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Nematic and stripe orders within the charge density wave state of doped TiSe 2

In this work, we present a theory to reconcile conflicting experimental claims regarding the charge density wave (CDW) state in TiSe2, including whether there is a single or multiple CDW transitions and the occasional observation of rotation symmetry breaking. Using a k • p model coupled to the CDW order parameter, we show how commonplace conduction band doping x must cause a transition from the C3-symmetric 3Q state to a C3-breaking 1Q stripe state at a critical doping x1Q. In addition, for sufficient ellipticity of the conduction bands, as displayed by the realistic band stucture of TiSe2, a new nematic 3Q state also emerges in a region with x < x1Q. We then show how both stripe and nematic states emerge from a minimal interacting tight-binding model, for both positive and negative initial gaps. Our theory clarifies a long-standing puzzle and its predictions can be verified with a variety of probes including transport, photoemission and tunneling.

Introduction.-The transition metal dichalcogenide TiSe 2 develops a commensurate 2×2×2 charge density wave (CDW) transition below T c ∼ 200K (shown in Fig. 1(a,b)), which has been under scrutiny for decades [START_REF] Di Salvo | Electronic properties and superlattice formation in the semimetal TiSe2[END_REF]2]. Featuring nearly energetically aligned electron and hole pockets at the Brillouin Zone (BZ) L and Γ points (see Fig. 1(c,d)), TiSe 2 is naturally unstable to modulations with momentum Q = ΓL i which cause a repulsion of the electron and hole bands. These include both lattice modulations driven by electron-phonon coupling [START_REF] Weber | Electronphonon coupling and the soft phonon mode in TiSe2[END_REF]4] and charge modulations driven by excitonic correlations [5,[START_REF] Kogar | Signatures of exciton condensation in a transition metal dichalcogenide[END_REF], with both mechanisms likely contributing to the CDW [START_REF] Van Wezel | An alternative interpretation of recent arpes measurements on TiSe2[END_REF][START_REF] Van Wezel | Excitonphonon-driven charge density wave in TiSe2[END_REF][START_REF] Porer | Non-thermal separation of electronic and structural orders in a persisting charge density wave[END_REF][START_REF] Monney | Revealing the role of electrons and phonons in the ultrafast recovery of charge density wave correlations in 1T-TiSe2[END_REF]. While the microscopic interaction driving the CDW has been discussed at length, an even more pressing controversy regarding the symmetry of the CDW transition has received less attention and remains unresolved to date.

The CDW order parameter ⃗ ∆, which has three components representing the three Q modulation vectors, was established by neutron diffraction [START_REF] Di Salvo | Electronic properties and superlattice formation in the semimetal TiSe2[END_REF] and X-ray [START_REF] Holt | X-ray studies of phonon softening in tise2[END_REF] experiments to have L - 1 symmetry. These experiments further showed that ⃗ ∆ condenses in a C 3 -symmetric 3Q configuration. This was later shown to be inconsistent with a Scanning Tunneling Microscopy (STM) experiment [START_REF] Ishioka | Chiral charge-density waves[END_REF], where the CDW Bragg peaks at the three CDW wavevectors of the surface BZ M i displayed different intensities, thus breaking C 3 symmetry. Inspired by this, a chiral CDW breaking all mirrors, inversion and C 3 was proposed [START_REF] Van Wezel | Chirality and orbital order in charge density waves[END_REF][START_REF] Van Wezel | The chiral charge density wave transition in 1T-TiSe2[END_REF][START_REF] Zenker | Chiral charge order in 1T-TiSe2: Importance of lattice degrees of freedom[END_REF][START_REF] Gradhand | Optical gyrotropy and the nonlocal hall effect in chiral charge-ordered TiSe2[END_REF]. While further STM works [START_REF] Ishioka | Charge-parity symmetry observed through friedel oscillations in chiral charge-density waves[END_REF][START_REF] Iavarone | Evolution of the charge density wave state in CuxTiSe2[END_REF] provided support to this picture, others clearly displayed a C 3symmetric state [START_REF] Hildebrand | Local real-space view of the achiral 1T-TiSe2 2 × 2 × 2 charge density wave[END_REF]. X-ray and thermodynamic evidence for a second chiral transition were also reported [START_REF] Castellan | Chiral phase transition in charge ordered 1T-TiSe2[END_REF], but the X-ray evidence was later contested [START_REF] Lin | Comment on "chiral phase transition in charge ordered 1T-TiSe2[END_REF][START_REF] Ueda | Correlation between electronic and structural orders in 1T-TiSe2[END_REF] and inversion symmetry breaking has never been established independently, as surface experiments [START_REF] Ishioka | Chiral charge-density waves[END_REF][START_REF] Ishioka | Charge-parity symmetry observed through friedel oscillations in chiral charge-density waves[END_REF][START_REF] Iavarone | Evolution of the charge density wave state in CuxTiSe2[END_REF] are insensitive to such symmetry.

The spontaneous breaking of threefold symmetry in the CDW Bragg peaks, once other artifacts such as tip anisotropy have been discarded [START_REF] Da Silva | Detection of electronic nematicity using scanning tunneling microscopy[END_REF], reflects a spontaneous electronic nematic order, as observed with STM for example in Kagome superconductors [START_REF] Jiang | Unconventional chiral charge order in kagome superconductor KV3Sb5[END_REF][START_REF] Li | Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5[END_REF][START_REF] Nie | Charge-density-wave-driven electronic nematicity in a kagome superconductor[END_REF] or twisted heterostructures [START_REF] Jiang | Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene[END_REF][START_REF] Rubio-Verdú | Moiré nematic phase in twisted double bilayer graphene[END_REF]. An inversion preserving nematic order is inconsistent with the chiral CDW proposal, and suggests an alternative explanation of the origin of C 3 symmetry breaking may exist. In this work, we offer a simple explanation that invokes only the standard L - 1 order parameter. We show that electron doping of the charge density wave state of TiSe 2 drives further electronic instabilities to C 3 -breaking states, first in the form nematic 2Q/3Q CDW states consistent with Refs. [START_REF] Ishioka | Chiral charge-density waves[END_REF][START_REF] Ishioka | Charge-parity symmetry observed through friedel oscillations in chiral charge-density waves[END_REF][START_REF] Iavarone | Evolution of the charge density wave state in CuxTiSe2[END_REF], and then as a 1Q stripe CDW at further doping. Actual samples of TiSe 2 are often doped to different degrees and only recently stoichiometric samples were achieved [START_REF] Campbell | Intrinsic insulating ground state in transition metal dichalcogenide TiSe2[END_REF][START_REF] Watson | On the origin of the anomalous peak in the resistivity of TiSe2[END_REF][START_REF] Knowles | Fermi surface reconstruction and electron dynamics at the charge-density-wave transition in TiSe2[END_REF], which we believe explains the variability of symmetries observed. Our theory pertains to the low-doping case only, x < 0.06e/f.u., as higher levels of doping are known to first render the CDW incommensurate [START_REF] Kogar | Observation of a charge density wave incommensuration near the superconducting dome in CuxTiSe2[END_REF][START_REF] Yan | Influence of domain walls in the incommensurate charge density wave state of cu intercalated 1T-TiSe2[END_REF] and then give rise to superconductivity [START_REF] Morosan | Superconductivity in CuxTiSe2[END_REF][START_REF] Li | Controlling many-body states by the electric-field effect in a two-dimensional material[END_REF] as predicted theoretically [START_REF] Wei | Manipulating charge density wave order in monolayer 1T-TiSe2 by strain and charge doping: A firstprinciples investigation[END_REF][START_REF] Guster | First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density[END_REF][START_REF] Chen | Reproduction of the Charge Density Wave Phase Diagram in 1T-TiSe2 Exposes its Excitonic Character[END_REF][START_REF] Chen | Discommensuration-driven superconductivity in the charge density wave phases of transition-metal dichalcogenides[END_REF][START_REF] Novko | Electron correlations rule the phonon-driven instability in single-layer TiSe2[END_REF].
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Symmetry analysis and k • p model.-We begin by considering a continuum k • p model for the valence and conduction bands of TiSe 2 , constrained by the symmetries of the high temperature phase (space group P 3m1, point group D 3d ). The band structure near the Fermi level consists of three electron pockets at the L points with L + 1 symmetry which derive from Ti d orbitals and two hole pockets of Γ - 3 symmetry located at Γ [START_REF] Zunger | Band structure and lattice instability of TiSe2[END_REF] which derive from Se p orbitals, as shown in Fig. 1(c,d). The presence of a small indirect gap (E g > 0) or overlap (E g < 0) is still debated [START_REF] Rasch | 1T-TiSe2: Semimetal or Semiconductor?[END_REF][START_REF] Mottas | Semimetal-to-semiconductor transition and charge-density-wave suppression in 1T-TiSe2-xSx single crystals[END_REF][START_REF] Watson | Orbital-and kzselective hybridization of se 4p and ti 3d states in the charge density wave phase of TiSe2[END_REF][START_REF] Jaouen | Phase separation in the vicinity of Fermi surface hot spots[END_REF][START_REF] Watson | Strong-coupling charge density wave in monolayer TiSe2[END_REF], but our conclusions apply to both cases. The CDW order parameter has L - 1 symmetry and hybridizes the valence and conduction bands. In the case of monolayer TiSe 2 , the electron pockets occur at the M points and have M + 1 symmetry, resulting in an order parameter with M - 1 symmetry. Our proposed mechanism for rotation symmetry breaking applies to both monolayer and bulk samples with the corresponding replacement of the symmetry labels, so for simplicity we now focus on the monolayer.

The Hamiltonian H 0 dd of the electron pockets, expressed in the basis {d 1 , d 2 , d 3 }, where d i represents the band at M i , is:

H 0 dd (k) = diag [ε d,1 (k), ε d,2 (k), ε d,3 (k)] , (1) 
with

ε d,1 (k) = a d (k 2 x +k 2 y )+b d (k 2 x -k 2 y ), ε d,2 (k) = a d (k 2 x + k 2 y ) + b d [- √ 3k x k y -1 2 (k 2 x -k 2 y )], ε d,3 (k) = a d (k 2 x + k 2 y ) + b d [ √ 3k x k y -1 2 (k 2 x -k 2 y )].
The ellipticity of the electron pockets is parametrized by b d , and the fact that the long axis is along ΓM requires b d > 0. Ab initio calculations predict a large ellipticity value, b d /a d ∼ 0.87 [START_REF] Guster | First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density[END_REF][START_REF] Chen | Reproduction of the Charge Density Wave Phase Diagram in 1T-TiSe2 Exposes its Excitonic Character[END_REF][START_REF] Monney | Impact of Electron-Hole Correlations on the 1T-TiSe2 Electronic Structure[END_REF], which we take as the realistic value for the rest of this work. This value is also within the range of the experimentally reported conduction band masses (see Table III of the Supplemental Material (SM) [48]).

The hole bands at Γ are represented by the Hamiltonian H 0 pp , which in the {p x , p y } basis reads

H 0 pp (k) =   a p k 2 + b p (k 2 x -k 2 y ) b p 2k x k y b p 2k x k y a p k 2 -b p (k 2 x -k 2 y )   , (2) 
where b p parametrizes the orbital texture of the hole bands. Ab initio calculations [START_REF] Zunger | Band structure and lattice instability of TiSe2[END_REF] show the top valence band has p x character along the ΓM line (it is mirror M x odd, becoming M - 1 at M ), which sets b p < 0. We take the value b p /a p = 0.25 from Refs. [START_REF] Guster | First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density[END_REF][START_REF] Kolekar | Controlling the Charge Density Wave Transition in Monolayer TiSe2: Substrate and Doping Effects[END_REF].

Anticipating the CDW phase transition, we work in the folded BZ where the M point is folded to Γ. In the basis {d 1 , d 2 , d 3 , p x , p y }, the bare k • p Hamiltonian is therefore where k = (k x , k y ), and E g is the gap, which is at most |E g | < 100 meV. We do not consider spin-orbit coupling, because it does not significantly affect the CDW [START_REF] Hellgren | Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in TiSe2[END_REF]. The bands of the model (3) are shown as grey dotted lines in Fig. 2(a,b).

H 0 (k) =   Eg 2 + H 0 dd (k) 0 0 - Eg 2 + H 0 pp (k)   , (3) 
Next, we consider the CDW order parameter with M - 1 symmetry, denoted ⃗ ∆ = (∆ 1 , ∆ 2 , ∆ 3 ), which couples the conduction and valence bands so that the total Hamiltonian becomes

H =   Eg 2 + H 0 dd (k) H dp ( ⃗ ∆) H † dp ( ⃗ ∆) - Eg 2 + H 0 pp (k)   . (4) 
This order parameter can be thought of as the M - 1 phonon displacement in normal coordinates, or as the excitonic order parameter of the same symmetry obtained from a mean-field decoupling. The lowest-order symmetry-allowed coupling is (see SM [48])

H † dp ( ⃗ ∆) =   2 3 ∆ 1 -1 √ 6 ∆ 2 -1 √ 6 ∆ 3 0 1 √ 2 ∆ 2 -1 √ 2 ∆ 3   .
(
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C 3 -symmetric 3Q state [1] is represented by ⃗ ∆ = | ⃗ ∆| √ 3 (1, 1, 1)
. This order parameter causes a repulsion between the doublet of valence bands and a doublet of conduction bands (see Fig. 2(a)), leaving the band edge of the third conduction band unaffected by the CDW transition, as seen in ARPES [START_REF] Watson | Orbital-and kzselective hybridization of se 4p and ti 3d states in the charge density wave phase of TiSe2[END_REF][START_REF] Watson | Strong-coupling charge density wave in monolayer TiSe2[END_REF]. Figs. 2(b,c) show the bands for the 1Q

⃗ ∆ = | ⃗ ∆|(1, 0, 0) and 2Q ⃗ ∆ = | ⃗ ∆| √ 2 (0, 1, 1) states, respectively.
In the 1Q case, only one conduction band is repelled to high energies.

Energetics of the order parameter.-The CDW order parameter has three symmetry-related components, allowing for distinct ground states. Is the C 3 -symmetric 3Q state the ground state, and is it stable upon doping? These questions can be addressed within the continuum k • p model without knowledge of the precise nature or structure of the interaction that gives rise to ⃗ ∆. Assuming an interaction that only depends on

| ⃗ ∆| 2 = ∆ 2 1 + ∆ 2 2 + ∆ 2 3
, which holds when any local four-fermion interaction is decoupled only in the chosen channel, the direction of ⃗ ∆ for fixed magnitude can be obtained at zero temperature by minimizing the energy of the occupied bands

E = d 2 k/(2π) 2 n ε n (k)θ(µ -ε n (k)) where Hψ n (k) = ε n (k)ψ n (k).
A phase diagram with approximate phase boundaries (compared to a self-consistent calculation of ⃗ ∆) can thus be obtained to explain the origin of the different phases.

In The emergence of the 3Q to 1Q transition can be understood most clearly in the isotropic case b p = b d = 0, for which the energies of the two phases can be computed and integrated analytically (see SM [48]). This yields a critical doping which takes the simple form ap) in the E g = 0 limit. To see that a transition from the 3Q to the 1Q state should occur at some critical doping, consider the effect of adding carriers on the energies of these states. In the 1Q state two bands are populated as carriers are added, whereas in the 3Q state only one band is populated by additional carriers, as can be seen in Fig. 2(a,b). This implies a higher chemical potential for the 3Q state and an energy which increases faster relative to the 1Q state, eventually making the latter lower in energy. This mechanism is still at work at finite b d , as we observe numerically.

| ⃗ ∆| = (∆ 1 , ∆ 2 , ∆ 2 ), with |∆ 1 | ̸ = |∆ 2 |.
n 1Q = | ⃗ ∆| π log 2 3a d (a d -
To understand the origin of the 3Q/2Q nematic phase, Fig. 3 Corresponding DOS for each band in (c). The three equivalent vHs singularities of the lowest conduction band in the symmetric 3Q state disappear in the 2Q state, which has higher DOS at lower energy and therefore lower total energy. equivalent vHs points, breaking the C 3 symmetry can lower the energy by splitting these saddle points in energy, a known mechanism for nematicity in the doped honeycomb lattice [START_REF] Valenzuela | Pomeranchuk instability in doped graphene[END_REF] and in Kagome superconductors [START_REF] Kiesel | Unconventional fermi surface instabilities in the kagome hubbard model[END_REF]. Indeed, such splitting is observed in Fig. 3(c,d) in the nematic state, explaining its origin. In Fig. 2(d), this 3Q/2Q nematic phase develops even at values of b d where the vHs singularity is not fully developed and there is only a finite but sizable DOS peak. Eventually, for higher doping, the 1Q stripe phase always develops.
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Fig. 2(e) shows the phase diagram for E g = -100meV, with the following differences with respect to E g > 0. First, there is an intermediate nematic 3Q/2Q state also at small ellipticity, which occurs at fillings where the second conduction band, of approximate mexican hat shape for ⃗

∆ = | ⃗ ∆| √ 3 (1, 1, 1
), begins to be populated. Since the DOS is also large there, a similar mechanism as the one for large ellipticity drives the transition to the nematic 3Q/2Q phase. Furthermore, at high ellipticity, including b d /a d ∼ 0.87, a reentrant C 3 -symmetric 3Q phase appears between the nematic 3Q state and the 1Q stripe phase. In this region, the doping is well above the vHs, so that no nematic instability occurs, but the 1Q state energy is still higher. This reentrant phase shows that the mechanisms for the 1Q and 2Q/3Q nematic states are generically different.

Minimal Our minimal lattice model is a three-orbital model, with d z 2 , p x , p y orbitals sitting at the same 2D triangular lattice sites. The d z 2 orbital transforms as A 1g and constitutes the conduction band, whereas the p x , p y orbitals transform as E u and form the valence bands. We include hoppings up to third nearest neighbours for d z 2 , nearest neighbour σ and π hopping for p x , p y , and an interorbital hopping t dp :

H 0 = i ε d d † i d i + ε p p † i • p i + 3 n=1 ⟨ij⟩n t (n) dd d † i d j - ⟨ij⟩1 (t ppσ + t ppπ ) (p † i • rij )(r ij • p j ) -t ppπ p † i • p j - ⟨ij⟩1 it dp d † i rij • p j -h.c. . (6) 
Here ⟨ij⟩ n are the n th nearest neighbours, p i = (p xi , p yi ), and rij = (r j -r i )/|r j -r i | is the unit vector from site i to site j. As described in the SM [48], the hopping parameters are fit to reproduce the gap and masses of the bands near the Fermi level (see the inset of Fig. 4 for the bands for E g = 0). The CDW order in this model is represented by the local p-d hybridization, encoded in the fermion bilinear ⟨d † j p αj ⟩, with j = 1, ..., 4 running over the sites of the 2x2 supercell, which transforms under symmetry as

Γ - 3 ⊕ M - 1 ⊕ M - 2 .
We now complete the model with the most local interaction that is attractive only for the M - 1 channel, which is

H int = V dp ⟨ij⟩1 d † i p i † • (1 -2r ij ⊗ rij ) • d † j p j , (7) 
with V dp > 0. The time-reversal even M - 1 component of -2V dp ⟨d † j p αj ⟩ defines the order parameter and is given explicitly by where a = 1, 2, 3 and v × w = v x w y -v y w x . The mean field decoupling of Eq. ( 7) indeed shows that it is only attractive in this channel, and that ⃗ ∆ couples to electrons and holes as in Eq. ( 4) at low energies as desired (see SM [48]). Our interacting TB Hamiltonian therefore serves as a minimal model to analyze the energetics of the M - 1 CDW order. We perform self-consistent mean-field calculations of the Hamiltonian H 0 + H int decoupled in the ⟨d † j p αj ⟩ channels for different values of the initial gap. We choose V dp such that the critical doping for the disappearance of the commensurate CDW is ∼ 6%, as determined experimentally [START_REF] Kogar | Observation of a charge density wave incommensuration near the superconducting dome in CuxTiSe2[END_REF][START_REF] Li | Controlling many-body states by the electric-field effect in a two-dimensional material[END_REF][START_REF] Watson | Strong-coupling charge density wave in monolayer TiSe2[END_REF][START_REF] Wu | Transport properties of single-crystalline CuxTiSe2 (0.015 ≤ x ≤ 0.110)[END_REF].

∆ a = -V dp j e iMa•rj Re⟨d † j p j ⟩ × M a |M a | , (8) 
Figs. 4(a,b) display the resulting phase T -x diagrams for gaps E g = +25meV, -35meV. States (∆, ∆, ∆), (∆ 1 , ∆ 2 , ∆ 2 ), and (∆, 0, 0) appear for both gaps, while a 2Q (0, ∆, ∆) phase develops only in the negative gap case. At zero temperature, the C 3 -symmetric 3Q phase (∆, ∆, ∆) appears at low doping, while the 1Q-stripe order only develops at high doping, with the nematic 3Q/2Q phase developing in between, in agreement with Fig. 2(d,e). When the gap is negative, the reentrant C 3 -symmetric 3Q phase is also observed between the nematic 3Q and the 1Q phases. Starting from high temperature, the first transition is always to the C 3symmetric 3Q phase. At high doping, the 1Q phase develops at a lower but comparable temperature. On the other hand, the nematic 3Q/2Q phase only appears at low temperature (T nematic ∼ 0.2 T CDW ), which is expected for a secondary instability of the 3Q CDW state.

Bulk TiSe 2 .-Our calculations assume a monolayer for simplicity, but we expect the existence of doping-induced transitions to carry over to the bulk limit, because TiSe 2 is a quasi 2D van der Waals material with weak band dispersion in the k z direction. In the bulk, the order parameter has L - 1 symmetry, which preserves the inversion center between layers. Because of this, none of the bulk versions of our proposed states is chiral, differentiating them from previous proposals [START_REF] Van Wezel | Chirality and orbital order in charge density waves[END_REF][START_REF] Van Wezel | The chiral charge density wave transition in 1T-TiSe2[END_REF][START_REF] Zenker | Chiral charge order in 1T-TiSe2: Importance of lattice degrees of freedom[END_REF][START_REF] Gradhand | Optical gyrotropy and the nonlocal hall effect in chiral charge-ordered TiSe2[END_REF] to explain the C 3 -breaking states [START_REF] Ishioka | Chiral charge-density waves[END_REF][START_REF] Ishioka | Charge-parity symmetry observed through friedel oscillations in chiral charge-density waves[END_REF][START_REF] Iavarone | Evolution of the charge density wave state in CuxTiSe2[END_REF]. We caution however that since STM is a surface probe and doping need not be homogeneous, the bulk and surface CDW states need not be the same. We also note that short-range domains of a 1Q stripe CDW [START_REF] Novello | Stripe and short range order in the charge density wave of 1T-CuxTiSe2[END_REF] in a 3Q background have also been observed. Modeling phase coexsitence in such inhomogeneous states is beyond the scope of this work but our predicted 1Q stripe phase at high doping is a good starting point.

Bulk samples cooled in the presence of circularly polarized light display a longitudinal circular photogalvanic effect which is consistent with C 3 symmetry [START_REF] Xu | Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide[END_REF][START_REF] Jog | Optically induced symmetry breaking due to nonequilibrium steady state formation in charge density wave material 1T-TiSe[END_REF]. This light-induced chiral state is therefore different from our proposal, and is likely induced by the condensation of phonons with M - 1 symmetry [START_REF] Wickramaratne | Photoinduced chiral charge density wave in TiSe2[END_REF] (which is not the leading bulk instability) aided by the presence of circular light. By including the coupling to circularly polarized light, our theory could be generalized to address this case, but we emphasize that this light-induced chiral state is unrelated to the one observed in STM. It is also worth noting that the mixing of M - 1 and L - 1 phonons has been predicted to stabilize C 3 -breaking structures as well [START_REF] Subedi | Trigonal-to-monoclinic structural transition in TiSe2 due to a combined condensation of q = ( 1 2[END_REF].

Discussion.-Our prediction of a robust, doping induced C 3 -breaking phase in TiSe 2 , motivated by different STM experiments, can solve the long-standing puzzle of the symmetry of the CDW. Our theory can be further confirmed with several other probes. The existence of a nematic transition can be quantified by elastoresistance measurements which directly measure the nematic susceptibility. An early experiment [START_REF] Nunex-Regueiro | Uniaxial stress-induced resistivity anisotropy in TiSe2 below 200K[END_REF] indeed detected a sharp change in elastoresistance below 200 K. C 3 -breaking can also be detected in low frequency Raman as observed in 2H-TaSe 2 [START_REF] Scott | Raman scattering from the orthorhombic charge-density-wave state of 2H-TaSe2[END_REF]. ARPES experiments may also detect different intensity for the three conduction band pockets in the C 3 breaking states. Another unique probe to show the existence of the nematic state in monolayer samples is the non-linear Hall effect [START_REF] Sodemann | Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal invariant materials[END_REF], which vanishes for D 3 symmetry but becomes possible once it is broken. We believe our theory, in conjuction with new experiments, will finally serve to settle the symmetry of the CDW states in TiSe 2 . , and one-to-one correspondence with the cubic point group O.
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Table II. Representation matrices of the generators of the extended point group D

.

between a generic state ⃗

∆ = (∆ 1 , ∆ 2 , ∆ 3 ) and the ⃗ ∆ = | ⃗ ∆| √ 3 (1, 1, 1) phase. At stoichiometry x = 0, δE(x = 0) = d 2 k (2π) 2 ε v+ (k) + ε v-(k) -2ε 3Q v (k) = = 1 8π(a d -a p ) E g 2 E 2 g + 4 3 | ⃗ ∆| 2 f + (θ, φ) + E 2 g + 4 3 | ⃗ ∆| 2 f -(θ, φ) -2 E 2 g + 4 3 | ⃗ ∆| 2 + + 4 3 | ⃗ ∆| 2   log -E g + E 2 g + 4 3 | ⃗ ∆| 2 - 1 2 f + (θ, φ) log   -E g + E 2 g + 4 3 | ⃗ ∆| 2 f + (θ, φ) f + (θ, φ)   - - 1 2 f -(θ, φ) log   -E g + E 2 g + 4 3 | ⃗ ∆| 2 f -(θ, φ) f -(θ, φ)        . ( C10 
)
δE(x = 0) is always a non-negative quantity, and it is equal to zero only if

⃗ ∆ = | ⃗ ∆| √ 3 (1, 1, 1), when f ± (θ, φ) = 1.
Therefore, the ground state at charge neutrality is the 3Q C 3 -symmetric state, and the 1Q stripe state has the highest energy:

δE 1Q (x = 0) = 1 8π(a d -a p )   E g 2 E 2 g + 8 3 | ⃗ ∆| 2 + E g -2 E 2 g + 4 3 | ⃗ ∆| 2 + 4 3 | ⃗ ∆| 2 log   2 -E g + E 2 g + 4 3 | ⃗ ∆| 2 -E g + E 2 g + 8 3 | ⃗ ∆| 2     . (C11) 
In the limit E g → 0 we have simply δE

(x = 0) = | ⃗ ∆| 2 24π(a d -ap) [f + log (f + )+f -log (f -)], and δE 1Q (x = 0) = | ⃗ ∆| 2
12π(a d -ap) log 2. Let us note that δE(x = 0) decreases with increasing E g for fixed | ⃗ ∆|. Now consider doping a small carrier density n = x/V unit cell such that only the lowest conduction band ε c0 is populated. This assumption holds in the majority of the k • p phase diagrams of Figs. 2(c,d) (except for some regions in the case of large negative gap and small ellipticity, as explained in the main text). This assumption is also verified in all the self-consistent mean-field calculations. Except for the 1Q phase, the lowest conduction band is non-degenerate and equal for all | ⃗ ∆|, so that the total energy difference δE(x) remains the same as δE(x = 0).

However, the 1Q stripe phase displays a doubly-degenerate lowest conduction band. In this case, for a given carrier density n, the chemical potential is lower for the 1Q state than for the 3Q one, which allows the possibility of a transition to the 1Q phase at a critical doping, as we show below. The lowest conduction band is uncoupled by the order parameter, and thus remains parabolic with constant DOS 1/(4πa d ). The chemical potential is set by the carrier density:

n = µ 3Q 0 dε 1 4πa d θ(ε -E g /2) = µ 3Q -E g /2 4πa d (C12) n = µ 1Q 0 dε 2 4πa d θ(ε -E g /2) = µ 1Q -E g /2 2πa d (C13) (C14)
And the total energy density difference is

δE 1Q (x) -δE 1Q (x = 0) = µ 1Q 0 dε ε 2πa d θ(ε -E g /2) - µ 3Q 0 dε ε 4πa d θ(ε -E g /2) = (C15) = 1 8πa d 2(2πa d n) 2 -(4πa d n) 2 = -πa d n 2 (C16)
The transition to the 1Q state occurs at the x 1Q such that δE 1Q (x 1Q ) = 0, so

n 1Q = 2 δE 1Q (x = 0) πa d , (C17) 
The gap, the masses and ε cΓ depend on the hoppings as:

E g = ε d -ε p -2t (1) 
dd + 2t

(2)

dd -6t (3) 
dd -3t ppσ + 3t ppπ

ε cΓ = ε d + 6 t (1) dd + t (2) dd + t (3) dd m -1 v1 = 3 4 [t ppσ -3t ppπ ] m -1 v2 = - 3 4   -3t ppσ + t ppπ + 24t 2 dp ε d -ε p + 3 2t (1) 
dd + 2t

(2)

dd + 2t

(3)

dd + t ppσ -t ppπ   (D1) m -1 cy = 3   t (1) dd -t (2) 
dd -4t

(3)

dd + 6t 2 dp ε d -ε p -2t (1) 
dd + 2t

(2)

dd -6t

(3)

dd + 3t ppσ + t ppπ   m -1 cx = -t (1) 
dd + 9t

(2)

dd -12t

(3)

dd + 2t 2 dp ε d -ε p -2t (1) 
dd + 2t

(2)

dd -6t (3) 
dd -t ppσ -3t ppπ where we have defined m = ma 2 /ℏ 2 , where a is the lattice constant. Inverting these relationships, we find that the hoppings as a function of the gap, the masses, ε cΓ and t dp can be expressed as: Table IV shows different values of the masses of the bands extracted from previous works. Here, we choose the values of Ref. [START_REF] Kolekar | Controlling the Charge Density Wave Transition in Monolayer TiSe2: Substrate and Doping Effects[END_REF] based on ARPES measurements on monolayer TiSe 2 : m v1 = -0.7m e , m v2 = (50/3)m v2 = -0.42m e , m cy = 10m v1 = 7m e , m cx = m cy /14 = 0.5m e . Then, for gap E g = 0 as in the inset of Fig. 4 of the main text, the hopping parameters are

ε d = 1 256 48 m -1 cx + 80 m -1 cy + 288t 2 dp 8 m -1 v1 -3E g - 15(8 m -1 v2 -3E g )(2ε cΓ + E g ) 2 (8 m -1 v2 -3E g )(2ε cΓ + E g ) + 288t 2 dp + 70ε cΓ + 123E g ε p = m -1 v1 + m -1 v2 + 36t 2 dp 2ε cΓ + E g - E g 2 t (1) dd = 1 256 -16 m -1 cx + 16 m -1 cy + 96t 2 dp 3E g -8 m -1 v1 - 3(8 m -1 v2 -3E g )(2ε cΓ + E g ) 2 (8 m -1 v2 -3E g )(2ε cΓ + E g ) + 288t 2 dp + 30ε cΓ -9E g t ppσ = - m -1 v1 6 + m -1 v2 2 + 18t 2 dp 2ε cΓ + E g (D2) t ppπ = - m -1 v1 2 + m -1 v2 6 + 6t 2 dp 2ε cΓ + E g t (2) dd = 1 256 16 m -1 cx -16 m -1 cy + 96t 2 dp 8 m -1 v1 -3E g - 3(3E g -8 m -1 v2 )(2ε cΓ + E g ) 2 (8 m -1 v2 -3E g )(2ε cΓ + E g ) + 288t 2 dp + 2ε cΓ -7E g t (3) dd = 1 1536 -48 m -1 cx -80 m -1 cy + 3 96t 2 dp 3E g -8 m -1 v1 - 5(3E g -8 m -1 v2 )(2ε cΓ + E g ) 2 (8 m -1 v2 -3E g )(2ε cΓ + E g ) + 288t
ε d ≃ 0.329eV, ε p ≃ -2.016eV, t (1) 
dd ≃ -0.017eV, t

dd ≃ 0.092eV, t

dd ≃ -0.030eV, t ppσ ≃ -0.429eV, t ppπ ≃ 0.243eV, and t dp ≃ 0.1eV.

Mean-field theory: order parameters

By decoupling the Hamiltonian H 0 + H int of Eqs. ( 6),( 7) of the main text in the onsite orbital order ⟨d † i p i ⟩ channel, which corresponds to the Fock channel of the V dp interaction, the mean-field Hamiltonian in real-space becomes

H MF = H 0 + V dp ⟨ij⟩ ⟨d † i p i ⟩ * • (2r ij ⊗ rij -1) • d † j p j + h.c. -⟨d † i p i ⟩ * • (2r ij ⊗ rij -1) • ⟨d † j p j ⟩ , (D3) 
with the expectation values taken in the mean-field ground state. We solve H M F in a 2 × 2 supercell with superlattice vectors 2a i , with a 1 = a(1, 0) and a 2 = a( 1 2 , √

2 ) and label the supercell sites by j = 1, 2, 3, 4 (see Fig. S1). Without loss of generality, we choose the origin of coordinates of a cell at r 1 = (0, 0), so r 2 = a(1, 0), r 3 = a(-1/2, -√ 3/2), and r 4 = a(1/2, -√ 3/2).

Let us classify according to symmetry the different terms entering the Hamiltonian. In the original unit cell, the onsite orbital orders (d † p x ± h.c., d † p y ± h.c.) transform as TRS even and odd Γ - ). TRS even and odd operators can be obtained by adding or substracting the Hermitian conjugate, respectively.

Using the previous symmetry-adapted operators and the mean-field interaction of Eq. (D3), let us construct the symmetryadapted order parameter ⃗ ∆. In the basis {d 
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Figure 1 .

 1 Figure 1. (a) Side view of the lattice structure of TiSe2. (b) Real space view of the charge density wave pattern. (c) Low energy band structure and symmetry labels for the bands for the bulk (notation in parenthesis for the monolayer). (d) Fermi surface sketch of the normal state in the semimetallic case. The order parameter ⃗ ∆ coupling conduction and valence bands is also shown.

Figure 2 .

 2 Figure 2. (a,b) Folded bands in the presence of the order parameter ⃗ ∆ for directions (a) (∆, ∆, ∆), (b) (∆, 0, 0), and (c) (0, ∆, ∆). Grey dashed lines show the bands for ⃗ ∆ = 0. (d) Constant | ⃗ ∆| phase diagram for Eg = +50meV and | ⃗ ∆| = 100meV as a function of electron doping x and ellipticity of the conduction bands b d /a d . The black dotted line indicates the realistic ellipticity b d /a d = 0.87. (e) The same as (d) but with Eg = -100meV and on a larger x range.

Fig. 2 (

 2 d) we show such a phase diagram for fixed | ⃗ ∆| and E g > 0, as a function of doping x and conduction band ellipticity b d /a d . We vary a d to keep the bare density of states (DOS) ρ = 1/(4π a 2 d -b 2 d ) constant, to emphasize the role of ellipticity. Three main phases are observed. The C 3symmetric 3Q state is the ground state at stoichiometry for any b d , as expected. For moderate values of b d /a d < 0.7, there is a sharp 3Q to 1Q transition at a critical doping x 1Q . In addition, at higher values of b d /a d , a nematic 3Q phase emerges where

  Further increasing b d /a d , ∆ 1 vanishes and the nematic phase becomes 2Q with | ⃗ ∆| = (0, ∆, ∆). This 2Q state is distinguished from the nematic 3Q because it preserves an extra inversion symmetry in the center of the Ti-Ti bond [48].

  (a) shows a close up of the dispersion of the lowest conduction band ε c1 along ΓM as a function of b d for fixed a d and ⃗ ∆ = | ⃗ ∆| √ 3 (1, 1, 1). Fig. 3(b) shows the corresponding DOS. Increasing the ellipticity first produces a kink in the dispersion (a relative minimum of dε c1 /dk y ), which eventually gives rise to a van Hove singularity (vHs) with diverging DOS. When the filling is close to that of the six symmetry 0

Figure 3 .

 3 Figure 3. (a) Lowest conduction band along the ΓM direction and corresponding DOS in the C3-symmetric 3Q phase with Eg = +50meV and | ⃗ ∆| = 100meV for constant a d and ellipticities b d /a d = 0, 0.39, 0.60, 0.78, 0.88, 0.92, 0.95. A kink in the band is signaled by gray dots, and a van Hove singularity by black dots. (b) Corresponding DOS for each band in (a). (c) Conduction bands along the ΓM1 and ΓM2 directions (ΓM3 is equivalent to ΓM2) in the C3-symmetric 3Q (blue) and nematic 2Q (red) phases with Eg = +50meV, | ⃗ ∆| = 100meV and b d /a d = 0.87. Horizontal dotted lines indicate the chemical potentials for x = 0.0182, where the C3-symmetric 3Q phase is unstable towards the 2Q state. (d) Corresponding DOS for each band in (c). The three equivalent vHs singularities of the lowest conduction band in the symmetric 3Q state disappear in the 2Q state, which has higher DOS at lower energy and therefore lower total energy.

  lattice model with interactions.-The continuum k • p model provides a compelling basic understanding of the CDW phase diagram as a function of doping, purely based on energetic considerations. To obtain a more refined understanding based on a model which includes microscopic interactions, we now consider a tight-binding lattice model and study its ground state phase diagram within Hartree-Fock theory. We construct a minimal tight-binding model which accurately captures the band dispersion and eigenstate symmetry near the Fermi level and reproduces the low-energy k • p model when expanded near Γ and M . As such, the tight-binding model can be viewed as a lattice regularization of the k • p model. Furthermore, the tight-binding model breaks the artificial independent conservation of the charge of the conduction and valence bands present in the k • p model.

Figure 4 .

 4 Figure 4. Temperature-doping phase diagrams for positive and negative gaps: (a) Eg = +25meV, V dp = 845meV; (b) Eg = -35meV, V dp = 716.5meV. The intensity of the color of each phase is proportional to | ⃗ ∆|. Critical temperatures at charge neutrality are (a) Tc = 459K and (b) Tc = 239K. The inset shows the band structure of the tight-binding model in the unfolded unit cell for Eg = 0.

Figure S1 .

 S1 Figure S1. Triangular lattice of the effective tight-binding model with our choice of lattice vectors and supercell.
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 333 which correspond to the irrep. E u . Now, let us consider the symmetry classification in the 2 × 2 supercell. The orbital orders d † p α transform asΓ - 3 ⊕ M - 1 ⊕ M - 2, where the M - 1 and M - 2 are irreps of the little group of the M points that are even and odd under the C 2 symmetry, respectively. The symmetry adapted operators read iMa•rj d † j p j • Ma , (D6)where the subindices label the irrep. according to which the operators transform, and the superindices α = 1, 2 and a = 1, 2, 3 label the different components of the multidimensional irreps. We have defined Ma = Ma |Ma| , and v × w = v x w y -v y w x . We use the notation indicated in Fig.1of the main text:M 1 = 2π √ 3a (0, 1), M 2 = 2π √ 3a (-√ , -1 2 ), M 3 = 2π √ 3a , -1 2

Table I .

 I Character table of the extended point group D

	(M )
	3

Table IV .

 IV Values of the masses of the valence and conduction bands obtained in previous works.

								dp 2	-2ε cΓ -9E g
	Reference	Technique	mv1/me	mv2/me	mcy/me	mcx/me	mv2/mv1	-mcy/mv2	mcy/mcx
	[49]	ARPES 2D	-0.7	-0.45	7.1	?	0.64	16	?
	[5, 65]	ARPES 3D	?	-0.23	5.5	2.2	?	24	2.5
	[66]	ARPES 3D	?	?	6	0.5	?	?		12
	[38]	DFT 2D	?	-0.19	3.46	0.22	?	18	16
	[37]	DFT 2D	-0.25	-0.15	5.6	0.4	0.60	37	14
	[47]	DFT 3D	?	-0.22	4.3	0.29	?	20	15

  † 1 p x1 , d † 1 p y1 , d † 2 p x2 , d † 2 p y2 , d † 3 p x3 , d † 3 p y3 , d † 4 p x4 , d † 4 p y4 }, the ⟨d † p⟩ decoupling of the interaction V dp reads:
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Supplemental Material: Nematic and stripe orders within the charge density wave state of doped TiSe 2

CONTENTS Appendix A: Group theory, character tables and representation matrices

The normal state of TiSe 2 has the symmorphic space group P 3m1 (#164), with point group D 3d . We will only consider the symmetry groups without spin. Its generators are {C 3z , C 2x , i}, with the center located in a Ti site. Its irreducible representations (irreps) are [START_REF] Aroyo | Crystallography online: Bilbao Crystallographic Server[END_REF] for the character table). The subindex 1/2 in the A irreps indicates the parity under C 2x , and the subindex g/u or the superindex ± refers to the parity under the intralayer inversion i.

The commensurate CDW has wavector L in the bulk and M in the monolayer. Their little cogroup is C 2h . With the choice of the three Q = ΓL, ΓM of Fig. 1 of the main text,

, where Q z = π, 0, the little cogroup of Q 1 has generators {C 2x , i}. Their irreps are {Q ± 1/2 }, which are all one-dimensional. Therefore, since there are three symmetry-equivalent Q points in the star, the order parameters with wavevector Q are threedimensional.

A convenient approach to deal with the symmetry classification of Q = ΓL, ΓM instabilities is the so-called extended point group [START_REF] Venderbos | Symmetry analysis of translational symmetry broken density waves: Application to hexagonal lattices in two dimensions[END_REF][START_REF] Venderbos | Multi-$Q$ hexagonal spin density waves and dynamically generated spin-orbit coupling: Time-reversal invariant analog of the chiral spin density wave[END_REF], where the translations that are broken by the CDW are included in the point group. Effectively one determines the symmetry group of the 2 × 2(×2) supercell, and classifies the observables according to the irreps of this extended point group.

For the monolayer, where Q = ΓM , we perform group multiplication of the original point group D 3d with the group {E, t 1 , t 2 , t 3 }, where t 1 represents the translation by

2 ), and t 3 by -a 2 = a(-

2 ). Due to the imposed translational symmetry with a 2 × 2 unit cell, the group multiplication rules are t i t i = E and t i t j = t k , with i ̸ = j ̸ = k. The extended point group in the monolayer, D

3d is obtained by the direct product with the intralayer inversion i) and its correspondence with the point group O is shown in table I 3d with the interlayer inversion symmetry I, with center in the midpoint between two Ti sites in adyacent layers, which commutes with all the other symmetry operations. Therefore, the irreps just carry an additional label indicating the parity under this interlayer inversion.

The character table and the explicit representation matrices allow us to build the symmetry constrained k • p Hamiltonian and its coupling to any order parameter. To do this, we remind that the momentum transforms as an E u irrep {k x , k y }, the fermionic states transform as M + 1 {d 1 , d 2 , d 3 } for the conduction bands and as Γ - 3 {p x , p y } for the valence bands, and the order parameter ⃗ ∆ = (∆ 1 , ∆ 2 , ∆ 3 ) transforms as M - 1 . By multiplying irreps as desired and demanding that the total Hamiltonian be a scalar Γ + 1 , all terms in the main text can be derived.

Appendix B: Symmetries of the different ground states

The space group of the high temperature phase of TiSe 2 is P 3m1 (# 164, point group D 3d ). For the monolayer, the order parameter ⃗ ∆ transforms as M - 1 . The symmetry groups of the possible ground states for an M - 1 instability are shown in table III. While all components of the the M - 1 order parameter ⃗ ∆ are odd under inversion with respect to the Ti sites, there is another inversion center on the bond connecting Ti sites. Both ⃗ ∆ = (∆, 0, 0) and ⃗ ∆ = (0, ∆, ∆) preserve at least one such inversion centers, so they are non chiral. States ⃗ ∆ = (∆, ∆, ∆) and ⃗ ∆ = (∆ 1 , ∆ 2 , ∆ 2 ) however do break all inversion centers in the monolayer and they are chiral.

Table III. Symmetry groups of the possible ordered phases in monolayer TiSe2.

In the bulk, the order parameter ⃗ ∆ transforms as L - 1 and all ordered phases are achiral, since an interlayer inversion symmetry is always preserved. Chiral structures could be obtained with an M - 1 order parameter, which is not the leading bulk instability [START_REF] Wickramaratne | Photoinduced chiral charge density wave in TiSe2[END_REF]. The existence of a critical doping x 1Q above which a 1Q solution for ⃗ ∆ is obtained can be shown analytically in the k • p model in the simplified case where b p = b d = 0. 

Consider a generic state

where k = |k| and we have defined

ε v± are the two valence bands, ε c0 is the lowest conduction band, which always remains uncoupled, and ε c± are the two highest conduction bands.

Note that the energies only depend on the direction of ⃗ ∆ via the quartic invariant

, and maximum for ⃗ ∆ = | ⃗ ∆|(1, 0, 0). Let us assume that the CDW phase displays a gap between valence and conduction bands so that the valence bands are fully filled at stoichiometry x = 0 (for which E g > 0 is a sufficient condition). Then the ground state in the undoped case x = 0 has to be either the 3Q C 3 -symmetric state

For the 3Q C 3 -symmetric state, two pairs of valence and conduction bands are repelled and remain degenerate:

while for the 1Q stripe state, only one pair of valence and conduction bands is repelled:

In order to determine the ground state, let us compute the difference in total energy density at zero temperature δE = E -E 3Q

where we have added a factor 2 to take into account the spin degeneracy. In the limit E g → 0, we have

We can estimate x 1Q from this calculation taking a p = -0.89ℏ 2 /m e and a d = 0.27ℏ 2 /m e , with m e the electron mass, which reproduce the same normal-state DOS as the realistic values a p = -0.95ℏ 2 /m e , b p = -0.24ℏ 2 /m e , a d = 0.54ℏ 2 /m e and b d = 0.46ℏ 2 /m e used in our effective tight-binding model. From the ARPES experiment on monolayer TiSe 2 of Ref. [START_REF] Watson | Strong-coupling charge density wave in monolayer TiSe2[END_REF],

where the normal-state gap is E g ∼ 80meV and the low-temperature gap is E g /2 + E 2 g + 4| ⃗ ∆| 2 /3 ∼ 180meV, one obtains an order parameter | ⃗ ∆| ∼ 230meV in the low-doping case. Using these numerical values, we can estimate the critical doping for the transition from the 3Q to the 1Q states to be x 1Q ∼ 0.07e/f.u.. Despite neglecting b p and b d , this value is of the order of magnitude of that obtained in the self-consistent mean-field calculations. The quantitative agreement is even better for a smaller | ⃗ ∆|, which accounts for its decrease with increasing doping. The numerical results for x 1Q for E g > 0 and nonzero b p and b d are displayed in Fig. 2(c), which demonstrates that if the CDW survives at high enough doping, a 1Q phase universally appears for any ellipticity and gap.

Appendix D: Tight-binding model and mean-field theory

Here we describe the effective tight-binding model, the choice of its parameters, and the details of the self-consistent mean-field calculations.

Tight binding and model parameters

The realistic tight-binding model of TiSe 2 would consist of at least 7 orbitals per unit cell: the four {p x , p y } orbitals from the two Se atoms, which transform as E u representations, and the t 2g triplet of d orbitals {d xy , d yz , d zx } from the Ti (the approximately cubic environment of Ti makes it useful to refer to these orbitals as t 2g even though they are actually split in a singlet A 1g and a doublet E g because the overall crystal symmetry is trigonal). In 2D and in the absence of SOC, the low-energy physics is dominated by two degenerate hole pockets at Γ coming from the Se-p orbitals which transform as the Γ - 3 representation, and three electron pockets at the M points coming from the Ti-d orbitals which transform according to the M + 1 representation.

Here, we have considered instead an effective tight-binding model with the same space group P 3m1 (SG 164, PG D 3d ) which reproduces the band dispersion and eigenstate symmetry near the Fermi level with 3 orbitals per unit cell (formally, the model also has a m z symmetry, but it plays no role because all orbitals are located at z = 0). The 3 orbitals are located at the center of a triangular lattice. Two orbitals transform as E u , and mainly compose the valence bands, so they will be denoted as {p x , p y }. The other orbital is totally symmetric (A 1g ), and mainly composes the conduction band, so it will be denoted as d z 2 . The non-interacting model has 8 parameters: onsite energies ε p and ε d , hoppings up to third nearest neighbours t (n) dd for the d z 2 orbital, σ and π nearest-neighbour hoppings t ppσ and t ppπ for the p orbitals, and nearest-neighbour hopping t dp coupling the d and p orbitals. The non-interacting Hamiltonian is given by Eq. ( 6) of the main text. In this Hamiltonian we have neglected SOC. While this can quantitatively change the critical temperature and related quantities, we expect that the qualitative picture remains the same [START_REF] Hellgren | Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in TiSe2[END_REF].

We choose the Hamiltonian parameters by solving for the the non-interacting gap E g , the masses m v1 , m v2 of the two valence bands at Γ, the masses m cx , m cy of the conduction bands at M perpendicular and parallel to the ΓM direction, and the energy ε cΓ of the conduction band at Γ. The resulting system of equations would be underconstrained, so we choose to leave t dp as a free parameter. Since the valence bands are of p character while the conduction bands are d character, t dp only affects the band curvatures to second order with an energy denominator dominated by ε d -ε p , so its influence on the bands is almost negligible. Nevertheless, we choose to keep it finite because it breaks the artificial U (1) gauge symmetry representing the separate charge conservation in the conduction and valence bands. The subtle role of t dp in selecting a mean field solution is further explained below in Sec. D 2. (D7) Diagonalizing this matrix, we get eigenvalue -2V dp for the eigenvectors

Therefore, the ⃗ ∆ order parameter transforming as TRS even M - 1 and coupling the d and p orbitals is

Our mean-field decoupling allows for another three order parameters. One is the TRS odd M - 1 counterpart of ⃗ ∆, which corresponds to taking the imaginary part instead of the real part in Eq. (D8). In the presence of separate charge conservation for p and d orbitals, the time-reversal even and odd M - 1 order parameters would be degenerate [START_REF] Ganesh | Theoretical Prediction of a Time-Reversal Broken Chiral Superconducting Phase Driven by Electronic Correlations in a Single TiSe2 Layer[END_REF]. However, the presence of a small t dp hopping breaks their degeneracy in favor of the real part ⃗ ∆ in all cases. Indeed, the TRS odd M - 1 order parameter is identically zero in our calculations. The other two order parameters transform as TRS even and odd M - 2 , ⃗ Ψ ± = +V dp j 1 2 (e iMa•rj ⟨d † j p j ⟩ • Ma ± h.c.), and the interaction is repulsive for both. Therefore, our interacting tight-binding model only favors time-reversal even M - 1 instabilities, as required.

Mean-field theory: calculation details

We perform self-consistent mean-field calculations on the Hamiltonian of Eq. (D3). For that, we introduce a initial seed for the order parameters, and recompute them iteratively until convergence is reached, defined as |⟨c † c⟩ n+1 -⟨c † c⟩ n | < ϵ 0 . Since we work in the canonical ensemble, in each iteration we set the chemical potential to keep the number of particles fixed.

In order to find the ground state which minimizes the free energy, we initialize the self-consistent loop with different seeds: ⃗ ∆ = (∆, ∆, ∆), ⃗ ∆ = (∆, 0, 0), ⃗ ∆ = (0, ∆, ∆), and ⃗ ∆ = (∆ 1 , ∆ 2 , ∆ 2 ). To guarantee that each seed converges to the phase that we want, we first run the self-consistent loop by symmetry-restricting the mean-field parameters to have the symmetry they initially have. Once convergence has been reached, we run unrestricted self-consistent loops whose seeds are the solutions of the restricted loops.

Additional T -x phase diagrams

In this section we discuss phase diagrams for different gaps and interaction strengths. The main goal of this section is to provide further support to the claim that the existence of C 3 -breaking phases is qualitatively robust.

In our simplified effective model with a given initial gap E g , it is not possible to choose a value of the interaction that reproduces both the critical temperature T c and the critical doping x c for the disappearance of the CDW. Our aim is not to reproduce these values quantitatively (which would require including physics well beyond our model like electron-phonon coupling [START_REF] Zhou | Anharmonicity and Doping Melt the Charge Density Wave in Single-Layer TiSe2[END_REF], dopingdependent screening, the effect of the substrate [START_REF] Kolekar | Controlling the Charge Density Wave Transition in Monolayer TiSe2: Substrate and Doping Effects[END_REF][START_REF] Li | Enhancing charge-density-wave order in 1T-TiSe2 nanosheet by encapsulation with hexagonal boron nitride[END_REF], fluctuation corrections to mean field [START_REF] Kos | Gaussian fluctuation corrections to the BCS mean-field gap amplitude at zero temperature[END_REF] . . . ), but rather to show the generic existence of C 3 -breaking phases. Because of this, we choose interaction strengths to match the critical doping above which the commensurate CDW dies and present the phase diagrams as a function of T /T c , noting that T c generally changes for different values of E g . The critical doping we take is x c ∼ 0.06e/f.u., as seen experimentally [START_REF] Kogar | Observation of a charge density wave incommensuration near the superconducting dome in CuxTiSe2[END_REF][START_REF] Li | Controlling many-body states by the electric-field effect in a two-dimensional material[END_REF][START_REF] Watson | Strong-coupling charge density wave in monolayer TiSe2[END_REF][START_REF] Wu | Transport properties of single-crystalline CuxTiSe2 (0.015 ≤ x ≤ 0.110)[END_REF]. This is an approximate estimate, since at this doping there is a crossover to an incommensurate CDW, where the ground state consists of commensurate domains separated by domain walls [START_REF] Kogar | Observation of a charge density wave incommensuration near the superconducting dome in CuxTiSe2[END_REF][START_REF] Yan | Influence of domain walls in the incommensurate charge density wave state of cu intercalated 1T-TiSe2[END_REF][START_REF] Mcmillan | Landau theory of charge-density waves in transition-metal dichalcogenides[END_REF][START_REF] Mcmillan | Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition[END_REF]. Taking this into account, Fig. S2 shows how the T -x phase diagrams evolve from gap E g = +50meV to E g = -50meV. The most prominent feature is the shift of the 1Q stripe phase to higher doping for decreasing gap, until this phase disappears. This is consistent with the k • p predictions of Figs. 2(c,d), which show that the doping above which the 1Q solution is more stable than the 3Q increases with decreasing gap. Furthermore, while the 3Q nematic and the 1Q stripe phases share a boundary for positive gaps, they separate for negative gaps, clearly indicating that the origin of these two phases is different, which agrees with our theory. Finally, the relative extension of the 2Q phase with respect to the 3Q nematic phase increases with decreasing gap.