissions (TEOAE). The objective of the present cross-sectional study
was to investigate how the effectiveness of this system varies with age in healthy subjects aged 8 years
to adulthood. For this purpose, 120 right-handed native French-speaking subjects (57 females and
63 males) were divided into five age groups of 24 subjects each: 8y–10y, 10y–11y6m, 11y6m–13y,
13y–17y, and ≥18y. TEOAE amplitudes with and without CAS were recorded. The equivalent
attenuation (EA) was calculated, corresponding to the change in TEOAE amplitude equivalent to the
effect generated by CAS. General linear models were performed to control for the effect of ear, sex,
and age on EA. No sex effect was found. A stronger EA was consistently found regardless of age
group in the right ear compared to the left. In contrast to the right ear, for which, on average, EA
remained constant across age groups, an increasingly weaker TEOAE suppression effect with age
was found in the left ear, reinforcing the asymmetrical functioning of the UMOC efferent system in
favor of the right ear in adulthood. Further studies are needed to investigate the lateralization of the
UMOC efferent system and its changes over time in cases of atypical or reversed cortical asymmetries,
especially in subjects with specific learning disorders.

Keywords: medial olivocochlear efferent; uncrossed fibers; transient evoked otoacoustic emissions;
contralateral acoustic stimulation; equivalent attenuation; right ear; left ear; general linear model

1. Introduction

The central auditory nervous system (CANS) consists of ascending and descending
auditory pathways that are closely interdependent and act in an integrated manner. From
the peripheral auditory receptor, afferent fibers carry information to the auditory cortex
(AC) through the brainstem via, successively, the cochlear nuclei, the superior olivary
complex (SOC), the lateral lemniscus, the inferior colliculus, and the medial geniculate
body [1]. In turn, the AC is the source of multiple efferent projections [2,3] to each of the
auditory nuclei [4]. A contingent of efferent fibers originates from the medial SOC and
forms the “Uncrossed Medial OlivoCochlear (UMOC)” efferent system that projects to the
ipsilateral cochlea reaching directly to the outer hair cells (OHCs) [5] (for a recent review,
see [6]). In doing so, the SOC serves as a relay station for the corticofugal pathway that
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originates from pyramidal neurons in layers V/VI of the primary AC [7]. Therefore, the
AC is able to control and modulate OHCs activity in a top-down manner [8].

The CANS undergoes maturational changes that allow children not only to detect but
also to process, recognize, and discriminate auditory stimuli. Auditory evoked potentials
(AEPs) have been extensively used to study the developmental time course of the auditory
afferent pathway. It is well known that AEP peaks shorten and become sharper with age,
suggesting an increase in neural efficiency [9–12]. However, having long assumed that
the latency of early AEPs reaches adult values within the first two years of life [13], more
recent research suggests a longer developmental time course, particularly for the auditory
brainstem, which continues to mature during childhood [14] and even adolescence [15],
leading to the notion of continuous maturational plasticity. Similarly, late AEPs have
shown that changes in AC extend into late adolescence [16]. Maturation of the auditory
thalamocortical connections occurs between two and five years of age, with the final stage
of structural maturation of AC beginning later (at the earliest between 6 and 12 years)
(see [17] for a detailed review). Such maturational changes underpin the development of
increasingly complex auditory processing, allowing for a strong improvement in speech
understanding, especially in noise, in late childhood and adolescence [18]. This is probably
made possible not only by stronger cortical interaction within the same hemisphere but also
by increasing communication between the two hemispheres. As cortical regions continue
to mature in adolescence, functional changes may still occur in early adulthood [19].

In contrast, the maturation of the auditory corticofugal pathway remains much less
documented. This is even more surprising as the UMOC efferent system can be explored
non-invasively in clinical routine. One of the major advances in modern audiology is
credited to Kemp [20,21], who first recorded, in the auditory canal, sounds produced
by the contraction of OHCs in response to brief acoustic clicks and identified them as
transient evoked otoacoustic emissions (TEOAEs). Due to the UMOC fibers being inhibitory,
the addition of a contralateral acoustic stimulation (CAS) leads to a TEOAE amplitude
decrease [22,23] called the “contralateral suppressive effect” (CSE). While recent studies
in animals [24–27] provide strong anatomical and functional evidence for the existence of
central control of OHCs by multiple corticofugal loops, in humans, such demonstrations
have long remained indirect. For instance, in right-handers, the CSE has been reported to
be stronger in the right ear, reflecting a rightward asymmetry in UMOC efferent system
function [28,29], this asymmetry being absent in right-handed schizophrenic patients [30].
Surgical resection of the primary AC has been shown to suppress the CSE [31], whereas
intracortical electrical stimulation of Heschl’s gyrus increases it [32]. A recent functional
MRI study in healthy adult subjects has confirmed the existence of direct connections
between auditory structures, including Heschl’s gyrus, the planum temporale, and the
SOC [33].

From a developmental perspective, the CSE is present at birth [34] but is reduced
in preterm neonates [35] with a greater suppressive effect on the right ear [36,37], which
may reflect an early lateralization process. It has been reported that the magnitude of CSE
slowly decreases during infancy until the age of 3 years [38]. A recent study found no
effect of age on the amplitude of CSE in preschoolers aged 3–6 years [39]. Several studies
have been conducted on older children, but to our knowledge, never on children over
14 years of age, and often on groups covering broad age ranges up to 4 years [40–43].
Data in the literature have reported differences in CSE amplitude between the right and
left ear in children aged 9–10 years [44], 5–10 years [45], or 7–12 years [46]. Despite this,
the fine-grained age-related changes in UMOC efferent system function during a highly
plastic but vulnerable developmental period from childhood to early adulthood are still
poorly understood.

As there are only a few studies on the effect of age on UMOC, and they are not
conclusive, the aim of the present cross-sectional study was to examine how CSE varies
with age in healthy subjects aged 8 to 35. Given that the cortical auditory areas are not
fully mature until late adolescence and similar to the gradual maturation of the auditory
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afferent pathway, we expected to observe differences in CSE amplitude with age, but also
depending on the test ear.

2. Materials and Methods
2.1. Participants

One hundred and twenty native French-speaking right-handed subjects, with a bal-
anced number of females (n = 57) and males (n = 63) and a mean age of 13 ± 0.3 years
(range 8–35), participated in the study. The experiment was carried out with the agreement
of the Regional Ethics Committee (CPP Sud-Est IV Lyon, approval No. 09/086 for adults
and 04/008 for children). Informed consent was obtained from all participants (all children
with verbal assent). Handedness degree was assessed using the Edinburgh Handedness
Inventory [47]. None of the participants had a history of communication, cognitive, neu-
rological, attention, or autism spectrum disorders. The participating children performed
average or above average academically, never had to repeat a grade, and had no specific
learning disorders. None of them had undergone speech therapy, and all of them had a
normal reading age, as measured by the “L’alouette” test [48]. Participants were divided
into five age groups of 24 subjects each, as follows: 8y–10y (group 1), 10y–11y6m (group 2),
11y6m–13y (group 3), 13y–17 (group 4), and ≥18y (group 5).

The demographic characteristics by age group and sex and the laterality by age group
are shown in Table 1.

Table 1. Demographic characteristics.

Group 1 Group 2 Group 3 Group 4 Group 5

Age (months)

Min 96 120 139 157 219

Max 118 138 156 213 425

Mean (SE) 108.3 (1.5) 130 (1.2) 147.2 (1.2) 181.3 (3.6) 279.5 (12.4)

Sex 12♀/12♂ 12♀/12♂ 12♀/12♂ 10♀/14♂ 11♀/13♂

Manual laterality (%)

Min 71.4 80 77.8 71.4 80

Max 100 100 100 100 100

Mean (SE) 91.5 (2.3) 95.1 (1.7) 93 (2.1) 92.9 (2.1) 97.3 (1.3)
♀: female subject; ♂: male subject.

All participants had normal otoscopy, air conduction hearing thresholds less than
15 dB HL at octave intervals from 0.25 to 8 kHz, and normal type A tympanograms (static
acoustic admittance between 0.35 and 1.75 mmho and peak pressure between +50 to
−100 daPa) in both ears. They also had ipsi- and contralateral acoustic reflex thresholds
(ARTs) greater than 75 dB SPL in response to white noise bilaterally. TEOAEs were bilater-
ally present for all participants with an overall response amplitude of emissions exceeding
the noise amplitude; that is, a signal-to-noise ratio (SNR) greater than 4 dB when measured
with a non-linear click method at an intrameatal intensity of 81.5 ± 0.05 peak-equivalent
(pe) SPL. The whole reproducibility level was greater than 50%, with stimulus stability
exceeding 90%.

2.2. Apparatus

All measurements were performed in a soundproof booth. TEOAEs were recorded
using the ILO92 system (Otodynamics Ltd., London, UK). The Otodynamics 5.6 clin-
ical OAE software was used, and responses were recorded by a standard transducer
(Otodynamics Model UGS TEOAE Probe). The probe, comprising a transmitter and a
microphone, was fitted to the external auditory meatus with a foam rubber tip. CAS was
delivered with a headphone (TDH49) using an AC40 clinical audiometer (Interacoustics,
Middlefart, Denmark).
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2.3. Procedure

The participants were instructed to sit quietly in a comfortable position and to keep
silent. To avoid falling asleep or to keep them calm, a silent movie was played during this
passive CSE measurement (cartoon for children and film for adults). Measurements were
successively conducted on the right ear and left ear in random order.

TEOAEs were recorded in a linear mode using 80-µs clicks at a rate of 50/s, suc-
cessively in the absence and presence of a 35 dBSL continuous noise (0.125–12 kHz
with a flat spectrum) in the contralateral ear (minimal threshold = 0 dBHL—maximal
threshold = 15 dBHL). The stimulus level was randomly adjusted to obtain 5 peak pres-
sures between 60 and 72 peSPL (±1 dB) that were presented in 3 dB steps. CAS was
manually switched on prior to the onset of TEOAE recordings. For each of the 5 ipsilateral
stimulation levels, the first measurement was always carried out without CAS. The noise
rejection level was set at 47.3 dB peSPL. Three hundred responses were averaged in a 3.2
to 20 ms-time window. Signal parameters were analyzed as global values (for the whole
signal). This protocol provides an input/output function for the global TEOAE amplitude
with and without CAS and calculates the equivalent attenuation (EA) according to the
so-called Lyon procedure (see for more details [44,46,49]). As such, EA corresponds to the
change (in dB) of the ipsilateral click-evoked OAEs equivalent to the effect generated by
CAS. The more negative the EA, the stronger the TEOAE suppressive effect. By subtracting
the EA measured on each ear (EAright–EAleft), an asymmetry index (AI) can be obtained:
the more negative it is, the stronger the CSE on the right ear.

2.4. Data Analysis

Two general linear models (GLMs), using JAMOVI version 1.6 (https://www.jamovi.
org/, accessed on 20 June 2023), were run on three dependent variables (EAright, EAleft,
and AI) fitting the UMOC efferent system function. The first model used only one factor
at a time: five age groups or sex. To ensure that the effect of age did not depend on our
choice of age groups, we also investigated the relationships between age, as a continuous
variable, and our three variables of interest (EAright, EAleft, and AI) using the Spearman
correlation test. A second model accounted for two factors: five age groups and sex with
an ANOVA design. To account for multiple comparisons in the GLM analysis, all p-values
were thresholded at a Bonferroni-corrected value of p = 0.5. Violin plots were drawn for data
description, including a marker for the median value and a box for the interquartile range.

3. Results

The average response amplitude of TEOAEs obtained for each age group on each
ear is presented in Figure 1. The average values are lower on the LE than on the RE.
A mixed-design ANOVA, with age as a fixed effect factor and the ear side as a random
effects factor, revealed significant effects of the two factors: respectively, (F(4,119) = 7.287;
p < 0.001) and (F(1, 119) = 9.085; p = 0.003), without significant interaction. However, none
of the paired t-tests comparing TEOAE amplitude between the ears within each age group
was significant.

Figure 2 shows the CSE distribution among the five age groups. A significant age
group effect was found for EAleft (F(4, 119) = 3.75, p = 0.007, η2 = 0.12) from 8 years to
13 years (β = 0.57, t(110) = 2.05, p = 0.04) and across the developmental trajectory from
8 years to adulthood (β = 0.57, t(110) = 3.32, p = 0.001). In contrast, no significant age group
effect was found for EAright (F(4, 119) =1.37 p = 0.25, η2 = 0.05) and AI (F(4, 119) = 0.90,
p = 0.46, η2 = 0.03). The average EA and AI values for each ear are provided in Table 2 for
each age group. Spearman correlation tests confirmed that age was statistically related
to EAleft (rho = 0.27; p-value = 0.002) but not to EAright (rho = 0.12; p-value = 0.2) or AI
(rho = −0.14; p-value = 0.13).

https://www.jamovi.org/
https://www.jamovi.org/
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Figure 1. Average response amplitude of TEOAEs obtained for the 5 age groups on each ear. TEOAE:
transient evoked otoacoustic emissions.

Table 2. Average equivalent attenuation (EA) and asymmetry index (AI) values for each ear and
age group.

Variables Age Group N Mean Lower Upper Median SD IQR

EAright [8y–10y] 24 −3.67 −4.48 −2.86 −3.46 1.92 1.88
[10y–11y6m] 24 −3.88 −4.59 −3.18 −3.61 1.67 2.88
[11y6m–13y] 24 −2.97 −3.62 −2.31 −2.59 1.55 1.77

[13y–17] 24 −3.60 −4.49 −2.70 −3.31 2.12 2.50
≥18y 24 −2.97 −3.60 −2.35 −2.96 1.48 2.04

EAleft [8y–10y] 24 −3.27 −3.99 −2.56 −3.10 1.70 2.56
[10y–11y6m] 24 −3.18 −3.82 −2.54 −3.48 1.51 2.26
[11y6m–13y] 24 −2.42 −2.97 −1.87 −2.40 1.30 1.22

[13y–17] 24 −2.62 −3.28 −1.96 −2.23 1.57 2.27
≥18y 24 −1.90 −2.31 −1.48 −1.84 0.99 1.25

AI [8y–10y] 24 −0.40 −1.14 0.35 −0.36 1.76 2.02
[10y–11y6m] 24 −0.70 −1.48 0.07 −0.57 1.85 2.15
[11y6m–13y] 24 −0.55 −1.07 −0.03 −0.59 1.22 1.58

[13y–17] 24 −0.97 −1.45 −0.50 −0.86 1.12 0.92
≥18y 24 −1.08 −1.60 −0.56 −0.77 1.23 1.58

With all ages combined, no significant sex effect was found for EAright (F(1, 119) = 0.48,
p = 0.40, η2 = 0.00), EAleft (F(1, 119) = 0.75, p = 0.39, η2 = 0.01), or AI (F(1, 119) = 0.00,
p = 0.90, η2 = 0.00) (Figure 3). Average EA and AI values for each ear are provided in Table 3
for male and female patients (all ages combined).

Finally, a two-way age group X sex factor test was performed to determine the influence
of these two variables on CSE. Figure 4 shows the CSE distribution by age group and sex.

A significant age group effect was found for EAleft and AI (F(4, 119) = 9.85, p < 0.001,
η2 = 0.26) from 10 years to 13 years (t(114) = 2.05, p = 0.04) and from 8 years to adulthood
(t(114) = 3.32, p = 0.001). In contrast, there was no significant age group effect for EAright

(F(4, 119) = 1.64 p = 0.17, η2 = 0.06).
No significant sex effect was found for EAleft (F(1, 119) = 0.27, p = 0.60, η2 = 0.14) and

EAright (F(1, 119) = 0.20 p = 0.65, η2 = 0.04), nor for AI (F(1, 119) = 0.27, p = 0.60, η2 = 0.03).
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No interaction for EAright (F(4, 119) = 0.41, p = 0.80, η2 = 0.01), EAleft (F(4, 119) = 0.25,
p = 0.90, η2 = 0.01), or AI (F(4, 119) = 0.25, p = 0.90, η2 = 0.01) was found.

Average EA and AI values for each ear are provided in Table 4, for male and female
patients and each age group.
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(A), left-ear equivalent attenuation (EAleft) in panel (B), and asymmetry index (AI) in panel (C) for
male and female participants. Within each violin plot, the rectangular box represents the interquartile
range (from bottom to top lower quartile, upper quartile), the bold line the median, and the black
square the mean value.

Table 3. Average equivalent attenuation (EA) and asymmetry index (AI) values for male and female
patients (all ages combined).

Variables Sex N Mean Lower Upper Median SD IQR

EA right F 57 −3.54 −4.00 −3.07 −3.42 1.74 2.24
M 63 −3.31 −3.77 −2.85 −2.88 1.82 2.23

EA left F 57 −2.80 −3.25 −2.36 −2.58 1.68 2.30
M 63 −2.57 −2.90 −2.23 −2.40 1.32 1.93

AI F 57 −0.73 −1.13 −0.34 −0.71 1.48 1.47
M 63 −0.75 −1.11 −0.38 −0.60 1.47 1.63

Table 4. Average equivalent attenuation (EA) and asymmetry index (AI) values for male and female
patients and each age group.

Variables Age Group Sex N Mean Lower Upper Median SD IQR

EAright [8y–10y] F 12 −4.16 −5.07 −3.24 −3.74 1.44 1.18
M 12 −3.18 −4.62 −1.74 −2.40 2.27 1.71

[10y–11y6m] F 12 −3.81 −4.78 −2.84 −3.59 1.53 2.11
M 12 −3.95 −5.14 −2.77 −3.79 1.86 3.14

[11y6m–13y] F 12 −3.15 −4.25 −2.04 −2.63 1.74 1.56
M 12 −2.79 −3.68 −1.90 −2.59 1.40 2.37

[13y–17] F 10 −3.64 −5.24 −2.04 −2.91 2.24 2.53
M 14 −3.56 −4.79 −2.34 −3.62 2.12 2.30

≥18y F 11 −2.89 −4.06 −1.72 −2.17 1.74 2.04
M 13 −3.04 −3.82 −2.26 −3.04 1.30 1.64

EAleft [8y–10y] F 12 −3.72 −4.99 −2.46 −3.69 1.98 2.71
M 12 −2.83 −3.65 −2.00 −2.79 1.30 1.45

[10y–11y6m] F 12 −3.10 −4.09 −2.12 −3.48 1.55 2.30
M 12 −3.25 −4.23 −2.27 −3.24 1.54 2.10

[11y6m–13y] F 12 −2.42 −3.37 −1.47 −2.43 1.49 1.22
M 12 −2.42 −3.15 −1.69 −2.28 1.15 1.05

[13y–17y] F 10 −2.95 −4.24 −1.66 −2.64 1.81 2.02
M 14 −2.39 −3.19 −1.59 −1.99 1.39 1.83

≥18y F 11 −1.75 −2.39 −1.12 −1.58 0.94 1.25
M 13 −2.02 −2.65 −1.38 −1.92 1.05 0.94
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Table 4. Cont.

Variables Age Group Sex N Mean Lower Upper Median SD IQR

AI [8y–10y] F 12 −0.43 −1.67 0.80 −0.83 1.94 2.53
M 12 −0.36 −1.40 0.68 −0.02 1.64 1.68

[10y–11y6m] F 12 −0.71 −1.88 0.47 −0.46 1.85 2.16
M 12 −0.70 −1.93 0.52 −0.69 1.93 2.16

[11y6m–13y] F 12 −0.72 −1.31 −0.14 −0.81 0.93 1.46
M 12 −0.37 −1.32 0.57 −0.31 1.49 1.49

[13y–17y] F 10 −0.69 −1.29 −0.09 −0.77 0.84 0.65
M 14 −1.17 −1.91 −0.43 −0.93 1.28 1.08

≥18y F 11 −1.14 −2.19 −0.08 −0.71 1.57 1.31
M 13 −1.02 −1.58 −0.47 −0.83 0.91 1.38
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4. Discussion

In this study of typically developing right-handed subjects, we identified ear-dependent
differences in the evolution of UMOC function between childhood and adulthood. As
maturation of the auditory afferent pathway is gradual, we expected to observe differ-
ences in CSE amplitude with age, but also as a function of the ear. Unlike the right ear,
for which, on average, EA remained constant across age groups, an increasingly weaker
TEOAE suppression effect with age was found in the left ear. These results confirm those of
previous studies observing that in adult right-handers, CSE is significantly stronger in the
right ear [49]. This RE advantage in TEOAE suppression reinforces the concept of laterality
of the UMOC function, which favors the action of the right olivocochlear tract over the
left [50].

Here, no significant age group effect was found for EA on the right ear and AI. On the
other hand, a significant age group effect was found for EA from age 8 to 13 and over the
entire developmental trajectory from age 8 to adulthood for the left ear. Previous studies
on groups with a wider age range revealed no significant asymmetry in a group of children
aged 6 to 13 [51], while a mean laterality score significantly lower than 0, indicating right-
ear predominance, was found in typically developing children aged 8 to 14 [42]. Notably,
the present study is the only one to date to compare smaller age groups over a longer period
(from childhood to adulthood), with a large and identical number of participants (N = 24)
in each group. It underlines the fact that asymmetry of UMOC function may continue to
develop well into childhood and adolescence.

Our results indicate that changes in the function of the UMOC efferent system with age
are underpinned by a reduction in the CSE on the left ear, with stability on the right. This
raises the question of what factors might explain this reduction in contralateral suppression,
limited to the left ear. Firstly, one factor that may play a role is the presence or absence of
TEOAEs of comparable amplitude between the two ears. Given that the CSE is based on the
measurement of a change in TEOAE amplitude under the effect of acoustic stimulation, the
functional integrity of the OHCs is paramount, and the presence of TEOAEs reflects this [21].
This was the case for all the participants in the present study since they all presented a
global TEOAE response value of at least 4 dBpeSPL with more than 50% reproducibility
in both ears. Strict selection criteria for tympanometry and audiometry were also used to
exclude any potential peripheral effects on TEOAE amplitude. We observed a significant
decrease in TEOAE amplitude with age, confirming previous studies [52,53]. This decrease
was identical in both ears, with no difference in TEOAE amplitude between ears in each age
group. Thus, if the TEOAE amplitude factor alone explained the decrease in contralateral
suppression observed in the left ear, the latter should also have been observed in the right
ear. Secondly, there is evidence that handedness may play a role in TEOAE amplitude and
suppression [28]. However, this is unlikely to have been the case here since all participants
were right-handed.

Rather, it may be asked whether the relative constancy of CSE as age increases can
be explained by the completion of maturation processes. In a post-mortem histological
and immunohistochemical study, Moore and Guan traced cortical maturation through the
fetal period, infancy, childhood, and young adulthood [54]. Maturation of layers 4, 5, and
6 and the medial geniculate to the cortex was found to be complete by age 6. Later in
childhood, maturation would take place in superficial layers IIIb, IIIa, and II of the cortex.
By the age of 12, the density of mature axons has become equivalent to that of an adult [54].
The longer duration of axonal maturation could have implications for the emergence of
auditory cortical functions [17,54]. Other central auditory processes undergo maturation
during adolescence that continues into adulthood, including those associated with the
predominance of right-ear listening in right-handed individuals [55,56]. It is possible that
the asymmetrical changes in CSE observed here with age are linked to the maturation of
more central processes, reinforcing the hypothesis of the existence of central control of
OHCs function.
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Finally, one may wonder why the UMOC efferent system function in the left ear does
not reach stability as rapidly as in the right. This could be because the subcortical or
cortical structures that control it develop later. However, descending loops are anatomically
complex, and their function is still poorly understood. Our results suggest that, in right-
handed children, UMOC fibers are involved in different maturation processes between the
right and left ears. In the left ear (receiving uncrossed efferent fibers from the left superior
olivary complex explored by a CAS passing through the right cochlear nucleus), this system
would continue to mature by “calming down”. In the right ear (receiving uncrossed efferent
fibers from the right superior olivary complex explored by a CAS passing through the left
cochlear nucleus), the system could mature earlier as a reflection of the predominance of
the left auditory cortex in right-handed subjects.

Here, we observed no statistically significant gender differences in TEOAE suppression
and AI. Gender disparities in TEOAEs exist in both neonates and adults. Mac Faden et al.
suggested that the degree of androgen exposure during prenatal development may be a
contributing factor to these differences [57]. While women are known to have stronger
click-induced OAEs than men [57], a study investigating contralateral TEOAE suppression
as a function of gender showed that men had greater contralateral suppression, the exact
reason for this difference being unclear [58]. Other studies have found no sex differences in
the contralateral suppression of OAEs [59,60]. Among them, Jedrzejczak et al. measured
TEOAE with and without CAS in 126 normal-hearing children aged 3–6 years. They found
no significant effect of sex on TEOAE suppression [39,61].

Some questions remain: what is the exact starting point of this asymmetrical develop-
ment, which in this study only manifests from the age of 11y6m? Previous research has
shown protracted subcortical auditory maturation during adolescence, which may repre-
sent a “transitional point” between the enhanced response in childhood and the mature,
albeit smaller, response in adulthood [15].

It is still possible that the samples studied here were too small; moreover, we observed
a large inter-individual variability in adults but also in children in terms of CSE. In terms
of learning acquisitions, all participants were described as having a “normal” reading age.
Yet, each age group in the study covered a wide range of reading ages, which may have
increased within-group variability.

Further studies are needed to study the maturation of UMOC function when cortical
asymmetries are reversed or absent, as is the case in dyslexic subjects. If feasible, longitu-
dinal studies would neutralize the inter-individual variability observed in the variables
fitting the UMOC efferent system function.
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