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ABSTRACT

Hyperspectral and multispectral image fusion (HMIF) allows
us to overcome inherent hardware limitations of hyperspectral
imaging systems with respect to their lower spatial resolution.
However, existing algorithms fail to consider realistic image
acquisition conditions, or to leverage the powerful representa-
tion capacity of deep neural networks. This paper introduces a
general imaging model which considers inter-image variabil-
ity of data from heterogeneous sources, and formulates the
optimization problem. Then it presents a new image fusion
method that, on the one hand, solves the optimization prob-
lem accounting for inter-image variability with an iteratively
reweighted scheme and, on the other hand, leverages unsu-
pervised light-weight CNN-based denoisers to learn realistic
image priors from data. Its performance is illustrated with
real data that suffer from inter-image variability.

Index Terms— Hyperspectral data, multispectral data,
inter-image variability, image fusion, deep learning.

1. INTRODUCTION

Hyperspectral imaging systems are able to record the re-
flectance of a scene in hundreds of narrow, contiguous spec-
tral bands. Their rich spectral information has attracted high
interest in the remote sensing literature, with successful ap-
plications in mineral exploration, vegetation monitoring and
land cover analysis [1]. Nevertheless, the high spectral res-
olution of hyperspectral images (HI) restricts their spatial
resolution due to hardware limitations. In contrast, multi-
spectral cameras can achieve a much higher spatial resolution
by only acquiring a small number of spectral bands. Conse-
quently, a strategy of improving the spatial resolution of HIs
is to fuse them with multispectral images (MI) of the same
scene, resulting in the so-called HMIF problem.

This work has been was supported by the French government, through
the 3IA Cote d’Azur Investments in the Future project managed by the Na-
tional Research Agency (ANR) with the reference number ANR-19-P3IA-
0002. The work of J. Chen was supported in part by Guangdong Inter-
national Cooperation Project 2022A0505050020, Shenzhen Research Grant
JCYJ20220530161606014, Shaanxi Key Industrial Innovation Chain Project
2022ZDLGYO01-02, and Xi’an Technology Industrialization Plan XA2020-
RGZNTI-0076.

Fusing HIs and MIs acquired by different instruments at
different time instants remains a challenging problem [2].
Most methods ignore that there may have differences be-
tween the acquisition conditions of the HI and MI, which can
compromise their performance. To tackle this issue, HMIF
frameworks addressing inter-image variability have been pro-
posed [3-5]. These methods formulate and solve optimization
problems containing different high-resolution image (HRI)
priors. Recently, learning priors from data with the Plug-and-
Play (PnP) and the Regularization by Denoising (RED) [6]
frameworks has become widely used in image processing
because of their tractability and superior performance. In
particular, convolutional neural networks (CNN) with deep
architectures provide very efficient image priors [7]. How-
ever, existing HMIF algorithms either relied on handcrafted
priors for the HRIs, or neglected to account for the joint and
for the image-specific information when variability is present.

In this paper, we propose a new image fusion method
accounting for inter-image variability between Hls and MIs.
A general imaging model is formulated, where the joint prior
of two HRIs is investigated. Specifically, the smoothness of
inter-image variations is represented with an hyper-Laplacian
distribution while the characteristics of each HRI are learned
by CNNs. The HMIF optimization problem is solved by
combining variable splitting with an iteratively reweighted
scheme to deal with non-convex image priors. Consider-
ing the RED paradigm and its bottlenecks, an unsupervised
light-weight CNN is specifically designed and then incorpo-
rated into the iterative optimization algorithm as a denoiser
to learn priors of the two HRIs. The proposed algorithm is
called Deep hyperspectral and multispectral Image Fusion
with Inter-image Variability (DIFIV). Experiments on data
with real inter-image variability demonstrate the superiority
of DIFIV compared to other state-of-the-art methods.

2. GENERAL IMAGING MODEL

Let us denote by Y, € RE+*N and by Y, € REm*M the
observed HI and M1, respectively. These images are assumed
to be degraded versions of a pair of HRIs Z, € RY»*M and



Z,, € REnXM a5 follows:

Y.=Z2,FD+FE;,, Y,=RZ,+FE,,, (1)

where matrices F € RM*M D ¢ RM*N gpnd R € RLm*Ln
represent optical blurring, spatial down-sampling, and the
spectral response function (SRF) of the MI, respectively.
E;, € RE»nxN and E,,, € RE=*M denote additive noises.

In this setting, the image fusion problem consists of re-
covering the HRIs Z; and Z,, given the observations Y7,
and Y,,. Most of the previous methods consider that Y7,
and Y, are degraded from the same source, i.e., Z}, = Z,,,
which intrinsically assumes that they are acquired under the
same conditions, e.g., by sensors on board a single satellite.
However, due to the wider availability of satellites equipped
with multispectral sensors, it is of great interest to fuse HIs
and MlIs acquired by different instruments at different time
instants [2]. In that case, by assuming that Z; = Z,,, most
existing methods ignore variabilities between the HI and MI,
which can occur due to differences in acquisition conditions
caused by, e.g., atmospheric, illumination or seasonal varia-
tions [8], or abrupt changes [9].

3. THE PROPOSED METHOD

In a probabilistic framework, HMIF can be performed by
maximizing the posterior probability distribution function
(PDF) of the HRIs given the HI and MI:

p(Zha Zm|Yh7Ym) o p(Yma Yh|Zh7 Zm)p(Zma Zh) .

The main challenge is defining the prior p(Z,,, Z}), which
should: 1) favor images Z,,, and Z, that are statistically sim-
ilar to real hyperspectral images, and 2) introduce changes be-
tween Z,, and Zj which, apart from possible smooth inter-
image variations, are sparse. To achieve this desiderata, we
consider the following prior:

logp(Zm, Zp) ¢ — %Z |5}(f7n) _ 57(75;,n)|p
ln

- Amqsm(zm) - )\h¢h(Zh) ) (2)

where 6,(18‘”) and 6™ denote the (¢,n)-th locations of a
high-pass spatial-spectral filtered version of Z; and Z,,,
denoted by A, = G(Zy) and A, = G(Z,,), where G is
the Laplacian operator. The spatial and spectral priors on
Z,, and Z}, are encoded in ¢(Z},) and ¢(Z,,), respectively.
Parameter p is an exponent to be set, and Ay, \,,, and A are
regularization parameters.
Assuming Ej, and E,, to be jointly i.i.d. Gaussian, max-
imizing p(Z,, Z.| Y1, Yon) in model (1) is equivalent to:
min

1 1
i §|\Yh — ZyFD|} + §HYm — RZn|3 + Aud(Z))

A r n
+ /\m¢(Zm) + 5 ; ‘6}(L€7 ) - 67(;;’ )‘p (3)

3.1. An iteratively reweighted update scheme

To optimize inter-image prior term ), . !52&") — 67(75@)‘17

which is non-convex and non-smooth, we consider an itera-
tively reweighted optimization strategy [10]. We propose to
solve (3) by repeating the following steps until convergence:

1) For a fixed W, compute Z;, and Z,, by solving the
following optimization problem:

o1 1
min §HYh — Z,FD|% + 5\|Ym — RZ,||% + \oé(Z))

hs

A
FAnb(Zn) +SIWO AL - A E, @

where W, Ay, and A,,, are matrices whose (¢, n)-th entries
are given by . /We p,, 6%’”) and 6™, respectively. Operator
© denotes the Hadamard product.

2) Update the entries of W according to:

wep = (|55 — 5™ 4 )72 ©)

where € > 0 is a small constant included to ensure the numer-
ical stability of the algorithm. In the following, we focus on
the resolution of the optimization problem (4).

3.2. The optimization problem

Introducing two auxiliary variables V}, and V,,,, the data fi-
delity and regularization terms can be decoupled by writing
the augmented Lagrangian of this cost function (4) as:

1
Lo(Zn, Zom, Vi, Vin) = 5[[Y3 = Z1F D
1 A
+§HYm_RZm”%7+§|‘W®(Ah_Am)H%‘ (6)
14 4
+ 212 — Vinllt + £120 - Vi3
+ A d(Vin) + And(Vi)

where p is the penalty parameter. We minimize the cost func-
tion £, with respect to each of its variables:

1 A
wmin 5|Yi — ZuFDI + J|W © (A — An)l}

Zn 2
+ 2120 — Vi, @
1 9 A 2
win |V — RZn |7 + 5|W O (An — A
+ Vi Zul?, ®
min 2| Vi, = Zu|2 + Mo(Vi) | ®)

Vi 2

min 2| Vi = Z4)? + And(Vim) - (10)

Vi 2
We propose to solve sub-problems (7) and (8) with the con-
jugate gradient (CG) algorithm. Because designing efficient
regularizers ¢(V7},) and ¢(V,,,) may be difficult, we propose



to use the RED [6] strategy, which leverages a powerful CNN-
based denoiser D, to solve sub-problems (9) and (10) as:

G+ Zy, + DV, 11
h FESW (pZ1n + M D(V,")), an
Vit - = (pZ, + A DV, 12
kS p+Am(p Vi) (12)

where V,gi) and V,(,f) denote the solution V}, and V,,, at the
1-th iteration, respectively.

3.3. Learning deep prior via CNN

In our RED-based framework, three bottlenecks restrict the
use of CNNs as efficient denoising engines for Hls: limited
amounts of training data, lack of labels, and multiple noise
levels. We propose to overcome these bottlenecks point by
point with the following strategies.

Light-weight network architecture: To overcome the
limited amount of data available to train CNN denoisers, two
strategies were considered to design an architecture with few
parameters, namely: 1) dimensionality reduction, and 2) sep-
arable convolutions [11]. We considered the DnCNN [12] as
a backbone in network design. Considering that the spectral
channels of an HI V' contain highly redundant information,
we assume that there exists a subspace of dimension I, (much
lower than Lj) which captures all the information of V. This
allows us to write V' using a low-rank representation as:

V =QX, (13)

where Q € REn*In (satisfying Q'Q = I,) and X €
R!»*M are the subspace matrix and the representation coeffi-
cients, respectively. This decreases the number of filters by a
ratio of I,/ Ly, in each layer.

To reduce filter volume and further lighten the backbone
architecture, we use separable convolutions as in [13]. The
core idea is to decompose a convolution filter with 3 x 3 x
Depth parameters into a depth-wise filter with 3 x 3 x 1 pa-
rameters and a point-wise filter with 1 x 1 x Depth parame-
ters, where Depth is the input depth of this CNN layer. This
reduces the number of parameters by a rate of 1/Depth +
1/(3 x 3). Thus, the light-weight DnCNN contains three
kinds of operators: 3 x 3 separable convolution layers (S-
Conv), rectified linear units (ReLU) and batch normalization
(BN). In the network architecture, the first layer is “S-Conv
+ ReLU”, the hidden layer is “S-Conv + BN + ReLU” and
the last layer is “S-Conv”. With these two strategies, the
number of network parameters can be reduced by a ratio of
(In/Ly) x (1/Depth + 1/(3 x 3)).

Zero-shot training strategy: In many real-world scenar-
ios, training data with paired noisy and clean images are not
available. Moreover, using synthetic training data may lead to
the domain shift [14,15]. Therefore, it is desirable to consider
a training strategy that is both unsupervised and zero-shot, re-
quiring only the observed HI and MI.

Algorithm 1 The Proposed CNN-based denoising engine.
Input: Noisy image V' and subspace dimension .
Output: Denoised image D(V).
Find @ and X in (13) using the (truncated) SVD of V.
Optimize © by minimizing (14) with back-propagation.
Denoise X with © as CNN(X; O).
Transform CNN(X'; ©) to D(V) = Q CNN(X; ©).

Algorithm 2 DIFIV.
Input: Y}, Y., F, D, R paramters p, A\, Ap, A, P-

Output: The estimated high-resolution images z hy Zom.
Interpolate Y, and Y, as Y}, and Y., respectlvely
Initialize Z,, = Vi = Yy and Z,, = Vi = Yo
Initialize W using (5).
while stopping criteria are not met do
Calculate Z}, by solving (7) via CG algorithm.
Calculate Z,,, by solving (8) via CG algorithm.
Update W using (5).
Learn deep priors via denoising V', with Algorithm 1.
Update V7, via (11).
Learn deep priors via denoising V,, with Algorithm 1.
Update V,,, via (12).

end while

We propose to leverage the information inside a single
image to train the CNN denoiser. Consider the CNN-based
denoiser CNN( - ; ©) with network parameters O, and an ob-
served noisy image X generated following the degradation
model X = Z + E, where F is i.i.d. Gaussian noise with a
standard deviation o. To learn the CNN denoiser CNN( - ; ©),
we assume that that the set of parameters © which allow it
to recover Z from X, are the same as those which allow
CNN( -; ©) to recover X from X + E. This assumption has
been used to learn image adapted CNNs for super resolution
in [16]. It allow us to train the denoiser CNN( - ; ©) using the
image pair (X + E, X) by minimizing the loss function:

{(O) = |cNN(X + E;0) — X|; . (14)
We adopted the method in [17] to estimate o in each channel
of X to generate E. The procedure for learning the proposed
CNN-based denoiser is summarized in Algorithm 1.

Image-specific prior learning: Since there exist some
inter-image variations between Z; and Z,,, we consid-
ered to train two independent denoisers, CNN(-;©j) and
CNN( -;©,,), to denoise V}, and V,,, respectively. Consid-
ering that the equivalent noise levels of V}, and V,,, decrease
over the algorithm iterations, we propose to adaptively update
the network parameters ©}, and ©,,, to learn an image-specific
prior at each iteration. This is performed by re-training
CNN(+;Op) and CNN( -; ©,,) to denoise the estimates of the
HRIs at the current iteration. To make the algorithm faster,
we consider to train CNN( - ; ©) and CNN( - ; ©,,) in the first
iteration and then fine-tune them in all the remaining itera-
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Fig. 1. Visible (top) and infrared (bottom) representation of
the true and estimated HRI of the Lake Tahoe B scene.

Table 1. Quantitative comparisons of the competing methods.

Data set \Metrics\ SAM ERGAS

FuVar | 1.6912 1.6820
GSFus |2.0543 1.6761
DIFIV |1.3709 1.3085
FuVar | 7.8961 5.7982
GSFus | 6.2365 4.3429
DIFIV |5.6964 3.2543
FuVar |5.0251 4.1696
GSFus |3.7420 3.2103
DIFIV |2.7905 2.2007

PSNR  UIQI

26.2514 0.8219
26.2819 0.8606
28.4611 0.8942
20.1606 0.8072
22.6234 0.8958
25.2924 0.9435
20.9042 0.7421
23.2012 0.8394
26.6100 0.9167

Ivanpah Playa

Lake Tahoe A

Lake Tahoe B

tions. The training strategy for the denoisers in Algorithm 1
is incorporated into the model-based optimization procedure,
yielding the overall DIFIV strategy described in Algorithm 2.

4. EXPERIMENTS

We compared DIFIV to HMIF methods accounting for inter-
image varibility, namely, FuVar [3] and GSFus [5], on three
real data sets: the Ivanpah Playa and the Lake Tahoe A and B,
described with more details in [4]. These data sets contained
one reference HRI and an MI acquired by the AVIRIS and
the Sentinel-2A instruments, respectively, with a spatial reso-
Iution of 20m [3]. The HI and MI contained L; = 173 and
L., = 10 bands, respectively. For all acquired HRIs, which
had the same spatial resolution as the MIs, a pre-processing
procedure as described in [18] was performed. The observed
HIs were generated according to (1), where F' was an 8 x 8
Gaussian blurring operator with standard deviation 4 and D a
downsampling operator with the scaling factor 4. The SRF R
was acquired from calibration measurements of the Sentinel-
2A instrument and known a priori. For all experiments, Gaus-
sian noise was added to both HIs and MIs to obtain a signal-

FuVar
GSFus
30 DIFIV

\/\’Wf\//\/\

| .
- YL
‘

2‘0 4‘0 6‘0 8‘0 160 12‘0 14‘10 160

Spectral band
Fig. 2. PSNR curves as functions of the spectral bands for the
Lake Tahoe B.

to-noise ratio (SNR) of 30 dB.

We implemented DIFIV with the CNN-based denoising
engine using the PyTorch framework. The dimension of sub-
space l;, was set to 5 and the number of network layers was
set to 8, the first and hidden layers contained [, x 4 S-Conv
operators while the last layer was composed by /5, S-Conv op-
erators. The Adam optimizer [19] with an initial learning rate
0.0002 was used to minimize the loss function in (14). The
number of iterations of DIFIV (Algorithm 2) was set to 20,
which was sufficient to ensure convergence. The weights
were initialized with the method in [20], trained for 10000
epochs in the first iteration and fine-tuned for 2000 epochs
in the remaining iterations. We set p = 1.5, A = 0.01 and
Am = Ap = 0.1 for the Ivanpah Playa. For the Lake Tahoe A
and B, we set p = 1.8, A\ = 0.002 and \,,, = A\, = 0.01. For
the other parameters, we set p = 0.1 and € = 1076,

The quantitative results (including the SAM, ERGAS,
PSNR and UIQI metrics [3]) of the compared methods on
all data sets are reported in Table 1. It can be seen that
DIFIV achieves the best quantitative results, with consid-
erable improvements observed in all three data sets. The
visual inspection of results for the Lake Tahoe B data set is
shown in Figure 1, where we observe that DIFIV provides
spatial reconstructions closest to the ground truth and without
significant artifacts, which are observed on the images recon-
structed by both FuVar and GSFus. Figure 2 illustrates the
PSNR curves per spectral bands over the Lake Tahoe B, from
which it can be observed that the performance improvements
obtained by DIFIV are consistent across all spectral bands.

5. CONCLUSIONS

This paper presented an unsupervised deep learning-based
HMIF method accounting for inter-image variability. We
first formulated a new imaging model considering both the
joint as well as the image-specific priors related to the two



latent HRIs. An iteratively reweighted scheme was then in-
vestigated to solve the non-convex cost function and tackle
the joint image prior term. The optimization problem was
solved using a variable splitting strategy, and the deep image
priors were implemented using CNN-based denoising opera-
tions. The proposed method achieved superior experimental
performance in the presence of inter-image variability when
compared to state-of-the-art approaches.
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