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Abstract—Distributed Acoustic Sensing (DAS) is a technology
that can be employed to record vibrations along fiber optic
(telecommunication) cables, including those generated by human
activities. Since the optical fiber cables are often deployed
along existing traffic infrastructures, DAS has the potential to
record vehicular traffic flows, which permits high-resolution
traffic analysis and long-term monitoring. In this work, we
propose a Machine Learning (ML) model for estimating the
speed of vehicles using DAS data. A major component of the
proposed model is based on Continuous Piecewise Affine (CPA)
transformations, which allows us to extract the speed as a
function of space and time. We demonstrate the efficiency of our
approach, which is significantly faster than non-ML solutions in
estimating the vehicle speed.

I. INTRODUCTION

Owing to increasing urbanization, traffic management has
long been a major challenge. To optimize the flow of traffic
in cities, policy makers and operators require traffic data
such as the number and type of vehicles on the road, and
their speed. Depending on the granularity of the data, they
may inform decisions such as infrastructure expansion, traffic
jam intervention [1], smart traffic light management [2] and
optimal route planing [3]. Commonly used instruments for
traffic data collection include roadside cameras [4], GPS data
[5] and inductive loop detectors [6]. These methods suffer
from several limitations, like the prohibitive cost of large-scale
deployment and maintenance, the low spatial resolution, and
privacy concerns in the case of cameras and GPS. To overcome
these issues and perform the traffic monitoring task in a
cost-efficient way, we propose to use fiber-optic Distributed
Acoustic Sensing (DAS).

Distributed Acoustic Sensing represents a subcategory of
Distributed Fiber Optic Sensing techniques. When connected
to a conventional optical fiber cable (like those used for
telecommunication), a DAS interrogator performs laser-pulse
interferometry to infer local perturbations of strain around
the fiber, measured at fixed locations along the cable. As
such, DAS effectively converts a telecom cable into an array
of equally-spaced vibration sensors. Commercially available
DAS interrogators now provide a sensing range of over 100
km at a minimum spatial resolution of around 1 metre, with
temporal sampling rates of several kHz or more. These sensing
characteristics, along with the robustness of fiber optic cables,
make DAS an attractive measurement technique for numer-
ous applications, like earthquake seismology [7], structural

integrity monitoring [8], pipeline surveillance [9], and road
traffic monitoring.

When a fiber optic cable is deployed alongside a road (as
is often the case for commercial telecom cables), vehicles that
drive along are recorded at a given location as short-duration
signals that exist within a narrow frequency band (Fig. 1).
These characteristic signals (or “signatures”) do not depend
on the details of the vehicle, and are recorded by multiple
DAS sensors (“channels”) as the vehicle drives along the
cable. The translation of these characteristic signals from one
DAS channel to the next is a simple function of the vehicle’s
velocity, which can be estimated with an appropriate analysis
of the data [10]. In typical urban traffic scenarios, multiple
vehicles may be closely-trailing with potentially different
speeds, which is a challenge for techniques that employ a fixed
(space)time-window to estimate the vehicle speed.

In this paper, we propose a data-driven model to obtain high-
resolution detections and speed estimations of vehicles using
DAS data. Our approach is inspired by the model proposed by
[11], which is based on Continuous Piecewise Affine (CPA)
transformations [12]. To greatly accelerate the analysis, we
leverage an Artificial Neural Network (ANN) to extract the
parameters of the transformations, trained in a self-supervised
manner. The detail the model architecture in Section 2, and
the experimental setup in Section 3 provides. Subsequently,
the obtained speed estimates are presented in section 4 along
with a comparison of these results with data generated by
conventional traffic sensors. Section 5 concludes the paper
and provides some perspectives for the use of DAS in traffic
monitoring.

II. METHODOLOGY

Three main steps are required to achieve the detection and
speed estimation tasks. After splitting the data into several
windows, we first use a model that applies a non-uniform time
warping in order to align the vehicle’s signatures. We used two
architectures, one including an ANN and one without. The
second step consists of using the resulting data windows to
detect the vehicles. The speed estimation is achieved using the
aligned data and detection results. All these steps are detailed
in the following sections.

A. Data alignment

1) CPA-based transformations model without ANN: This
section is an application of the example provided by [12] to



Fig. 1. a) Schematic overview of the problem geometry, which features a
fiber optic cable parallel to a road. The DAS channels are denoted by S1,
S2, etc. b) Example of DAS recordings with 9 DAS channels and 30 seconds
duration. Each channel corresponds to a consecutive virtual sensor along the
fiber, as indicated in panel a.

DAS data, with tuned parameters that fit well our application.
Consider any pair of time series recorded by consecutive
DAS channels In and In+1, with In ∈ RNt , for all n ∈
[1, 2, · · · , Nch − 1]. Nch represents the number of channels
in the data window, and Nt its time duration. Our objective is
to apply a transformation to In that minimises the difference
between the transformed time series and In+1, i.e.:

θn = argmin
θ′
n

L, L = ∥Eθ′
n(In)− In+1∥2 (1)

where Eθ′
n(In) is the transformation that warps In and

θn = [ϑn
1 , ϑ

n
2 , · · · , ϑn

Np+1]
T ∈ RNp+1 is a parameter vector

defining the transformation Eθ′
n for Np time intervals (as

defined momentarily). The latter can be subdivided into two
components: a grid generator and a sampler (Fig. 2.a, without
the localisation network module).

Fig. 2. a) Architecture of the ANN-based model. b) Left: Two consecutive
channels In and In+1, which are misaligned in time. Middle: Model as
shown in panel a. Right: Stack of the transformed version of In and the
original signal In+1. We can clearly see that Eθn (In) and In+1 are well
aligned.

Grid generator:
The grid generator applies a CPA-based transformation T θn

to the time domain G = [x0, x1, · · · , xNt
] of the input, which

integrates a CPA velocity field vθn .

T θn(x) = x+

∫ 1

0

vθn(ϕθn(x, τ))dτ, x ∈ G

in which ϕθn(x, τ) is the position of the transformed version
of x at integration time τ . vθn is obtained by first defining a
Piecewise Affine (PA) velocity field consisting of Np intervals,
each one representing a one-dimensional affine transformation
(equivalent to translation in time). To get a continuous velocity
field from the PA one, it is sufficient to add continuity
conditions on the borders of each interval. The obtained CPA
velocity field is defined as:

vθn(x) = x

Np+1∑
j=1

ϑn
j Ax,j +

Np+1∑
j=1

ϑn
j Bx,j

where A and B are two-dimensional matrices resulting from
the continuity conditions.

Now that we defined the transformation, we can compute
the warped version of G called Gw:

Gw
n = [T θn(x0), T

θn(x1), · · · , T θn(xNt)]

The next step is to map the input signal In into the warped
domain Gw

n .
Sampler:
The sampler takes two inputs, being the time series In to

transform and the warped domain Gw
n . Then, the signal is

projected onto Gw
n using a linear interpolation. This last step

generates the warped signal Eθn(In). CPA-based transforma-
tions are continuous and differentiable, which allows us to
do backpropagation of the loss L defined in Eqn. (1) and
optimise with respect to the parameters θn that define the
transformation.

2) CPA-based transformations model with ANN: Although
the previous model performs well in term of warping pre-
cision, the optimal parameters θn are obtained through an
iterative inversion procedure, which is too computationally
costly for (real-time) traffic analysis. For this reason, an ANN
is employed to extract θ directly from the time series. This
ANN is referred to as the localisation network, and we adopt
a similar architecture as the one proposed by [11], which
consists of three stacked 1D convolutional layers followed by
two fully connected layers. For the present study, we provide
the model with two time series simultaneously, instead of one
(as was done by [11]). This allows the localisation network to
generate the suitable parameters for each pair of consecutive
channels. The training objective of the localisation network
Nω : (In, In+1) → θn for one data window is given by:



ω = argmin
ω′

1

Nch − 1

Nch−1∑
n=1

(||Eθn (In)− In+1||2

+ α||θn||Σ−1
CPA

)

θn = Nω′ (In, In+1)

where ω′ represents the parameters of the localisation net-
work, α||θn||Σ−1

CPA
is a regularization term defined by [11].

It is used to avoid getting too large θ values (which leads
to large transformations) and controls the smoothness of the
transformation.

To align a full data window using either the model with
or without the ANN, it is sufficient to align all consecutive
DAS channels In and In+1. Then, select a reference channel
(I4 in our case, corresponding to the mid-channel) to align all
the remaining ones towards it. This is done by stacking the
transformations from all channels to the middle one (e.g. to
transform the first channel I1 to the fourth one I4, we apply
Eθ3(Eθ2(Eθ1(I1)))). An example of aligned data window is
shown in Fig. 5.b).

B. Vehicles detection

Using the aligned data windows instead of the original
ones, makes the process of detecting vehicles easier and more
efficient. Since the signatures of every vehicle are almost
similar in all channels, taking the mean of the aligned data
window along the spatial axis generates a time series I ,
containing the average signature of each vehicle. Noise level in
I is significantly reduced comparing to the individual channels
In, making the detection more accurate.

We compute the envelope (magnitude of the analytic signal)
of I , and use a threshold to detect and locate in time the
vehicles. This generates a binary signal IB , with ones where
the envelope is above the threshold, and zeros elsewhere.

C. Speed estimation

Using either the first or the second model, we convert the ex-
tracted parameters θn into velocity estimations vn as a function
of space and time using the offset between the original grid G
and the warped version Gw

n , vn ∝ ∆Gn
,∆Gn

= Gw
n −G. This

offset represents a time shift required to align the data of two
consecutive DAS channels. Given the spatial distance between
each pair of DAS channels, the velocity vector is computed
as:

vn = fs ×
δ

∆Gn

, n ∈ [1, 2, · · · , Nch − 1]

with fs the temporal sampling frequency, and δ the spacing
between the DAS channels (or “gauge length”).

This generates a speed map (Fig. 5.c) defined between all
channels and all along the time axis. This map can not be used
as it is for extracting the vehicles speeds, since it includes parts
of data where only noise is present. In order to filter the speed
map and keep only vehicles signatures sections, we multiply

it by a binary mask (Fig. 5.d). It is generated using inverse
stacked transformations of IB (e.g. to filter v1, we multiply it
by E−θ1(E−θ2(E−θ3(IB)))). The resulting filtered speed map
is shown in Fig. 5.e . We can then extract the individual/group
of vehicles speeds, and compute the average velocity for every
data window.

III. EXPERIMENTAL SETUP

We recorded DAS data in the city of Nice, France, between
November 28, 2021 and January 5, 2022. We used a 20 km
fiber that goes around the city (see Fig. 3). The fiber was
already installed and used for telecommunication purposes.

Fig. 3. Sensed fiber path going around the city of Nice, France. Orange
section represents portion of the fiber from where we collected DAS data
used in this work.

We used a hDAS interrogator (Aragon Photonics) to record
the DAS data. The temporal sampling frequency was set to
250 Hz and the gauge length (as well as the channel spacing)
was set to 10 m. Before processing, data were filtered between
0.5 Hz and 2 Hz then downsampled to 10 Hz. All data we
used in this work came from one section where the fiber is
deployed along the Voie Pierre Mathis, a three lanes highway
going through part of the city (orange section in Fig. 3). Since
the fiber is located on the side of the highway, it only catches
the vibrations of the vehicles driving on one direction (from
South West to North East in Fig. 3).

IV. RESULTS AND DISCUSSION

For each model, we used data windows consisting of 9 DAS
channels and 30 seconds duration. The localisation network
was trained over 150 epochs using 138 hours of data. To
get similar results as the ANN-based model, 20 optimization
iterations per pair of channels are required for the model
without ANN. This leads to significantly different execution
times. While the one without localisation network takes up to
10 seconds to process one data window, the ANN-based model
performs the same task in around 0.01 seconds, which yields



a performance gain of a factor 1000 without loss of accuracy.
This speed-up is critical for real-time traffic analysis.

To have a reference to compare the obtained results with,
we used speed estimates from loop detectors placed in one
section of the monitored highway. Fig. 4 shows the results
of applying our model to one day of data and the velocities
provided by the loop detectors for the same period of time.
We can see high velocities during early morning and evening
times, this is due to the low traffic density, so vehicles can drive
faster. During the daytime, vehicles drive around 70 km h−1,
which corresponds to the speed limit. Velocities are equal to
zero before 5 am and after 11:30 pm, which corresponds to
no vehicles, because the monitored highway is closed in this
time interval. We can see more fluctuations in our model speed
estimates than the loop detectors ones, and this due to several
reasons. Among them, one can highlight the high sensitivity
of our model to heavy vehicles and vehicles driving close to
the fiber. These two cases generate high amplitude signals,
where the ANN gives more importance to align, which may
affect the speed estimates of the data window. We can also
notice around 5 am that the loop detectors are not detecting
any vehicle, unlike our model, which gives fairly high speeds.
We checked in the DAS data, and we found that most of our
speed estimates were correct around this time. We suspect that
the loop detectors were not enabled yet, or need more vehicles
to provide speed estimates.

Fig. 4. Speed estimates provided by our model (blue curve) and the loop
detectors (orange curve). The dashed red line indicates the speed limit (
70 km h−1).

V. CONCLUSIONS AND PERSPECTIVES

In this paper we introduced a novel solution for high-
resolution vehicles detection and speed estimation using DAS.
We showed the efficiency of this technology, combined with
the proposed models, achieving these two tasks. Although both
models, with and without the localisation network, generate
similar transformations, their execution times are significantly
different. Making the ANN-based model a clear choice for our
application, especially since we plan to upgrade the system to
real-time. The speed estimates provided by the loop detectors
constitute a good reference to compare our results with.
Despite some differences between the two techniques results,
the overall speed trends are similar. The self-supervised aspect

of the model, makes it suitable for a large variety of time series
alignment applications, even when no labels are available.

Our proposed method opens the door to several other traffic
monitoring applications. Starting by a real-time version of
the system, where DAS data will be processed right after
acquisition. Taking advantage of the fact that vehicles generate
signatures in DAS data that are proportional to their charac-
teristics (i.e. weight, length, number of wheels, etc.), we can
extract the types of vehicles from the DAS recordings. Traffic
anomaly detection, like traffic jams or vehicles accidents, can
also be achieved using, for example, the speed estimates we
obtain using our model combined with a tracking algorithm.
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Fig. 5. Full procedure of vehicles detection and speed estimation for one DAS data window. a) DAS data window example with 3 vehicles. b) Aligned version
of the data window in panel a using the ANN-based model. The bottom time series, in blue color, represents the average of all aligned channels along the
spatial axis. c) Obtained speed map for the data window in panel a. d) Binary mask generated following the procedure in section II-C. e) Filtered speed map
obtained by multiplying the one in panel c by the binary mask in panel d. For this example, since the vehicles signatures are not close to each other, we can
extract the individual velocities for each of them.


