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Abstract—This paper presents the development of an adaptive
sampling strategy for building surrogate models of complex
electromagnetic (EM) systems. Accurate sensitivity analysis is
crucial to electromagnetic compatibility (EMC) but usually
requires a few thousand calls of the numerical model if performed
using classical Monte-Carlo sampling. In the case of an expensive
computational model, this results in extremely long computation.
Hence why, with only a few calls of the numerical model,
surrogate models are built to approximate the behavior of the
system. This accurate predictor can then be used instead of the
expensive computational model for various analysis. The active
learning sampling strategy has been tested successfully on a
realistic finite element method (FEM) model.

Index Terms—Numerical models, approximation methods,
metamodeling, sensitivity analysis.

I. INTRODUCTION

S ensitivity analysis (SA) can be used on both numerical
models and experimental prototypes in order to predict

and quantify the variations of an output of interest regarding
defined variations of input parameters. Thus, helping in the
design of new systems and the improvement of existing
devices. Due to the recent growth of electrical engineering
for both domestic and industrial applications, the need of fast
and accurate sensitivity analysis for such complex systems has
been constantly increasing in the case of EMC engineering.

Because of the overall complexity of most current numerical
models, computation time is increasing rapidly for sensitivity
analysis when the variation of several input parameters at
once is considered. A possible work-around is to use surrogate
modeling (or metamodeling), which builds a predictor of the
model using a given training dataset. This metamodel is an
analytical function which can be computed fastly a great
number of times. It can be used in lieu and place of the
existing simulation model (or experimental model). Thus, the
global sensitivity analysis, like Sobol’ indices [1] computed
with Monte-Carlo methods, is performed on the predictor at a
low computation cost easily.

Thanks to their flexibility: easy to implement, great
efficiency with stochastic models, high accuracy for high-order
interaction and non-linearities, metamodels enables fast and
easy computation of global sensitivity indices on complex
numerical models [2], providing an accurate metamodel
has been built. Regarding EMC problems in general, many

numerical methods have been recently developed in order to
reduce the numerical cost of sensitivity analysis. In [3], both
Response Surface Methodology (RSM) and Polynomial Chaos
expansion (PCE) are used to perform accurate sensitivity
analysis of crosstalks among differential vias. Both methods
have been successfully validated using simulations data. As
in [4], where PCE has been used successfully to construct
a surrogate model of the radiated field in shielded wires.
Surrogate models can also be used for optimization in EMC
design, as in [5], where an RSM-based optimization process
is used to efficiently design multilayered shields.

The goal of the work presented here is to reduce
the number of samples needed for the surrogate model
setup, thus, reducing the number of calls of the heavy
computational model. In [6], a performance-driven modeling
is fully developed and validated for the design of antenna
structures. Koziel and Pietrenko-Dabrowska managed to
reduce the number of calls of the EM model by 60% (on
average) compared to a classical analysis. In [7], the use of
Smolyak’s sparse grid algorithm is presented for uncertainty
quantification for EM systems. As in [7], most of these
numerical methods can be enhanced using adaptive sampling
to greatly reduce the initial samples for the metamodel
setup [8]. In [9], radiated immunity test are studied with
a Thévenin-based metamodel paired with a simple adaptive
sampling, which manages to reduce the computation time
from ∼ 119 h using a FEM solver to only 19 s. For complex
EMC problems, adaptive sampling has notably been used with
Kriging metamodeling of radiated susceptibility in coaxial
shielded cables [10]. But also to perform global sensitivity
analysis of an electromagnetic interference filter [11].

Therefore, this work focuses on the design of an adaptive
sampling strategy for metamodeling. Firstly, this paper
presents the development and the design parameters required
for an adaptive strategy for PCK metamodeling. Then, based
on various test functions and several sampling strategies, a
partition design is selected to greatly reduce the number of
calls of the input computational model. The core of the work
lies in the careful selection of the refinement design, where the
parameter space is subdivided based on a local non-intrusive
cross-validation (CV) criterion. Unlike other existing adaptive
strategies, the global consistency of the metamodel is achieved
by insuring a local consistency of every surrogate model built
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in every partition of the parameter space. Finally, the resulting
algorithm is tried on a realistic wireless power transfer (WPT)
system FEM model, on which accurate sensitivity analysis are
crucial for EMC studies.

II. SURROGATE MODELING ALGORITHM

A. Surrogate model

This work focuses on two surrogate models,
PCE and Kriging, along with their combination
Polynomial-Chaos-based Kriging (PCK), which have
been proven quite efficient for building accurate predictors
and performing various global SA on a wide range of
complex models. For example in the case of electromagnetic
device optimization [12] were Kriging has been proven better
compared to other surrogate processes. Polynomial Chaos
expansion has been proven successful at approximating
Magnetic Flux density at a lower computation cost than
regular simulations [13]. As for PCK metamodeling, it has
been recently used in the case of computational dosimetry
for estimating specific absorption rate values [14].

The surrogate model used here is an exact interpolator:
PCK metamodeling combines both PCE and Kriging to predict
the variations of a given model M(X). Kriging is used to
interpolate the local variations of the output model while PCE
is useful for the global approximation. A PCK metamodel is
defined by [15]:

M̂(X) =
∑
α∈A

yαψα(X) + σ2Z(X,ω) (1)

where
∑

α∈A yαψα(X) is a weighted sum of orthonormal
polynomials describing the trend of the PCK model and
σ2Z(X,ω) is a zero-mean stationary Gaussian process with
a variance of σ2. PCK can be interpreted as a Kriging
metamodel with a polynomial trend, whom characteristics are
unknown. Therefore the PCK metamodel is built in two parts:
the computation of the polynomial coefficients (yα) on one
side and the kriging hyperparameters on the other side. The
computation of these metamodel parameters is performed by
the UQLab framework available on Matlab [16].

Let’s consider a set {(X1, Y1), . . . , (XN , YN )} of N input
samples. Using this set, one can build a PCK metamodel
M̂. The consistency of the metamodel is evaluated by the
Leave-one-out error (LOO):

LOO =
1

N

N∑
i=1

(
||M̂/i(Xi)− Yi||

||Yi||

)2

(2)

where M̂/i is the mean predictor that was trained using all
(X,Y ) but (Xi, Yi). The LOO enables us to evaluate the
consistency of the metamodel considering its build. If the
LOO is close to 1, the metamodel is highly modified if one
datapoint is taken out of the training dataset, whereas the
smallest it is, the least it will be modified.

B. Variance-based sensitivity analysis

In order to perform global SA using metamodels, the
well-known Sobol’ indices [1] have been chosen as our

sensitivity trackers. The first order Sobol index for a parameter
P is a simple quantity varying from 0 (almost independent)
to 1 (the more dependent) quantifying the dependency of the
output model on a given parameter P regarding a variation
of several parameters simultaneously. When using PCE-based
metamodels, the computation of the Sobol’ indices can be
easily extracted from the polynomial decomposition (see
equation 1).

Let us consider a model output Y =M(X) with d input
parameters (P1, . . . , Pd). Thanks to the uniqueness of Sobol’
decomposition, the output variance Var(Y ) can be expressed
as:

Var(Y ) =

d∑
s=1

d∑
i1<...<is

Vi1,...,is

Var(Y ) =

d∑
i=1

Vi +

d∑
(i,j),i<j

Vij + ...+ V12...d (3)

with the following definitions for the partial variance terms:

Vi =VarPi
(EX/i

(Y |Pi))

Vij =VarPiPj
(EX/ij

(Y |Pi, Pj))

Vi1,...,is =VarPi1 ...Pis
(EX/i1...is

(Y |Pi1 , ..., Pis)) (4)

The variance can be decomposed in a sum of variance-based
terms showing the dependency on each input individually
(the Vi in equation 3) but also the second-order (Vij) and
higher-order interactions between the various input parameters.

1) Sobol’ indices: Using the variance decomposition in
equation 3, a sensitivity tracker Su can be defined for
any combination of any order of input parameters, ∀u =
(i1, ..., is) ∈ J1, dKs, i1 < ... < is:

Si1,...,is =
Vi1,...,is
Var(Y )

(5)

The most commonly used Sobol’ indices is the first order
Sobol’ index, ∀i ∈ J1, dK:

Si =
Vi

Var(Y )
=

VarPi
(EX/i

(Y |Xi))

Var(Y )
(6)

which emphasizes the impact of the parameter Pi alone on the
output model compared to other parameters. The closer it is to
one, the bigger impact it produces on the model. Higher-order
Sobol’ indices can be interpreted in the same way, as the
sensitivity of the output model is observed regarding the
variations of several input parameters simultaneously, the
effect each input cannot be separated from the others. The
total sum of all orders Sobol’ indices verifies:

d∑
i=1

Si +

d∑
(i,j),i<j

Sij + ...+ S12...d =
∑

{u,u⊆J1,dK}

Su = 1 (7)

2) Total indices: For high dimensional output models, the
observation of all orders Sobol’ indices can be difficult due
to the high number of combination. Therefore, for an input
parameter Pi, a total-effect index (or total Sobol’ index) ST

i is
defined by summing all the Sobol’ indices using this variable:

ST
i =

∑
{u,u⊆J1,dK and i∈u}

Su (8)
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Fig. 1: Visual representation of different sampling strategies,
taken from [8]

Unlike Si where according to equation 7:
d∑

i=1

Si ≤ 1, this

time the sum of all the total Sobol’ indices is greater than one:

d∑
i=1

ST
i ≥ 1 (9)

Indeed, for example for a given couple (Pi, Pj) of input
parameters, Sij is counted for both ST

i and ST
j . The equality

case for inequality 9 is for an output model purely additive.
The information given by ST

i is different from the one given
by Si, for example Si << 1 does not imply necessarily
ST
i << 1. A total Sobol’ index close to zero means that

the input parameter is almost not affecting the output model,
which can be useful for further simulations and experimental
designs.

C. Adaptive sampling strategy

Sampling strategies can be classified in two categories: static
("one-shot") sampling and sequential sampling (see figure 1
from [8]). In static sampling, the sample size and the input
dataset are chosen prior to the model evaluation. But in our
study cases, the input models are rather costly and their
response is unknown. Thus, it is hard to determine an a
priori sample which would result in a consistent surrogate
model. Hence why, sequential sampling methods have been
developed, where the input dataset is modified based on
previous computations along the build of the metamodel.

Among sequential sampling strategies, the goal of an
adaptive sampling strategy (also called active learning) is to
start from a rather low number of samples and expand it in
the regions of interest of the model response (red samples on
figure 1). This results in a relatively low number of calls of
the input model compared to space-filling strategies for the
same level of surrogate model accuracy.

The general flowchart of an adaptive sampling strategy
for surrogate modeling is displayed on figure 2. Given an
input parameter space X for an expensive computational
model M, N samples are drawn from it X = (X1, ..., XN ).
Their corresponding model responses are computed Y =
(Y1, ..., YN ) and a first metamodel M̂ is computed using this

Input parameter space X
Complex computational model M

Drawing N samples, X ∈ XN :
X = (X1, ..., XN )

Computing the model response:
Y =M(X)

Computing the metamodel M̂
from the input dataset : (X,Y )

Is M̂
accurate
enough ?

Drawing k additional
samples in the

region of interest :
Xnew ∈ X k

Computing the
model response:

Y new =M(Xnew)

Adding it to
the existing dataset:
Y ← {Y ,Y new}
X ← {X,Xnew}

True input dataset : (X,Y )

Accurate metamodel M̂

no

yes

Fig. 2: Flowchart of an active learning metamodeling process,
with the blue processes being the computationally expensive
steps

dataset. If such a metamodel is not accurate, new samples
(along with their responses) are drawn in the regions of interest
and the input dataset is enriched. The algorithm stops when
the metamodel is accurate enough.

Therefore, for the design of such an active learning
metamodeling process, several design parameters need to be
explored: a local criterion to expand or not the dataset, a
global stopping criterion, the sampling method and finally
the definition of the area of interests. The general goal is
to minimize the calls of the expensive model function (blue
processes in the flowchart).

D. Design parameters

1) Local criterion: Most adaptive sampling strategy starts
with a space-filling sampling method to explore the input
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parameter space as much as possible. Then, the expansion
of the dataset in a local area is ruled by the observation
of certain local metric. The metric can be model-dependent
(variance-based, gradient-based...) which often leads to
additional model calls and thus longer computation time
in our case, or independent (usually cross-validation errors)
using only the existing dataset or the metamodel, which
can be computed rapidly using the analytical predictor.
Therefore, considering low input dimensionalities (no greater
than ten input parameters) for the input parameter space,
the aforementioned LOO has been considered for the local
accuracy of our metamodel (see equation 2). This enables to
minimize the call of the computational model.

If the local LOO is too high in an area, more samples
are needed in this part of the input parameter space. This
brings the difficult choice of defining a proper threshold for the
LOO as a local stopping criterion (see a discussion in [17]).
The choice of the LOO as a local stopping criteria is highly
motivated by its crucial use for existing learning algorithms.
Overall, the LOO CV error is successful at estimating the
consistency of any metamodel while not being the best in
every case [18]. Moreover, within a region of interest, the
use of LOO instead of other k-fold cross-validation error
is obvious due to the low number of datapoints considered.
Choosing the LOO as a local metric ensures that, in every
area of interest considered within the input parameter space,
the resulting metamodel is locally consistent. Therefore, the
metamodel is globally consistent regarding the entire input
parameter space.

2) Partition algorithm: The choice of a CV-based adaptive
sampling leads to an obvious partition design for the area
of interests. The main idea is to split each inaccurate region
into 2d sub-regions with d being the dimension of the input
space. This quad-tree partition design [19] has already been
successfully developed for solving Navier–Stokes equations in
aeronautic design [20]. Although this subgridding technique
is quite easy to set up, the main drawback of using it
is the obvious curse of dimensionality, where the number
of computed datapoints would explode for high-dimensional
models. Hence why the application of this algorithm and
the models studied here have responses only depending on
a small number of parameters. Performing global sensitivity
analysis prior to a complete active learning algorithm can
greatly reduced the number of relevant parameters for a single
analysis, thus preventing us from computing too many useless
datapoints.

3) Subdivision limitation: Usually a trade-off between the
local and global criteria needs to be defined, with proper
weights given to each metric in order to subdivide or not
the current domain. But in order to tackle the curse of
dimensionality which appears due to the two previous choices,
an obvious choice for the global criterion is to set the
maximum number of divisions allowed for the partitioning to
limit the total number of computations.

III. COMPARISON OF SAMPLING METHODS

A local and a global stopping criterion have been chosen
with the CV LOO and a limit for the number of divisionss,
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Fig. 3: Sampling methods considered: 20 calls for LHS,
Sobol’, MC and Halton samplings instead of 12 calls for the
uniform sampling for a bidimensional input space

along with a partitioning subgridding technique for the
generation of sub-spaces within area of interests where the
new samples will be drawn from.

A. Sampling methods considered

Then, the goal is to determine the best way to draw samples
within subdomains using either stochastic or deterministic
methods. The final goal being to not compute a lot of
datapoints due to the possible complexity of the considered
output model, therefore a great care should be taken in saving
as many datapoints as possible when drawing samples on
the various domains. The methods used for generating the
initial sample and all the following sub-samples have been
considered identical. Thus, once a sub-domain is created
with the partitioning, the samples are also exploring the
whole sub-space. Five different sampling methods have been
investigated, which all have already been proven useful in the
case of adaptive sampling for surrogate modeling processes
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among the literature [8][21]. Three stochastic sampling
methods have been studied:

• Latin hypercube sampling (LHS)
• Sobol’ sequence sampling (Sobol’)
• Monte Carlo sampling (MC)

Along with two deterministic methods:
• Halton sequence sampling (Halton)
• Uniform sampling

An example of some samples for a bidimensional parameter
space is displayed on figure 3 after one division of the
partitioning algorithm. For a d dimensions parameter space,
the number of samples in each subdomain has been set to
2d + 1. This embodies, in the case of a uniform quad-tree
design, the 2d corners and the center of the subdomain. This
choice has been motivated by various tests notably when
comparing the decrease in the local LOO (higher consistency)
when adding centers to the subdomains of an existing uniform
partition design.

B. Test functions

The algorithm with the 5 aforementioned sampling methods
has been tested against several functions with bidimensional
inputs that aims to cover a range of possible computational
model output for electromagnetic quantities. These test
functions have been chosen purely arbitrary and this choice has
only been made based on the type of output which had already
been studied and the corresponding variations observed. The
four bidimensional test functions are displayed on figure 4:

• a function (a) which embodies the computation of the
B-field by an infinite wire with the current X and the
distance to the wire Y

• a peak function (b) has also been chosen to represent a
possible resonance where the whole bidimensional space
is giving low values apart from the peak where the output
is 10

• a simple square function: (X,Y ) −→ X2 + Y 2 (c)
• a bidimensional wave function (d) with a lot of local and

global extrema

C. Consistency of the metamodels

Along testing the various sampling methods on these five
functions, three different values for both the LOO threshold
ε = [0.1, 10−2, 10−3] and the maximum number of divisions
m = [2, 3, 4] have been tried. Therefore 180 metamodels have
been computed with our algorithm for all possible combination
with 5 samples on each domain. On figure 5, the different
number of samples nsamples against their corresponding LOO
are displayed for every functions and every sampling methods
studied. This number is the total number of samples required
for the algorithm to converge.

The consistent metamodels for performing accurate
sensitivity analysis will be considered only for LOO <
10−2. When comparing the results for the different sampling
methods it can be seen that using local uniform sampling
does not provide the best metamodels considering the LOO
consistency. But some LOO values for non-uniform sampling

(a) (b)

(c) (d)

Fig. 4: Test functions for comparing sampling methods on the
active learning algorithm

10
-20

10
0

10
1

10
2

10
3

uniform

MC

LHS

Sobol

Halton

Fig. 5: LOO against nsamples for various test cases

are overly small (< 10−20), which is not needed and some are
using way too many datapoints at the same time. All in all, the
uniform sampling is the only one to produce consistent enough
metamodels with some decent number of samples which is
already too much considering realistic computational model.
Considering LOO only, the uniform sampling seems to be the
best compromise.

D. Validation tests

But in order to properly assess the accuracy of the predictor
at estimating the real model, four MC-generated validation
sets of 100 datapoints have been created (one for every test
function).

Once a metamodel M̂ has been computed with a given input
dataset, a validation set {(Xi, Yi =M(Xi)),∀i ∈ J1, NK} can
be used to compute a validation error for the metamodel with
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Fig. 6: Validation error R2 against nsamples for various test
cases

the well-known coefficient of determination R2:

R2 = 1−

N∑
i=1

||M̂(Xi)− Yi||2

N∑
i=1

||Y − Yi||2
(10)

where Y is the mean value of the validation set output.
The closer R2 is to one, the better the predictor is at
computing non-sampled datapoints. This coefficient is useful
for comparing different metamodels on the same validation set,
in order to determine which one gives us the best predictor.

On figure 6, the validation error R2 has been displayed for
the 180 computed metamodels. Among the five considered
sampling methods, the uniform sampling is the only one to
insure R2 ∼ 1 for a fairly low number of samples. For
some test cases, MC, LHS, Sobol’ and Halton samplings are
producing predictors with small coefficient of determination,
thus, unable at predicting accurately the behavior of the
input model. This makes these four sampling methods highly
unreliable for regular use in performing accurate sensitivity
analysis using the active learning algorithm. Again, from
this second point of view, the uniform sampling is the best
sampling method to balance both the number of samples and
an accurate enough predictor.

E. Discussion

If another sampling method were to be used for future
computations, on these different test functions and for both
analysis, Sobol’ sequence sampling seems to provide the
second best results. When a domain is subdivided into 2d

domains, during the next loop, for the computation of the
various metamodels, only 2d corners needs to be added along
with 2d centers as many datapoints are already available due
to previous computations (see a comparison on figure 3). This
is the main interest of using a uniform subgridding sampling
instead of an LHS or MC sampling which would result on
much more datapoints computed. Considering the quad-tree

-5 0 5

X

-4

-3

-2

-1

0

1

2

3

4

5

Y

samples

(a)
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2Z
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 LOO = 0.06473

3

Y

0

X

0

4

-5 -5

samples

(b)

Fig. 7: Results of the active learning algorithm on a peak
function (maximum at (3, 3)) for ε = 0.3 and m = 4:
final subdomains and samples (a) and accurate predictor (b)
(nsamples = 97, LOO ≃ 0.0647)

partition design with uniform sampling, the maximum number
of datapoints computed is:

nmax = (2m + 1)d + 2dm (11)

with the number of input parameters d and the maximum
number of divisions allowed m.

An example of the final partitioning and predictor for a
peak function on a bidimensional input space is shown on
figure 7. The resulting predictor needed only 97 datapoints
to create a consistent enough metamodel (LOO ≃ 0.0647).
This shows the great interest of using the quad-tree design
coupled with uniform sampling as many datapoints (most of
the corners) are within several subdomains which is not the
case for other sampling methods. For instance, reproducing
the same 50 × 50 meshgrid without the metamodel predictor
would have required 2500 calls of the computational model.
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Fig. 8: FEM model for a complete WPT model with 3F3
ferrites cores and an optimized shielding structure

This brings the crucial need to properly tune the LOO
threshold ε and the maximum number of divisionss m of the
active learning algorithm regarding the model behaviour and
its dimensionality. As the performance of this algorithm has
been fully validated on classical analytical functions, the goal
is to extend its application to heavy computational model such
as FEM model where the gain in computation time could be
of great use.

IV. APPLICATION TO A REALISTIC WPT SYSTEM MODEL

The goal here has been to apply the metamodeling algorithm
on a realistic FEM model for a WPT system developed at
Politecnico di Torino [22]. Based on this complex model our
algorithm tries to build a consistent predictor that can be used
for both sensitivity analysis or optimization design in lieu and
place of the real model to save computation time.

A. Computational model

Using the CAD model from the WPT system receiver used
for experiments at Politecnico di Torino, the complete WPT
model has been reproduced with a 3D FEM model displayed
on figure 8. For the receiving device, only the main shielding
structure optimized with the shielding beams, along with the
double U-shaped coils (displayed in orange on figure 8) topped
by the 3F3 ferrite cores has been considered. While only
the transmitting coil in the ground has been modeled for the
transmitter.

Because this model is fitting a real model available inside
the laboratory, the effects of mostly design-based geometrical
parameters have been considered:

• ∆x, ∆y and ∆z: the misalignments between the
receiving and transmitting coils along the x, y and z axis

• wrcoil, lrcoil, wtcoil, ltcoil: the dimensions of the coils
• α, β, γ: the yaw, pitch and roll of the transmitting coil

The output considered in the following analysis is the coupling
factor k of the WPT system:

k =
M√
LRLT

(12)

with M the mutual inductance of the two coils and (LR,LT )
their respective self-inductance.

Regarding the computation time, one datapoint takes ∼
1min to compute on an Intel Core i7-10610U, 1.80GHz,
8 GB of RAM. If one were to perform some brute-force

TABLE I: Parameters with their corresponding ranges for
the analysis of a dynamic WPT system (LOO ≃ 3.00 ·
10−2, nsamples = 65)

variable min max description ST

∆x −0.25m 0.25m x misalignment 0.139
∆y −0.5m 0.5m y misalignment 0.138
∆z −0.15m 0.15m z misalignment 0.261
α −10◦ 10◦ yaw 0.136
β −2◦ 2◦ pitch 1.97 · 10−3

γ −2◦ 2◦ roll 0.634

Fig. 9: Variations of the coupling factor k against the z
misalignment ∆z and the roll γ (∆x = ∆y = 0m and
α = β = 0◦)

sensitivity analysis (using Monte Carlo sampling for example),
this would require a few thousand calls of the computational
model. Thus, the total computation time of the analysis would
take several days.

B. Sensitivity to the road profile

The first application has been to compute a consistent
predictor for the behavior of the coupling factor regarding the
movement of the vehicle and the road profile. The considered
parameters for this analysis are displayed in table I. The ∆x
misalignment and the yaw α have been chosen to consider a
car slightly deviating from the center of the road, while the
∆y misalignment embodies the direction of motion. The ∆z
misalignment along with the pitch β and the roll γ take into
account the road profile.

The active learning metamodel algorithm managed to build
a consistent predictor with ε = 0.3 and m = 3. The resulting
metamodel uses nsamples = 65 and has a consistency of
LOO ≃ 3.00 · 10−2. An example of the variation of the
coupling factor produced by the active learning metamodel
predictor is displayed on figure 9 for the variations of ∆z
and γ (a modification of the road profile) with the other
parameters set at their nominal values (∆x = ∆y = 0m and
α = β = 0◦).

Using this consistent predictor, a sensitivity analysis has
been computed using total Sobol’ indices displayed on table
I. The most important parameters are the roll γ along with the
∆z misalignment. As expected these two parameters greatly
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TABLE II: Parameters with their corresponding ranges for
the analysis of a dynamic WPT system (LOO ≃ 1.41 ·
10−2, nsamples = 17)

variable min max description ST

wrcoil 0.3m 0.6m
receiving coil
width 0.105

lrcoil 0.3m 0.6m
receiving coil
length 0.177

wtcoil 0.3m 0.6m
transmitting coil
width 0.0614

ltcoil 0.5m 2m
transmitting coil
length 0.691

increase the distance between the two coils, which decreases
significantly the coupling factor. Even if the pitch β also
influences the gap between the receiver and the transmitter, for
this small range [−2◦, 2◦] corresponding to an imperceptible
bump on the road, its effect is entirely negligible. The roll
embodies a non-flatten road which has still a greater impact
with such a small range. The other three parameters ∆x, ∆y
and α are taking into account the dynamic aspect for the WPT
system and are of course not negligible.

C. Sensitivity to various coil dimensions

Another interesting analysis is to assess the dependency
of the coupling factor regarding the transmitter or receiver
dimensions. This could emphasize where the greatest care
should be taken when designing or building a new WPT
system. The considered parameters with their ranges and
Sobol’ indices are displayed in table II. The algorithm has
been ran with ε = 0.3 and m = 3 resulting in a metamodel
with LOO ≃ 1.41 · 10−2 and nsamples = 17.

The length of the transmitting coil is by far the most
important parameter regarding the coupling factor behavior.
It ensures the totality of the Magnetic Flux generated is
embraced by the receiving coil. Due to the chosen possible
dimensions, for the same reason the length of the receiver is
also extremely important. As the nominal gap between the
coils is ∆z = 23.5 cm, the width of the transmitter has
a lesser influence as long as the totality of the Magnetic
Flux can be directed to the receiver which is insured with
a range [0.3m, 0.6m] similar to the maximum dimensions of
the receiver. The receiver dimensions are only limited by the
car it can be put in and therefore cannot be extended.

D. Discussion on the algorithm parameters

On table III, the dependency of the maximum number
of computed datapoints nmax (see equation 11) against the
dimension of the input space d and the maximum number
of divisions m is displayed for several values. Using the
algorithm, if one were to diminish the consistency threshold
ε to less than 1% for example, the metamodel for the coil
dimensions (m = 3, d = 4) would need at the maximum
nmax = 10 657, while nmax = 793 585 for the WPT
dynamic analysis (m = 3, d = 6). Thus, the computation of
a metamodel with a higher local consistency would be almost
impossible as one datapoint takes ∼ 1min to compute if the
resulting sub-metamodels are not consistent.

TABLE III: Maximum number of datapoints nmax computed
against the dimension of the input space d and the maximum
number of divisions m

nmax m = 0 m = 1 m = 2 m = 3 m = 4
d = 1 3 5 9 17 33
d = 2 5 13 41 145 545
d = 3 9 35 189 1 241 9 009
d = 4 17 97 881 10 657 149 057
d = 5 33 275 4 149 91 817 2 468 433
d = 6 65 793 19 721 793 585 40 914 785

TABLE IV: Computation time of the various steps

Analysis nsamples

computation
time of all

metamodels

computation
FEM model

computation
sensitivity
analysis

road
profile 65 ∼ 1.92 s 1 hour ∼ 245ms

coil
dimensions 17 ∼ 1.55 s 15 min ∼ 130ms

E. Gain in computation time

The goal of the two analyses presented here has been
to try our active learning algorithm for accurate sensitivity
analysis, in order to save computation time compared to
classical methods. When looking at the algorithm flowchart of
figure 2, the total computation time for a run of the algorithm
needs to consider three different contributions: the calls of
the expensive computational model, the computation of the
metamodels at every loop and finally the sensitivity analysis.

In table IV, the total computation of time of the various steps
of the algorithm are displayed for both analyses. As expected,
the only time-consuming step is the call of the FEM model.
The computation time of all the metamodels computed in a
single run of the algorithm put together does not exceed 2 s for
both cases, while the two sensitivity analysis are taking less
than 1 s. Therefore the total computation time of the algorithm
can be reduced to the calls of the FEM model.

These computation times have been compared to a
brute-force analysis where a uniform grid with nmax samples
have been computed (see equation 11). The results are
displayed on table V, the estimated computation time with
an extremely refined uniform grid would be in days or even
years at six parameters, while our algorithm does not last more
than 1 h. Thus, the gain in computation time using this active
learning metamodeling algorithm is over 99%. Even if some
way better sampling methods (such as MC, LHS, Halton...)
could be used in a classical analysis to build the surrogate
model, the time reduction compared to a uniform grid would
not be greater than 99% [23].

TABLE V: Estimated gain in computation time for the studies
on the WPT charger model

Analysis d LOO
brute-force

analysis
(estimated)

adaptive
metamodeling

algorithm

time
reduction

road
profile 6 0.030 1.5 year 1 hour 99.99%

coil
dimensions 4 0.014 7 days 15 min 99.85%
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V. CONCLUSION

Finally, an adaptive sampling algorithm designed for PCK
metamodeling of complex electromagnetic problem has been
successfully developed. Two analysis on a realistic FEM
model have been performed to show the usefulness of such
an algorithm. The two computed metamodels have a great
consistency (LOO < 3%) which is sufficient for drawing
tendencies for sensitivity analysis. The results can be used
for future designs or EMC analysis of WPT systems for
automotive applications.

As previously developed, the algorithm could show
limitations at high dimension input space. An easy solution
to this problem is to decrease the number of input parameters
by performing factor prioritization. A first wide analysis can
be performed on various parameters, giving us a consistent
predictor for the model able to perform an accurate sensitivity
analysis. Using this sensitivity analysis, only the relevant
parameters can be extracted and a finer input space can be
chosen with the negligible parameters ignored. Then a better
and more consistent metamodel can be built on this smaller
set of parameters as it will be able to fully explore the input
parameter space thanks to its smaller dimension.

Many improvements for such a numerical method are still
possible, but using this algorithm on various FEM models
saved more than 99% of computation time compared to
classical brute-force analysis. Thus, this method is of great
interest for future sensitivity analysis in the case of complex
electromagnetic systems.
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