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In this paper, we propose a novel clustered multitask diffusion RLS (MT-DRLS) algorithm over network to further improve the performance of its counterpart, the multitask diffusion LMS (MT-DLMS) algorithm. Its transient behavior is investigated, in the mean and mean-square error sense. Simulation results illustrate the significant improvement of the MT-DRLS over the MT-DLMS in terms of convergence rate and steady-state error, as well as the accuracy of the theoretical findings.

INTRODUCTION

During the past decade, distributed detection, estimation, and tracking problems have attracted substantial attention in the context of adaptive networks with diffusion strategies [START_REF] Sayed | Adaptive networks[END_REF][START_REF] Sayed | Diffusion adaptation over networks[END_REF][START_REF] Djuric | Cooperative and Graph Signal Processing: Principles and Applications[END_REF]. Several multitask strategies for adaptation and learning over networks have been recently proposed based on the diffusion least-mean-squares (DLMS) algorithm [START_REF] Chen | Diffusion LMS for clustered multitask networks[END_REF][START_REF] Chen | Multitask diffusion adaptation over networks[END_REF][START_REF] Nassif | Multitask diffusion adaptation over asynchronous networks[END_REF][START_REF] Chen | Multitask diffusion adaptation over networks with common latent representations[END_REF][START_REF] Nassif | Diffusion LMS for multitask problems with local linear equality constraints[END_REF][START_REF] Nassif | Proximal multitask learning over networks with sparsity-inducing coregularization[END_REF][START_REF] Jin | Online proximal learning over jointly sparse multitask networks with ∞,1 regularization[END_REF][START_REF] Gogineni | Performance of clustered multitask diffusion LMS suffering from inter-node communication delays[END_REF]. The DLMS algorithm for multitask networks was first proposed in [START_REF] Chen | Diffusion LMS for clustered multitask networks[END_REF][START_REF] Chen | Multitask diffusion adaptation over networks[END_REF], and studied in asynchronous networks in [START_REF] Nassif | Multitask diffusion adaptation over asynchronous networks[END_REF]. A new multitask learning formulation using a common latent representation was presented in [START_REF] Chen | Multitask diffusion adaptation over networks with common latent representations[END_REF], as well as a unified framework to analyze its performance. Both 1-norm regularization and ∞,1-norm regularization were introduced into multitask networks in [START_REF] Nassif | Proximal multitask learning over networks with sparsity-inducing coregularization[END_REF] and [START_REF] Jin | Online proximal learning over jointly sparse multitask networks with ∞,1 regularization[END_REF], respectively. Recently, the performance of multitask DLMS algorithm has been analyzed in the presence of communication delays [START_REF] Gogineni | Performance of clustered multitask diffusion LMS suffering from inter-node communication delays[END_REF]. An overview of multitask learning over networks and its applications is available in [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF].

The diffusion recursive least-squares (DRLS) algorithm was also extensively studied in [START_REF] Cattivelli | Diffusion recursive least-squares for distributed estimation over adaptive networks[END_REF][START_REF] Bertrand | Diffusion biascompensated RLS estimation over adaptive networks[END_REF][START_REF] Arablouei | Adaptive distributed estimation based on recursive least-squares and partial diffusion[END_REF][START_REF] Liu | Distributed sparse recursive leastsquares over networks[END_REF][START_REF] Vahidpour | Analysis of partial diffusion recursive least squares adaptation over noisy links[END_REF][START_REF] Yu | Robust distributed diffusion recursive least squares algorithms with side information for adaptive networks[END_REF][START_REF] Rastegarnia | Reduced-communication diffusion RLS for distributed estimation over multi-agent networks[END_REF][START_REF] Gao | Transient theoretical analysis of diffusion RLS algorithm for cyclostationary colored inputs[END_REF], due to the superior performance of the RLS compared to the LMS [START_REF] Haykin | Adaptive Filter Theory[END_REF][START_REF] Sayed | Fundamentals of Adaptive Filtering[END_REF]. The DRLS algorithm with incremental update-then-combine diffusion strategy was initially proposed in [START_REF] Cattivelli | Diffusion recursive least-squares for distributed estimation over adaptive networks[END_REF], with an analysis of its steady-state performance. The diffusion bias-compensated RLS algorithm was presented in [START_REF] Bertrand | Diffusion biascompensated RLS estimation over adaptive networks[END_REF] to reduce residual bias, and the DRLS algorithm was considered in [START_REF] Arablouei | Adaptive distributed estimation based on recursive least-squares and partial diffusion[END_REF][START_REF] Rastegarnia | Reduced-communication diffusion RLS for distributed estimation over multi-agent networks[END_REF] to reduce communication cost. Variants of the DRLS algorithm were successively devised to improve the performance in the context of sparse systems [START_REF] Liu | Distributed sparse recursive leastsquares over networks[END_REF], noisy links [START_REF] Vahidpour | Analysis of partial diffusion recursive least squares adaptation over noisy links[END_REF], and robustness against impulsive interferences [START_REF] Yu | Robust distributed diffusion recursive least squares algorithms with side information for adaptive networks[END_REF]. More recently, a transient analysis of DRLS algorithm was presented in [START_REF] Gao | Transient theoretical analysis of diffusion RLS algorithm for cyclostationary colored inputs[END_REF]. To the best of our knowledge, the multitask DRLS algorithm has not been considered so far except in [START_REF] Cao | Decentralized sparse multitask RLS over networks[END_REF]. This motivates us to derive in this paper the clustered multitask diffusion RLS (MT-DRLS) algorithm with adapt-then-combine (ATC) diffusion strategy. Furthermore, analytical models are derived to characterize its transient behavior in the mean and mean-square error sense. Simulation results illustrate the superiority of the MT-DRLS algorithm over the MT-DLMS and DRLS algorithms. The accuracy of the resulting transient analytical models is also investigated.

Notation: The matrix trace is denoted by tr{•}. The notation ⊗ denotes Kronecker product. Identity matrix of size N ×N is denoted by IN , and 1N denotes an all-one vector of length N . The operator bdiag{•} formulates a (block) diagonal matrix with its arguments, and col{•} stacks its vector arguments on the top of each other to generate a column vector. The notation x 2 Σ denotes the squared norm of x weighted by any positive semi-definite matrix Σ, i.e., x 2 Σ = x Σx. C(k) and C(k) -denote the cluster of nodes to which node k belongs, including k and excluding k, respectively. Ci denotes the cluster i, i.e., the index set of nodes in the i-th cluster.

NETWORK MODEL AND MT-DRLS ALGORITHM

Clustered Multitask Network Model

Consider a connected network consisting of K nodes, indexed with k = 1, . . . , K. At time instant n ≥ 0, each node k has access to a random data pair {d k,n , x k,n }, which is assumed to be generated by an optimal weight vector w k ∈ R L at node k via the linear regression model:

d k,n = x k,n w k + z k,n (1) 
where d k,n ∈ R is the zero-mean desired signal, x k,n ∈ R L denotes the regression vector with a positive-definite covariance matrix R x,k = E x k,n x k,n , and z k,n is a zero-mean temporally and spatially independent noise with variance σ 2 z,k . We assume that all nodes are grouped into Q clusters, corresponding to Q estimation tasks. The unknown optimal weight vector w k are constrained to be identical within each cluster, namely, w k = w Cq for all k ∈ Cq. However, it is assumed that similarities exist among the neighboring clusters, i.e., w Cp ∼ w Cq if Cp and Cq are connected with p = q, where ∼ represents a similarity relationship in some sense. Clusters Cp and Cq are connected provided that there exists at least one communication link connecting a node from one cluster to a node in the other cluster.

Clustered Multitask Diffusion RLS Algorithm

In the context of clustered multitask networks, the objective is to estimate the unknown parameter vectors {w Cq } Q q=1 . For each node k in cluster C(k) and nodes of other clusters that are connected to node k, we first introduce an intermediate update equation to promote the similarities of weight vectors between neighboring clusters:

w k,n-1 2 = w k,n-1 -γ ∈N k \C(k) - ρ k + ρ k 2 (w k,n-1 -w ,n-1 )
(2) with strength parameter γ ≥ 0 and w k,n-1 denoting the local estimate of w k . Here, the non-negative weight coefficients ρ k are chosen to satisfy the conditions [START_REF] Chen | Multitask diffusion adaptation over networks[END_REF][START_REF] Nassif | Multitask diffusion adaptation over asynchronous networks[END_REF]:

∈N k \C(k) - ρ k = 1, and      ρ k > 0, if ∈ N k \ C(k), ρ kk ≥ 0, ρ k = 0, otherwise. (3) 
We collect the above coefficients into the random K × K rightstochastic matrix Θ with (k, )-th entry ρ k . Note that the weight coefficients between pairs of nodes are assumed to be symmetric.

Let ψ k,n denote the intermediate estimate of w k . Since weight vector w k,n-1 2 that considers the similarities of weight vectors between neighboring clusters is a good guess for the intermediate estimate ψ k,n as a prior information, we then consider a special case of local least-squares problem based on the collected data at node k only for current time instant n as in [START_REF] Yu | Robust distributed diffusion recursive least squares algorithms with side information for adaptive networks[END_REF][START_REF] Gao | Transient theoretical analysis of diffusion RLS algorithm for cyclostationary colored inputs[END_REF]:

ψ k,n = arg min ψ k ∈R L ψ k -w k,n-1 2 2 Λ k,n + d k,n -x k,n ψ k 2 (4)
with the positive-definite weighting matrix Λ k,n and the timeaveraged autocorrelation matrix Φ k,n of input data for node k at time instant n, namely,

Λ k,n = Φ k,n -k,n x k,n , (5) 
Φ k,n = λΦ k,n-1 + x k,n x k,n , (6) 
where 0 λ < 1 is the forgetting factor, and the initial condition is Φ k,0 = δIL with a small positive value δ.

Considering variable substitutions v = ψ k -w k,n-1 2 and b = d k,n -x k,n w k,n-1 2 , problem (4 
) can be reformulated as:

v = arg min v∈R L v Λ k,n v + b -x k,n v 2 . ( 7 
)
Setting the derivative of ( 7) with respect to v to zero, we obtain:

Φ k,n v = b x k,n . (8) 
By the definition of v, applying the matrix inversion lemma to the right hand side (r.h.s.) of ( 6), then (8) can be rewritten as:

ψ k,n = w k,n-1 2 + b P k,n x k,n (9) 
with the definition Φ k,n = P -1 k,n , where the well-known recursion for matrix P k,n at node k and time instant n is given by [START_REF] Haykin | Adaptive Filter Theory[END_REF][START_REF] Sayed | Fundamentals of Adaptive Filtering[END_REF]:

P k,n = λ -1 P k,n-1 - P k,n-1 x k,n x k,n P k,n-1 λ + x k,n P k,n-1 x k,n (10) 
with the initial condition P k,0 = δ -1 IL. Specifically, b can be approximated by estimation error at node k and time instant n, i.e.,

b = d k,n -x k,n w k,n-1 2 ≈ d k,n -x k,n w k,n-1 = e k,n . (11) 
Substituting ( 2) and ( 11) into [START_REF] Nassif | Proximal multitask learning over networks with sparsity-inducing coregularization[END_REF], we arrive at the adaptive update step of clustered MT-DRLS algorithm:

ψ k,n = w k,n-1 + P k,n x k,n e k,n -γ ∈N k \C(k) - ρ k + ρ k 2 (w k,n-1 -w ,n-1 ). ( 12 
)
Let us introduce the entire intermediate estimated vector and the block column matrix with individual entries the L × L identity matrix, which are defined as follows:

ψ n = col{ψ 1,n , . . . , ψ K,n } ∈ R KL , (13) 
H = col{IL, . . . , IL} ∈ R KL×L . ( 14 
)
We consider the final weighted least-squares problem that requires that each node k communicates with its immediate neighbors within the same cluster [START_REF] Cattivelli | Diffusion recursive least-squares for distributed estimation over adaptive networks[END_REF][START_REF] Gao | Transient theoretical analysis of diffusion RLS algorithm for cyclostationary colored inputs[END_REF]:

w k,n = arg min w∈R L ψ n -Hw 2 Π k (15) 
with the node-dependent weighting block diagonal matrix Π k = bdiag a 1k IL, . . . , a Kk IL . Here, the non-negative combination coefficients {a k } are chosen to satisfy [START_REF] Chen | Multitask diffusion adaptation over networks[END_REF][START_REF] Nassif | Multitask diffusion adaptation over asynchronous networks[END_REF]:

∈N k ∩C(k) a k = 1, and 
a k > 0, if ∈ N k ∩ C(k) a k = 0, otherwise (16) 
This means that matrix A with ( , k)-th entry a k is a left-stochastic matrix, i.e., A 1K = 1K . Likewise, setting the derivative of ( 15) with respect to w to zero, the combination step is given by:

w k,n = ∈N k ∩Ck a k ψ ,n . (17) 

TRANSIENT PERFORMANCE ANALYSIS

We now perform the transient performance analysis of MT-DRLS algorithm with ATC diffusion strategy for clustered multitask networks in the mean and mean-square error sense. The weight error vectors for node k at instant n are defined respectively as follows:

ψ k,n ψ k,n -w k , w k,n w k,n -w k . (18) 
Let wn and w denote the block weight error vector and the block optimal weight vector, all of size K×1 with blocks of size L×1, i.e., wn col w1,n, . . . , wK,n ,

w col w 1 , . . . , w K . ( (19) 
) 20 
We also introduce the following required K × K block diagonal matrices with each block of size L × L defined as:

Rx,n bdiag x1,nx 1,n , . . . , xK,nx K,n , (21) 
Φn bdiag Φ1,n, . . . , ΦK,n ,

Pn bdiag P1,n, . . . , PK,n ,

A A ⊗ IL, (23) 
and the block column vector with individual entries of size L × 1 defined as: sxz,n col z1,nx1,n, . . . , zK,nxK,n .

Moreover, it holds that:

E{sxz,n} = 0KL (26)
due to the statistical properties of measurement noise z k,n . Before proceeding, we introduce the following independence assumption. Assumption 1. (Independent Regressors): The regression vectors x k,n arise from a stationary random process that is temporally stationary, temporally white, and spatially independent with the positive-definite covariance matrix R x,k .

A consequence of Assumption 1 is that x k,n is independent of w ,m for all and m ≤ n. Although not true in general, this assumption is widely used in the theoretical analyzes of adaptive filters because it allows to simplify the derivations without constraining the conclusions [START_REF] Haykin | Adaptive Filter Theory[END_REF][START_REF] Sayed | Fundamentals of Adaptive Filtering[END_REF].

Mean Error Behavior Analysis

With ( 21) and ( 22), ( 6) can be written in the extended form as:

Φn = λΦn-1 + Rx,n. (27) 
Taking the expectation of both sides, we obtain:

E{Φn} = λE{Φn-1} + Rx (28) 
where the expectation of input correlation matrix Rx,n is given by:

Rx = E Rx,n = bdiag Rx,1, . . . , Rx,K ∈ R KL×KL . (29) 
Since matrix Φn (or Pn) only depends on Rx, hence relation ( 28) is very useful in the sequel. In view of ( 1) and ( 18), the a priori estimation error given in [START_REF] Gogineni | Performance of clustered multitask diffusion LMS suffering from inter-node communication delays[END_REF] can be rewritten as:

e k,n = z k,n -x k,n w k,n-1 . ( 30 
)
Subtracting w k from both sides of ( 12) and ( 17), respectively, then using ( 18) and (30), we find that:

ψ k,n = w k,n-1 -P k,n x k,n x k,n wn-1 + P k,n x k,n z k,n + γ ∈N k \C(k) ρ k + ρ k 2 (w ,n-1 -w k,n-1 ), (31) 
w k,n = ∈N k ∩Ck a k ψ ,n . (32) 
Substituting ( 31) into (32), and using the above definitions ( 19)-( 21) and ( 23)-( 25), the update equation of block weight error vector can be expressed as follows:

wn = A wn-1 -PnRx,n wn-1 + Pnsxz,n -γQ(wn-1 + w ) (33) where Q = 1 2 diag Θ + Θ 1K -Θ + Θ ⊗ IL. ( 34 
)
Pre-multiplying both sides of (33) by P -1 n A -1 , using (27) and the relation Φn = P -1 n based on the definition Φ k,n = P -1 k,n , yields:

ΦnA -1 wn = λΦn-1 -γΦnQ wn-1 -γΦnQ w + sxz,n.

(35) The aim of the above manipulations is to separate Pn and Rx,n in the second term on the r.h.s. of (33). Taking the expectation of both sides of (35), and utilizing the property (26), we then obtain:

E ΦnA -1 wn = E λΦn-1 -γΦnQ wn-1 -γE{Φn}Q w . ( 36 
)
In order to make the analysis mathematical tractable, we need the following approximations [START_REF] Gao | Transient theoretical analysis of diffusion RLS algorithm for cyclostationary colored inputs[END_REF][START_REF] Eweda | Stochastic analysis of the recursive least squares algorithm for cyclostationary colored inputs[END_REF]:

E ΦnA -1 wn ≈ E{Φn}A -1 E{ wn}, (37) 
E Φn wn ≈ E{Φn}E{ wn}, (38)

E ΦnQ wn-1 ≈ E{Φn}Q E{ wn-1}. ( 39 
)
The proofs of (37)-( 39) are not presented explicitly for saving space, but the simulation results are able to validate their effectiveness and rationality later. Substituting the approximations (37)-( 39) into (36), it follows that:

E{Φn}A -1 E{ wn} = λE{Φ n-1} -γE{Φn}Q E{ wn-1} -γE{Φn}Q w . (40) 
Pre-multiplying both sides of (40) by A E{Φn} -1 , it results that

E{ wn} = A λE{Φn} -1 E{Φ n-1} -γQ E{ wn-1} -γA Q w (41)
where relation (28) has been used.

Mean-Square Error Behavior Analysis

The network transient mean-square deviation (MSD) at time instant n is defined by [START_REF] Sayed | Adaptive networks[END_REF][START_REF] Sayed | Diffusion adaptation over networks[END_REF]:

MSDn = tr Wn /K. (42) 
In order to investigate the mean-square error behavior of MT-DRLS algorithm, our next aim is to determine the update equation of Wn.

Post-multiplying (35) by its transpose, and taking the expectation of both sides, leads to:

T0 = λ 2 T1 + γ 2 T2 + T3 -γλ T4 + T 4 -γλ T5 + T 5 + γ 2 T6 + T 6 + Sxz (43) 
where

T0 = E ΦnA -1 wn w n (A -1 ) Φn , (44) 
T1 = E Φn-1 wn-1 w n-1 Φn-1 , (45) 
T2 = E ΦnQ wn-1 w n-1 Q Φn , (46) 
T3 = E ΦnQ w (w ) Q Φn , (47) 
T4 = E Φn-1 wn-1 w n-1 Q Φn , (48) 
T5 = E Φn-1 wn-1(w ) Q Φn , (49) 
T6 = E ΦnQ wn-1(w ) Q Φn , (50) 
Sxz = E sxz,ns xz,n . (51) 
For mathematical tractability of analysis, we introduce the following necessary approximations:

T0 = E ΦnA -1 wn w n (A -1 ) Φn (52) ≈ E{Φn}A -1 Wn(A -1 ) E{Φn}, T1 = E Φn-1 wn-1 w n-1 Φn-1 (53) ≈ E{Φn-1} Wn-1E{Φn-1}, T2 = E ΦnQ wn-1 w n-1 Q Φn (54) ≈ E{Φn}Q Wn-1Q E{Φn}, T3 = E ΦnQ w (w ) Q Φn (55) ≈ E{Φn}Q w (w ) Q E{Φn}, T4 = E Φn-1 wn-1 w n-1 Q Φn (56) ≈ E{Φn-1} Wn-1Q E{Φn}, T5 = E Φn-1 wn-1(w ) Q Φn (57) ≈ E{Φn-1}E{ wn-1}(w ) Q E{Φn}, T6 = E ΦnQ wn-1(w ) Q Φn (58) ≈ E{Φn}Q E{ wn-1}(w ) Q E{Φn}.
The corresponding proofs of ( 52)-( 58) are omitted due to space constraints. The effectiveness and rationality can be testified by the simulation results in the next section. According to assumption 1 and the statistical property of measurement noise z k,n , the matrix Sxz can be determined as follows:

Sxz = bdiag σ 2 z,1 Rx,1, . . . , σ 2 z,K Rx,K = ΣzRx (59) 
with block diagonal matrix Σz = bdiag σ 2 z,1 IL, . . . , σ 2 z,K IL . Substituting (52)-( 59) into (43), then multiplying from the left by A E{Φn} -1 and multiplying from the right by E{Φn} -1 A simultaneously, we finally arrive at the recursion of Wn as follows:

Wn = A λ 2 E{Φn} -1 E{Φn-1} Wn-1E{Φn-1}E{Φn} -1 + γ 2 Q Wn-1Q + Q w (w ) Q -γλ E{Φn} -1 E{Φn-1} Wn-1Q + Q W n-1 E{Φn-1}E{Φn} -1 (60) 
-γλ E{Φn} -1 E{Φn-1}E{ wn-1}(w ) Q

+ Q w E{ wn-1} E{Φn-1}E{Φn} -1 + γ 2 Q E{ wn-1}(w ) Q + Q w E{ wn-1} Q + E{Φn} -1 ΣzRxE{Φn} -1 A .
It should be pointed out that the above recursive evaluation needs to employ relation (28). By (60), we can characterize the transient mean-square errors of the clustered MT-DRLS algorithm.

NUMERICAL TESTS

In this section, we provide an illustrative example to show the superior performance of clustered MT-DRLS algorithm, and to validate the obtained transient analytical models. We considered a connected network consisting of 14 nodes grouped into 3 clusters shown in 1(c), the MT-DRLS algorithm with parameter γ = 0.1 gains about 3 dB over the MT-DRLS algorithm with parameter γ = 0 in the steady-state MSD, and needs about 300 iterations less before attaining the steady-state phase of MT-DRLS algorithm with parameter γ = 0. More importantly, we can also see that the consistent agreement between empirical and theoretical MSD curves validates the accuracy and effectiveness of the transient theoretical analysis. Last, this consistency also validates all the necessary approximations introduced in the analysis. 

CONCLUSION

In this paper, we presented the DRLS algorithm with ATC diffusion strategy over clustered multitask networks to improve the performance of clustered MT-DLMS algorithm. We also provided a transient analysis of the algorithm in the mean and mean-square error sense. In future works, we will study its steady-state behavior.
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 1 a). The optimal weight vectors to be estimated in each cluster were w C 1 = [0.5196, -0.3667] , w C 2 = [0.4952, -0.3783] , and w C 3 = [0.4951, -0.4079] , respectively. The regression vectors x k,n were zero-mean random vectors governed by a Gaussian distribution with covariance matrix R x,k = σ x,k IL. The measurement noise z k,n was i.i.d. Gaussian with zero-mean and variances σ 2 z,k . The variances σ 2 x,k and σ 2 z,k are depicted in Fig. 1 (b), respectively. Each combination coefficient a k was chosen as |N k ∩ C(k)| -1 for all ∈ (N k ∩ C(k)), where | • | denotes the cardinality of its argument. The regularization weight ρ k was uniformly chosen as ρ k = |N k \C(k)| -1 for ∈ N k \C(k), and ρ k = 0 for any other . The step-sizes of MT-DLMS algorithm were all set to 0.03. The forgetting factor λ and the initialization parameter δ of clustered MT-DRLS algorithm were set to 0.995 and 0.05, respectively. All the empirical learning curves were obtained by averaging over 200 Monte-Carlo runs. Fig. 1(c) shows that the clustered MT-DRLS algorithms significantly outperforms the counterpart clustered MT-DLMS algorithms in terms of convergence rate, steady-state errors, and parameter estimation accuracy. As shown in Fig.
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 1 Fig. 1. Network setup and simulation results.
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