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Abstract—Distributed Acoustic Sensing (DAS) is a nascent
technology that facilitates the measurement of vibrations along
fibre-optic telecommunication cables, which has numerous novel
applications in many domains of science and engineering. In the
present study, we use DAS to analyse traffic along a fibre-optic
cable deployed along a major road in Nice, France. For the
objective of estimating the speed of individual vehicles, we pro-
pose a MUSIC beamforming algorithm, which exhibits superior
performance when applied to data that has been deconvolved with
a Deep Learning model. The accuracy of the speed estimation is
in the range of 0.14-0.25 km h−1, which is at least one order of
magnitude better than conventional methods. DAS therefore has
great potential in urban traffic analysis applications.

I. INTRODUCTION

Distributed Acoustic Sensing (DAS [1]) is a laser-pulsing
technology that converts fibre-optic telecommunication cables
into arrays of thousands of vibration sensors, positioned every
few metres along the fibre-optic cable. An interrogator unit
systematically sends short pulses of laser light into one end
of an optical glass fibre, and measures the phase and/or
amplitude of the back-scattered photons that have interacted
with nanometric-scale defects along its path through the fibre.
Through interferometric techniques, the (rate of) stretching of
the fibre can be inferred from the back-scattered measurement
at equidistant points along the fibre, at temporal sampling rates
up to several kHz. This has enabled numerous applications in
science and engineering, including (but not limited to) geo-
physics and seismology [2]–[4], structural integrity monitoring
[5], and hydrology [6].

One particular application of interest of the present study,
is that of vehicular traffic monitoring. As many commercial
telecommunication cables are being deployed immediately
adjacent to public roads, DAS has the ability to record the
passage of vehicles over these roads [7], [8]. When a vehicle
drives past a given location along the cable, its weight pressing
down on the road causes small deflections in the subsurface,
which is transferred to the fibre and subsequently measured
by the interrogator (see Fig. 1). By estimating the timing
at which a vehicle passes by a given sensing point, and
knowing the (fixed) spacing between sensing points, one can
precisely obtain the location and velocity of the vehicle.
Roadside DAS therefore holds enormous potential for high-
resolution traffic monitoring, and can be complementary to
conventional instrumentation like traffic cameras and inductive
loops embedded in the road.
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Fig. 1. a) Schematic illustration of the layout. A vehicle with velocity vi
travels along the DAS cable that was deployed parallel to the road. The spacing
between the sensors is d, with the q-th sensor being located at xq ; b) Example
of DAS data containing three cars. Each black line represents a time-series
measurement at a given sensor. Each car traces out a diagonal line in the data,
the slope of which equals its velocity.

To enable “smart city” applications facilitated by DAS, such
as advanced traffic control, robust and accurate DAS analysis
algorithms are needed. In this paper, we propose a frequency-
domain MUSIC beamforming algorithm to estimate the speed
of vehicles in an urban setting. To massively improve upon the
accuracy and precision of the speed estimation, we leverage
a self-supervised, non-blind Deep Learning deconvolution
model that deconvolves the characteristic signal of cars and
other vehicles from the DAS data.
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Fig. 2. Architecture of the Deconvolution Auto Encoder. We take a set time-series of size 1024 samples, recorded by 24 consecutive DAS sensor. This input
is passed to a U-Net Auto-Encoder and produces an output X of the same size as the input. This output is subsequently convolved with the known impulse
response of a car, and the learning objective is to minimise the difference between the convolved output and the original input (subject to a sparsity constraint
on X).

II. APPROACH

A. Signal model

The problem as illustrated in Fig. 1a consists of estimating
the velocity (v) of a vehicle, using the vibrations recorded
along the DAS cable. In this study we focus on the analysis
of isolated vehicles. For a linear equidistant array of sensors
with spacing d positioned tangent to the road, the characteristic
signal y of a vehicle observed at time index n = 0 . . . N − 1
and sensor q = 0 . . .M − 1 can be modelled as:

yq(n) = αs(n− τ − q∆t) + nq(n)

in which s is the vehicle’s characteristic signal with amplitude
α, τ is a constant time offset, ∆t ∝ d/v, and n is assumed to
be Gaussian-distributed noise.

Then, let Yq(k) be the Discrete Fourier Transform (DFT)
of signal n → yq(n) at frequency k/N and y(k) the vector
collecting Yq(k) at all sensors q. We can write:

y(k) = αS(k) exp

(
−ȷ2πkτ

N

)
ek,N (∆t) + n(k) (1)

where S(k) is the DFT of s(n) and ek,N (∆t) is the steering
vector defined as:

ek,N (∆t) =

(
1, exp

(
−ȷ∆t

2πk

N

)
, exp

(
−ȷ∆t

4πk

N

)
. . .

)⊤

We then estimate the interspectral covariance matrix by av-
eraging y(k)y(k)† w.r.t. k over a narrow frequency band
centred at frequency k̄, and subsequently apply the MUSIC
beamforming algorithm using ek̄,N (∆t) as the steering vector.
This yields an estimation of the distribution of beam pseudo-
power over v.

B. Deconvolution Auto-Encoder

As is apparent from Fig. 1b and from theoretical consider-
ations [2], the characteristic signature of a car as recorded
by DAS is the same for each car (up to a proportionality
constant). We can therefore achieve higher resolution traffic
measurements by deconvolving this characteristic impulse
response from the DAS data. To this end we employ a Deep
Learning model, which takes as an input a subset of the DAS
data and produces some output (X) of the same size as the
input. We then convolve this model output by the (known)
impulse response of a car (R), i.e. ŷq = [R ∗Xq]t, where
[a ∗ b]t denotes the convolution between a and b along the
temporal axis. We then define the learning objective as:

L =
1

N

N∑
i=1

||yiq − ŷiq||22 + λ||Xi
q||1 (2)

in which the average is taken over N samples in a training
batch, and λ is the strength of the ℓ1 regularisation on X
(promoting sparsity). Following the completion of the training
phase, the output of the model X is such that upon convolution
with the car’s impulse response, the original input y is ap-
proximated; the Deep Learning algorithm therefore represents
a deconvolution operation. Note that this learning approach is
entirely self-supervised.

III. EXPERIMENTAL SETUP

The data analysed for this study were acquired during a
measurement campaign performed in the city of Nice, in the
south of France. The fibre was nested within a bundle of cables
firmly attached to the side of a multi-lane suspended road
crossing the city, and was sensed with an hDAS interrogator
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Fig. 3. Top row: four selected examples of recordings of cars, characterised by a large-amplitude wiggle near the centre of each panel. The waveforms are
shifted according to a reference velocity of 70 km h−1 (see text); Bottom row: results of the Deconvolution Auto-Encoder algorithm, taking the waveforms
from the top row as an input.

(Aragon Photonics) with a channel spacing equal to the gauge
length of d = 10 m, at a temporal sampling frequency of
250 Hz. To preprocess the data, we applied a bandpass filter
with a 0.1-2 Hz pass band, and downsampled the data to
25 Hz. We assess the performance of the proposed workflow
based on four typical examples of DAS recordings of cars
travelling towards the interrogator (see top row of panels in
Fig. 3). These example recordings were deconvolved with the
Deconvolution Auto-Encoder (bottom row in Fig. 3). Both the
original and the deconvolved data were subsequently analysed
with MUSIC beamforming.

For the beamforming analysis, we computed the beampower
over a grid of slowness (reciprocal velocity) values {σj}, for
which we defined σj = σ0 + δσj . The constant reference
slowness σ0 was factored out of Eq. (1), performing the
computation over slowness perturbations δσj . As a reference
slowness, we took σ−1

0 = vref = 70 km h−1, being the speed
limit of the road under study. For visualisation purposes, all

of the waveforms in Fig. 3 are shifted in accordance with
this reference slowness. Under this transformation, a vehicle
with a speed of exactly vref would trace out a vertical line,
with faster vehicles tracing out a diagonal line from top left
to bottom right (and v.v. for slower vehicles). We apply the
MUSIC algorithm to a sliding window of 15 consecutive DAS
sensor recordings, equivalent to 140 m distance. This sliding
window traverses the data along the spatial axis, estimating
the distribution of beampower as a function of distance along
the cable.

For reference, we also estimate the velocity of each selected
vehicle by estimating the timing of passage at a given DAS
sensor as the timing of the peak strain for that sensor (i.e.
by taking the peaks seen in e.g. Fig. 1b). The average
velocity between consecutive DAS channels is consequently
v = d/ (ti+1 − ti). Owing to the presence of noise in the
data (with spatially non-uniform signal-to-noise ratio), this
method is sensitive to outliers, and manual fine-tuning with a



median filter and a Savitzky-Golay filter was needed to obtain
stable estimates of the vehicle’s velocity v = d∆q/∆tpeak
over a distance interval d∆q. We suppose that the extensive
fine-tuning renders this approach based on peaks in the DAS
recordings infeasible for automated traffic analysis.

IV. RESULTS

Corresponding with the four selected vehicles shown in
Fig. 3, we plot the distribution of beampower for each ve-
hicle as a function of distance along the cable in Fig. 4.
By comparing the top row (original data) with the bottom
row (deconvolved data), it becomes immediately apparent
that the distribution of beampower is much more narrowly
distributed for the deconvolved data than for the original data.
Especially for vehicles 3 and 4 (Fig. 4c and d), the beampower
distribution for the original data is very broad and multi-modal,
which inhibits a precise estimation of the vehicles’ velocities.
By contrast, the beampower distribution for the deconvolved
data of these vehicles (Fig. 4g and h) has only a single and
sharp peak in beampower for each DAS channel, which could
be easily detected and characterised with a basic automatic
peak detector.

In comparison to the baseline estimation of the velocity
(based on peaks in the strain, as described in the previous
section), both data sets seem to be very accurate. We can
quantify this accuracy by taking the location of the peak
in beampower for each channel, and computing the absolute
difference with the corresponding baseline estimation at the
same channel. The mean absolute difference, averaged over all
the channels, is indicated in each panel in Fig. 4. Likewise, the
precision of the method is estimated as the full width at half
maximum (i.e. the width of the peak at 50 % of its maximum)
of the beampower peak for each channel. This measure is not
entirely meaningful for a multi-modal distribution like seen
in Fig. 4d, in which case the estimated precision is merely
indicative.

Considering these quantitative performance metrics, we
find that the beamforming results on the deconvolved data
systematically outperform those for the original data. In the
most extreme example, the accuracy and precision for the
deconvolved data (0.17 and 1.32 km h−1, respectively) are
almost one order of magnitude better than for the original data
(3.55 and 7.14 km h−1, resp.). Moreover, the performance
on the deconvolved data is much more consistent across
samples, which is an important aspect to consider for real-
world implementations.

V. CONCLUSIONS & FUTURE PERSPECTIVES

In this paper we demonstrate the accuracy of MUSIC
beamforming algorithms in estimating the velocity of isolated
cars in Distributed Acoustic Sensing (DAS) data. Particularly
when the characteristic signal of a vehicle is deconvolved
from the data do the estimated velocities achieve extremely
good accuracy and precision. With an accuracy in the range
of 0.14-0.25 km h−1 and a precision in the range range of
0.82-1.54 km h−1, DAS-based vehicle speed estimations are

very competitive compared to established traffic analysis tech-
niques. To give an example, the winning contender of the 2018
NVIDIA AI City Challenge [?] achieved an RMS accuracy
of 6.6 km h−1 based on traffic camera data, using state-
of-the-art computer vision techniques. Handheld radar guns
could in principle achieve an accuracy of less than 1 km h−1,
but have a tendency to produce outlier results [?]. Since the
performance of DAS does not depend on environmental factors
(weather conditions, lighting situation, etc.), we expect DAS
to deliver accurate and consistent performance at all times.

Another major advantage of using DAS for traffic analysis,
is that the fibre-optic infrastructure it relies on is already in
place in many urban locations. While dedicated deployments
could achieve better signal-to-noise ratios as a result of specific
deployment protocols (e.g. improving coupling between the
fibre and the road [?]), existing telecom cable deployments
could be sufficient (as we demonstrate in this study). Up-
scaling DAS technologies can therefore be logistically more
feasible than discrete sensor networks (inductive loops, cam-
eras, roadside laser guns, etc.).

Lastly, we stress the notion that “smart city” applications
facilitated by DAS are still in their infancy, and that advances
in laser pulsing, fibre manufacturing, and cable deployment
technologies may yield massive improvements in the signal
quality that may bolster signal analysis algorithms in the near
future.
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Fig. 4. Overview of beamforming performance. Top row: the beampower distributions for the four selected vehicles estimated from the original data
(corresponding with the top row in Fig. 3). Bottom row: the beampower distributions estimated from the deconvolved data (corresponding with the bottom
row in Fig. 3). In each panel, we indicate the velocity estimated from the peak strain as cyan lines, and the estimated accuracy and precision as red text.
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