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INTRODUCTION

Hyperspectral imaging systems are able to record the reflectance of a scene in hundreds of narrow, contiguous spectral bands. Their rich spectral information has attracted high interest in the remote sensing literature, with successful applications in mineral exploration, vegetation monitoring and land cover analysis [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]. Nevertheless, the high spectral resolution of hyperspectral images (HI) restricts their spatial resolution due to hardware limitations. In contrast, multispectral cameras can achieve a much higher spatial resolution by only acquiring a small number of spectral bands. Consequently, a strategy of improving the spatial resolution of HIs is to fuse them with multispectral images (MI) of the same scene, resulting in the so-called HMIF problem.

Fusing HIs and MIs acquired by different instruments at different time instants remains a challenging problem [START_REF] Yokoya | Hyperspectral and multispectral data fusion: A comparative review of the recent literature[END_REF]. Most methods ignore that there may have differences between the acquisition conditions of the HI and MI, which can compromise their performance. To tackle this issue, HMIF frameworks addressing inter-image variability have been proposed [START_REF] Borsoi | Super-resolution for hyperspectral and multispectral image fusion accounting for seasonal spectral variability[END_REF][START_REF] Borsoi | Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability[END_REF][START_REF] Fu | Fusion of hyperspectral and multispectral images accounting for localized inter-image changes[END_REF]. These methods formulate and solve optimization problems containing different high-resolution image (HRI) priors. Recently, learning priors from data with the Plug-and-Play (PnP) and the Regularization by Denoising (RED) [START_REF] Romano | The little engine that could: Regularization by denoising (RED)[END_REF] frameworks has become widely used in image processing because of their tractability and superior performance. In particular, convolutional neural networks (CNN) with deep architectures provide very efficient image priors [START_REF] Wang | Hyperspectral image super-resolution via deep prior regularization with parameter estimation[END_REF]. However, existing HMIF algorithms either relied on handcrafted priors for the HRIs, or neglected to account for the joint and for the image-specific information when variability is present.

In this paper, we propose a new image fusion method accounting for inter-image variability between HIs and MIs. A general imaging model is formulated, where the joint prior of two HRIs is investigated. Specifically, the smoothness of inter-image variations is represented with an hyper-Laplacian distribution while the characteristics of each HRI are learned by CNNs. The HMIF optimization problem is solved by combining variable splitting with an iteratively reweighted scheme to deal with non-convex image priors. Considering the RED paradigm and its bottlenecks, an unsupervised light-weight CNN is specifically designed and then incorporated into the iterative optimization algorithm as a denoiser to learn priors of the two HRIs. The proposed algorithm is called Deep hyperspectral and multispectral Image Fusion with Inter-image Variability (DIFIV). Experiments on data with real inter-image variability demonstrate the superiority of DIFIV compared to other state-of-the-art methods.

GENERAL IMAGING MODEL

Let us denote by Y h P R L h ˆN and by Y m P R LmˆM the observed HI and MI, respectively. These images are assumed to be degraded versions of a pair of HRIs Z h P R L h ˆM and Z m P R L h ˆM as follows:

Y h " Z h F D `Eh , Y m " RZ m `Em , (1) 
where matrices F P R M ˆM , D P R M ˆN and R P R LmˆL h represent optical blurring, spatial down-sampling, and the spectral response function (SRF) of the MI, respectively. E h P R L h ˆN and E m P R LmˆM denote additive noises.

In this setting, the image fusion problem consists of recovering the HRIs Z h and Z m given the observations Y h and Y m . Most of the previous methods consider that Y h and Y m are degraded from the same source, i.e., Z h " Z m , which intrinsically assumes that they are acquired under the same conditions, e.g., by sensors on board a single satellite. However, due to the wider availability of satellites equipped with multispectral sensors, it is of great interest to fuse HIs and MIs acquired by different instruments at different time instants [START_REF] Yokoya | Hyperspectral and multispectral data fusion: A comparative review of the recent literature[END_REF]. In that case, by assuming that Z h " Z m , most existing methods ignore variabilities between the HI and MI, which can occur due to differences in acquisition conditions caused by, e.g., atmospheric, illumination or seasonal variations [START_REF] Borsoi | Spectral variability in hyperspectral data unmixing: A comprehensive review[END_REF], or abrupt changes [START_REF] Liu | A review of change detection in multitemporal hyperspectral images: Current techniques, applications, and challenges[END_REF].

THE PROPOSED METHOD

In a probabilistic framework, HMIF can be performed by maximizing the posterior probability distribution function (PDF) of the HRIs given the HI and MI:

ppZ h , Z m |Y h , Y m q 9 ppY m , Y h |Z h , Z m qppZ m , Z h q .
The main challenge is defining the prior ppZ m , Z h q, which should: 1) favor images Z m and Z h that are statistically similar to real hyperspectral images, and 2) introduce changes between Z m and Z h which, apart from possible smooth interimage variations, are sparse. To achieve this desiderata, we consider the following prior:

log ppZ m , Z h q 9 ´λ 2 ÿ ℓ,n ˇˇδ pℓ,nq h ´δpℓ,nq m ˇˇp ´λm ϕ m pZ m q ´λh ϕ h pZ h q , (2) 
where δ pℓ,nq h and δ pℓ,nq m denote the pℓ, nq-th locations of a high-pass spatial-spectral filtered version of Z h and Z m , denoted by ∆ h " GpZ h q and ∆ m " GpZ m q, where G is the Laplacian operator. The spatial and spectral priors on Z m and Z h are encoded in ϕpZ h q and ϕpZ m q, respectively. Parameter p is an exponent to be set, and λ h , λ m and λ are regularization parameters.

Assuming E h and E m to be jointly i.i.d. Gaussian, maximizing ppZ h , Z m |Y h , Y m q in model ( 1) is equivalent to:

min Z h ,Zm 1 2 }Y h ´Zh F D} 2 F `1 2 }Y m ´RZ m } 2 F `λh ϕpZ h q `λm ϕpZ m q `λ 2 ÿ ℓ,n ˇˇδ pℓ,nq h ´δpℓ,nq m ˇˇp (3) 

An iteratively reweighted update scheme

To optimize inter-image prior term ř ℓ,n ˇˇδ pℓ,nq h ´δpℓ,nq m ˇˇp which is non-convex and non-smooth, we consider an iteratively reweighted optimization strategy [START_REF] Lu | Iterative reweighted minimization methods for ℓ p regularized unconstrained nonlinear programming[END_REF]. We propose to solve (3) by repeating the following steps until convergence:

1) For a fixed W , compute Z h and Z m by solving the following optimization problem:

min Z h ,Zm 1 2 }Y h ´Zh F D} 2 F `1 2 }Y m ´RZ m } 2 F `λh ϕpZ h q `λm ϕpZ m q `λ 2 }W d p∆ h ´∆m q} 2 F , (4) 
where W , ∆ h and ∆ m are matrices whose pℓ, nq-th entries are given by ? w ℓ,n , δ pℓ,nq h and δ pℓ,nq m

, respectively. Operator d denotes the Hadamard product.

2) Update the entries of W according to:

w ℓ,n " `|δ pℓ,nq h ´δpℓ,nq m | `ϵ˘p ´2 , (5) 
where ϵ ą 0 is a small constant included to ensure the numerical stability of the algorithm. In the following, we focus on the resolution of the optimization problem (4).

The optimization problem

Introducing two auxiliary variables V h and V m , the data fidelity and regularization terms can be decoupled by writing the augmented Lagrangian of this cost function (4) as:

L ρ pZ h , Z m , V h , V m q " 1 2 }Y h ´Zh F D} 2 F `1 2 }Y m ´RZ m } 2 F `λ 2 }W d p∆ h ´∆m q} 2 F (6) `ρ 2 }Z m ´V m } 2 F `ρ 2 }Z h ´V h } 2 F `λm ϕpV m q `λh ϕpV h q
where ρ is the penalty parameter. We minimize the cost function L ρ with respect to each of its variables:

min Z h 1 2 }Y h ´Zh F D} 2 F `λ 2 }W d p∆ h ´∆m q} 2 F `ρ 2 }Z h ´V h } 2 , ( 7 
)
min Zm 1 2 }Y m ´RZ m } 2 F `λ 2 }W d p∆ h ´∆m q} 2 F `ρ 2 }V m ´Zm } 2 , ( 8 
)
min V h ρ 2 }V h ´Zh } 2 `λh ϕpV h q , ( 9 
)
min V m ρ 2 }V m ´Zh } 2 `λm ϕpV m q . ( 10 
)
We propose to solve sub-problems ( 7) and ( 8) with the conjugate gradient (CG) algorithm. Because designing efficient regularizers ϕpV h q and ϕpV m q may be difficult, we propose to use the RED [START_REF] Romano | The little engine that could: Regularization by denoising (RED)[END_REF] strategy, which leverages a powerful CNNbased denoiser D, to solve sub-problems ( 9) and ( 10) as:

V pi`1q h " 1 ρ `λh `ρZ h `λh DpV piq h q ˘, (11) 
V pi`1q m " 1 ρ `λm `ρZ m `λm DpV piq m q ˘. ( 12 
)
where V piq h and V piq m denote the solution V h and V m at the i-th iteration, respectively.

Learning deep prior via CNN

In our RED-based framework, three bottlenecks restrict the use of CNNs as efficient denoising engines for HIs: limited amounts of training data, lack of labels, and multiple noise levels. We propose to overcome these bottlenecks point by point with the following strategies.

Light-weight network architecture: To overcome the limited amount of data available to train CNN denoisers, two strategies were considered to design an architecture with few parameters, namely: 1) dimensionality reduction, and 2) separable convolutions [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF]. We considered the DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] as a backbone in network design. Considering that the spectral channels of an HI V contain highly redundant information, we assume that there exists a subspace of dimension l h (much lower than L h ) which captures all the information of V . This allows us to write V using a low-rank representation as:

V " QX , (13) 
where Q P R L h ˆlh (satisfying Q J Q " I l h ) and X P R l h ˆM are the subspace matrix and the representation coefficients, respectively. This decreases the number of filters by a ratio of l h {L h in each layer.

To reduce filter volume and further lighten the backbone architecture, we use separable convolutions as in [START_REF] Imamura | Zero-shot hyperspectral image denoising with separable image prior[END_REF]. The core idea is to decompose a convolution filter with 3 ˆ3 Depth parameters into a depth-wise filter with 3 ˆ3 ˆ1 parameters and a point-wise filter with 1 ˆ1 ˆDepth parameters, where Depth is the input depth of this CNN layer. This reduces the number of parameters by a rate of 1{Depth 1{p3 ˆ3q. Thus, the light-weight DnCNN contains three kinds of operators: 3 ˆ3 separable convolution layers (S-Conv), rectified linear units (ReLU) and batch normalization (BN). In the network architecture, the first layer is "S-Conv + ReLU", the hidden layer is "S-Conv + BN + ReLU" and the last layer is "S-Conv". With these two strategies, the number of network parameters can be reduced by a ratio of pl h {L h q ˆp1{Depth `1{p3 ˆ3qq.

Zero-shot training strategy: In many real-world scenarios, training data with paired noisy and clean images are not available. Moreover, using synthetic training data may lead to the domain shift [START_REF] Dian | Regularizing hyperspectral and multispectral image fusion by cnn denoiser[END_REF][START_REF] Wang | Learning spectral-spatial prior via 3ddncnn for hyperspectral image deconvolution[END_REF]. Therefore, it is desirable to consider a training strategy that is both unsupervised and zero-shot, requiring only the observed HI and MI.

Algorithm 1 The Proposed CNN-based denoising engine.

Input: Noisy image V and subspace dimension l h .

Output: Denoised image DpV q.

Find Q and X in (13) using the (truncated) SVD of V . Optimize Θ by minimizing ( 14) with back-propagation.

Denoise X with Θ as CNNpX; Θq.

Transform CNNpX; Θq to DpV q " Q CNNpX; Θq.

Algorithm 2 DIFIV. We propose to leverage the information inside a single image to train the CNN denoiser. Consider the CNN-based denoiser CNNp ¨; Θq with network parameters Θ, and an observed noisy image X generated following the degradation model X " Z `E, where E is i.i.d. Gaussian noise with a standard deviation σ. To learn the CNN denoiser CNNp ¨; Θq, we assume that that the set of parameters Θ which allow it to recover Z from X, are the same as those which allow CNNp ¨; Θq to recover X from X `E. This assumption has been used to learn image adapted CNNs for super resolution in [START_REF] Shocher | zero-shot" superresolution using deep internal learning[END_REF]. It allow us to train the denoiser CNNp ¨; Θq using the image pair pX `E, Xq by minimizing the loss function:

Input: Y h , Y m, F , D,
ℓpΘq " }CNNpX `E; Θq ´X} 1 . (14) 
We adopted the method in [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] to estimate σ in each channel of X to generate E. The procedure for learning the proposed CNN-based denoiser is summarized in Algorithm 1.

Image-specific prior learning: Since there exist some inter-image variations between Z h and Z m , we considered to train two independent denoisers, CNNp ¨; Θ h q and CNNp ¨; Θ m q, to denoise V h and V m , respectively. Considering that the equivalent noise levels of V h and V m decrease over the algorithm iterations, we propose to adaptively update the network parameters Θ h and Θ m to learn an image-specific prior at each iteration. This is performed by re-training CNNp ¨; Θ h q and CNNp ¨; Θ m q to denoise the estimates of the HRIs at the current iteration. To make the algorithm faster, we consider to train CNNp ¨; Θ h q and CNNp ¨; Θ m q in the first iteration and then fine-tune them in all the remaining itera- 

EXPERIMENTS

We compared DIFIV to HMIF methods accounting for interimage varibility, namely, FuVar [START_REF] Borsoi | Super-resolution for hyperspectral and multispectral image fusion accounting for seasonal spectral variability[END_REF] and GSFus [START_REF] Fu | Fusion of hyperspectral and multispectral images accounting for localized inter-image changes[END_REF], on three real data sets: the Ivanpah Playa and the Lake Tahoe A and B, described with more details in [START_REF] Borsoi | Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability[END_REF]. These data sets contained one reference HRI and an MI acquired by the AVIRIS and the Sentinel-2A instruments, respectively, with a spatial resolution of 20m [START_REF] Borsoi | Super-resolution for hyperspectral and multispectral image fusion accounting for seasonal spectral variability[END_REF]. The HI and MI contained L h " 173 and L m " 10 bands, respectively. For all acquired HRIs, which had the same spatial resolution as the MIs, a pre-processing procedure as described in [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF] was performed. The observed HIs were generated according to [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF], where F was an 8 ˆ8 Gaussian blurring operator with standard deviation 4 and D a downsampling operator with the scaling factor 4. The SRF R was acquired from calibration measurements of the Sentinel-2A instrument and known a priori. For all experiments, Gaussian noise was added to both HIs and MIs to obtain a signal- to-noise ratio (SNR) of 30 dB. We implemented DIFIV with the CNN-based denoising engine using the PyTorch framework. The dimension of subspace l h was set to 5 and the number of network layers was set to 8, the first and hidden layers contained l h ˆ4 S-Conv operators while the last layer was composed by l h S-Conv operators. The Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with an initial learning rate 0.0002 was used to minimize the loss function in [START_REF] Dian | Regularizing hyperspectral and multispectral image fusion by cnn denoiser[END_REF]. The number of iterations of DIFIV (Algorithm 2) was set to 20, which was sufficient to ensure convergence. The weights were initialized with the method in [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF], trained for 10000 epochs in the first iteration and fine-tuned for 2000 epochs in the remaining iterations. We set p " 1.5, λ " 0.01 and λ m " λ n " 0.1 for the Ivanpah Playa. For the Lake Tahoe A and B, we set p " 1.8, λ " 0.002 and λ m " λ n " 0.01. For the other parameters, we set ρ " 0.1 and ϵ " 10 ´6.

The quantitative results (including the SAM, ERGAS, PSNR and UIQI metrics [START_REF] Borsoi | Super-resolution for hyperspectral and multispectral image fusion accounting for seasonal spectral variability[END_REF]) of the compared methods on all data sets are reported in Table 1. It can be seen that DIFIV achieves the best quantitative results, with considerable improvements observed in all three data sets. The visual inspection of results for the Lake Tahoe B data set is shown in Figure 1, where we observe that DIFIV provides spatial reconstructions closest to the ground truth and without significant artifacts, which are observed on the images reconstructed by both FuVar and GSFus. Figure 2 illustrates the PSNR curves per spectral bands over the Lake Tahoe B, from which it can be observed that the performance improvements obtained by DIFIV are consistent across all spectral bands.

CONCLUSIONS

This paper presented an unsupervised deep learning-based HMIF method accounting for inter-image variability. We first formulated a new imaging model considering both the joint as well as the image-specific priors related to the two latent HRIs. An iteratively reweighted scheme was then investigated to solve the non-convex cost function and tackle the joint image prior term. The optimization problem was solved using a variable splitting strategy, and the deep image priors were implemented using CNN-based denoising operations. The proposed method achieved superior experimental performance in the presence of inter-image variability when compared to state-of-the-art approaches.

Fig. 1 .

 1 Fig. 1. Visible (top) and infrared (bottom) representation of the true and estimated HRI of the Lake Tahoe B scene.

Fig. 2 .

 2 Fig. 2. PSNR curves as functions of the spectral bands for the Lake Tahoe B.

  R paramters p, λ, λ h , λm, ρ. Interpolate Y h and Y m as r Y h and r Y m, respectively. Initialize Z h " V h " r Y h and Zm " V m " r Y m. Initialize W using (5). while stopping criteria are not met do Calculate Z h by solving (7) via CG algorithm. Calculate Zm by solving (8) via CG algorithm. Update W using (5). Learn deep priors via denoising V h with Algorithm 1. Update V h via (11). Learn deep priors via denoising V m with Algorithm 1. Update V m via (12). end while

	Output: The estimated high-resolution images p Z h , p Zm.

Table 1 .

 1 Quantitative comparisons of the competing methods.

	Data set	Metrics SAM ERGAS PSNR UIQI
		FuVar 1.6912 1.6820 26.2514 0.8219
	Ivanpah Playa	GSFus 2.0543 1.6761 26.2819 0.8606
		DIFIV 1.3709 1.3085 28.4611 0.8942
		FuVar 7.8961 5.7982 20.1606 0.8072
	Lake Tahoe A	GSFus 6.2365 4.3429 22.6234 0.8958
		DIFIV 5.6964 3.2543 25.2924 0.9435
		FuVar 5.0251 4.1696 20.9042 0.7421
	Lake Tahoe B	GSFus 3.7420 3.2103 23.2012 0.8394
		DIFIV 2.7905 2.2007 26.6100 0.9167
	tions. The training strategy for the denoisers in Algorithm 1
	is incorporated into the model-based optimization procedure,
	yielding the overall DIFIV strategy described in Algorithm 2.
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