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The discovery of the Hat, an aperiodic monotile, has revealed novel mathematical aspects of
aperiodic tilings. However, the physics of particles propagating in such a setting remains unexplored.
In this work we study spectral and transport properties of a tight-binding model defined on the Hat.
We find that (i) the spectral function displays striking similarities to that of graphene, including
six-fold symmetry and Dirac-like features; (ii) unlike graphene, the monotile spectral function is
chiral, differing for its two enantiomers; (iii) the spectrum has a macroscopic number of degenerate
states at zero energy; (iv) when the magnetic flux per plaquette (ϕ) is half of the flux quantum,
zero-modes are found localized around the reflected ‘anti-hats’; and (v) its Hofstadter spectrum is
periodic in ϕ, unlike for other quasicrystals. Our work serves as a basis to study wave and electron
propagation in possible experimental realizations of the Hat, which we suggest.

Introduction — Quasicrystals [1] exhibit a rich vari-
ety of physical properties beyond those observed in pe-
riodic crystals [2–4]. While long-range ordered like crys-
tals, they lack periodicity, leading to novel electronic [5–
10], optical [11–13], vibrational [2, 4], or topological phe-
nomena [14–42]. Quasicrystalline materials derive their
exotic behaviors from the symmetries of their quasilat-
tices [43]. In two-dimensions (2D) quasilattice symme-
tries can often be described by aperiodic tilings of the
plane [2, 4, 44–46].

Recently Smith et al. [47, 48] discovered the first ex-
ample of a single, simply connected tile that tiles the
plane only aperiodically. Dubbed ‘The Hat’, the shape
admits a continuous range of deformations with the same
property. The Hat’s structure factor is six-fold symmet-
ric. As with other quasicrystals, the tiling can be under-
stood as a slice through a higher-dimensional periodic
lattice [49, 50]. The Hat quasilattice is chiral; it has two
enantiomers related by mirror symmetry. The tiles are
two mirrored images of the same tile (Fig. 1(a)): the hat,
colored white, and the anti-hat, colored blue. A related
tile, Tile(1,1), does not require its mirror image to tile
the plane aperiodically [48].

Does the Hat imprint any novel physical proper-
ties on propagating particles compared to other two-
dimensional aperiodic lattices? A fruitful strategy to
answer this question is to define a vertex tight-binding
model [5, 8, 16, 51] on the quasilattice, in which par-
ticles hop between nearest-neighbor vertices with equal
probability. Vertex models have a single energy scale,
the hopping, and hence conveniently isolate the effect
of the graph connectivity on particle motion. They re-
veal unique spectral properties of quasicrystals, such as
a multifractal spectrum [3, 8, 10, 16, 42, 52–55], char-
acteristic of critical disorder systems [56], or exact zero-

modes [5, 8, 51, 57, 58]. Vertex models on 2D quasilat-
tices differ from those of periodic 2D lattices by display-
ing an aperiodic Hofstadter spectrum as a function of an
applied perpendicular magnetic flux per plaquette [14–
17, 19, 21, 22, 40, 42].

In this work, we establish the spectral and transport
properties of the Hat through its vertex tight-binding
model. The momentum-resolved spectral function dis-
plays striking similarities with that of graphene, includ-
ing putative Dirac cones and six-fold symmetry. How-
ever, unlike graphene, the Hat’s spectral function is chi-
ral, and displays a predictable finite density of exact zero-
modes. Lastly, as the Hat is a monotile, its Hofstadter
spectrum is periodic in magnetic field flux, bypassing in-
commensurability effects of ‘polytiled’ quasicrystals [14–
17, 19, 21, 22, 40]. The Hofstadter bands carry a Chern
number that quantizes the two-terminal conductance in
units of e2/h. Hence, the physical properties of the Hat
introduce a remarkable new class of phenomena between
periodic crystals and aperiodic quasicrystals.

Spectral properties — The Hat quasilattice can be
generated using ‘inflation rules’ in which four basic
metatiles (combinations of hats), dubbed H, P, T and F,
divide up into smaller versions of the same tiles, which
are then inflated (rescaled) so all hats return to their
original size [47]. Here, we define a tight-binding model
on vertices of the second inflation of the H metatile, H2,
shown in Fig. 1(a). Unless stated otherwise, our results
apply to other tilings of the same hat tile. Each vertex
is either two-, three- or four-fold coordinated, separated
by three possible bond lengths. The average coordina-
tion number is ⟨z⟩ ∼ 2.31 and the average bond length is
⟨a⟩ = 1.37am, with am the shortest bond length.

Setting all hoppings equal defines the vertex Hamilto-
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Figure 1. Spectral properties of the vertex model Eq. (1) on the Hat. (a) The H2 system with 22 anti-hats (reflected images
of the hat tile) colored in blue. The inset shows a few hats of the system overlayed with a graphene approximant. (b) Density
of states of the vertex model Eq. (1) on the H2 tiling. (c) Momentum-resolved spectral function A(E,k) (enantiomer A+(E,k
in (e)) along the kx momentum direction, calculated using the Kernel Polynomial method [59]. The dispersion relation for the
lattice in (a) is overlaid in orange, with parameters (ag, t1, t2, ε0) = (2am/

√
3, 0.82,−0.025,−0.2). (d) A(E,k) as a function of

momentum k = (kx, ky) at E = −0.2. (e) The difference A+(E,k)−A−(E,k) between the spectral function A+(E,k) of the
system in (a) and the spectral function A−(E,k) of its reflected image with respect to y-axis.

nian [5, 8, 51]

Hhat = −t
∑

⟨ij⟩
c†i cj + h.c. (1)

The sum runs over all pairs of neighboring sites and the
operators c†i and ci create and annihilate a particle on
site i. We choose t = 1 without loss of generality.

The density of states (DOS) is shown in Fig. 1(b). As
the tiling is non-bipartite the spectrum is not symmetric
around zero energy [5]. The energy minimum Em ≈ 2.4 is
well captured by the average coordination number ⟨z⟩ [5,
22]. Like other quasicrystals [10, 12], the Hat exhibits a
fractal DOS with a multitude of van Hove singularities.

The probability of finding a state at energy E and
momentum k is determined by the spectral function,
A(E,k) = ⟨k| δ(Hhat − E) |k⟩, shown in Fig. 1(c) and
(d) for H2. This function is well defined even without
translational invariance [60–66] as it measures the over-
lap of the eigenstates with plane-waves of well-defined
momentum k, ⟨r|k⟩ = 1√

N
eιk·r, with ι2 = −1, N the

number of vertices and r = (x, y) their positions. The
spectral function has been measured using angle-resolved
photoemission experiments in quasicrystals [64–66].

The spectral function shows, close to zero energy, Dirac
node-like features reminiscent of graphene’s band struc-
ture. To quantify this similarity we define a periodic
hexagonal lattice that we call the graphene approximant.
The graphene lattice constant ag = 2am/

√
3 is chosen

such that the associated honeycomb lattice (inset of Fig.
1(a)) captures many (≈ 53%) of the Hat’s vertices. The
graphene approximant’s dispersion and periodicity cap-
ture several features ofA(E,k) (orange lines in Figs. 1(c),
(d)). The approximant’s dispersion relation is [67]

E±(k) = ±t1
√

3 + f(k)− t2f(k) + ε0, (2)

where f(k) = 2 cos
(√

3kx
)
+ 4 cos

(√
3kx/2

)
cos(3ky/2),

t1 and t2 are first and second nearest-neighboring hop-
ping amplitudes and ϵ0 is the energy offset. Here, we
use (ag, t1, t2, ε0) = (2am/

√
3, 0.82,−0.025,−0.2). A

nonzero t2 and ϵ0 mimic the Hat spectrum’s asymme-
try. The approximant’s Brillouin zone is represented with
orange lines in Fig. 1(d). The zone corners match the lo-
cation of the Dirac node-like features close to E = −0.2.
The Hat’s C6 symmetry [49] is apparent in Fig. 1(d).
This analysis confirms a quantitative similarity between
the spectral properties of graphene and the Hat, rooted
in the large number of vertices they share.

Unlike graphene, we can define an enantiomer of the
Hat lattice by applying a reflection operator. The dif-
ference between the two corresponding enantiomorphic
spectral functions A+(ω,k)−A−(ω,k) reveals that chi-
ral properties are spread across the quasi-Brillouin zone
(Fig. 1(e)).

Zero-energy states — Another striking feature dis-
similar to graphene is the existence of a finite density of
zero-energy states (Fig. 2(a)). We observe that the num-
ber of zero-modes can increase or decrease upon adding
tiles (see the Supplemental Material (SM) [69] for some
simple examples). Similar zero-modes have been found
in numerous quasilattices, including the Penrose tiling [5,
57, 70, 71], the Ammann-Beenker tiling [58, 72, 73], and
quasicrystalline graphene bilayers [74].

In Fig. 2(b) we plot the local density of states (LDOS)
at zero energy corresponding to H2, Fig. 1(a). While
some of the zero-mode weight can be explained as aris-
ing from zero-modes of each underlying metatile of the
previous generation (colored areas in Fig. 2(b)), we ob-
serve that the finite weight on T1 within H2, Fig. 2(b),
is absent in a standalone T1 quasicrystallite shown in
Fig. 2(c).

However, all of our zero-modes can be understood in
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Figure 2. Zero-modes under 0- and π-flux. (a) Low-energy
spectrum of the Hat lattice without flux. The eight exact zero-
modes are colored in red. (b) The associated local density of
states (LDOS) of these zero-modes. Colors highlight previous
inflation generations composing the H2 quasilattice: T1, P1,
F1 and H1. (c) The T1 quasicrystallite has no zero-modes.
(d) The T1 quasicrystallite without the rightmost hat, has a
single zero-mode. The overlaid zero-mode amplitudes form
the Sutherland loop sequence {0, 1, 0,−1}m[68] of length 4m,
with m ∈ Z. (e) The low-energy spectrum of the Hat system
under π-flux. The 22 exact zero-modes are colored in red. (f)
Corresponding zero-energy LDOS, pinned to anti-hats. (g) A
zoom-in of the wave-function corresponding to the eigenstate
530. Because ϕ/ϕ0 = 1/2, the Sutherland loop is modified to
have one defect per anti-hat.

terms of the graph connectivity. The tight-binding model
defines the adjacency matrix of the corresponding undi-
rected graph; the zero-modes then form an orthogonal
basis for its null space. A basis can always be found in
which each (un-normalized) zero-mode has integer am-
plitudes on all vertices (see SM [69] for proof). As in
the Ammann-Beenker tiling, these modes are fragile in
the sense that they rely on equal hoppings to remain at
strictly zero energy [71, 73].

For a nearest-neighbor vertex model, like Eq. (1), the
zero energy condition implies that for every site i, the
sum of the amplitudes on all neighbors j of i must vanish:∑

j Ψj = 0 [68]. In the SM [69] we prove that whenever
all hoppings are rational (equal to one here), all energy
eigenstates corresponding to integer energies (equal to
zero here) can be chosen to have integer amplitudes on
all vertices, before normalization. In the Hat tiling the
simplest zero-modes take the form of cycles of length 4m,
with m integer. Here the amplitudes around the cycle
can be taken to be the repeated sequence {0, 1, 0,−1}m
whenever vertices from the rest of the graph connect only
to cycle vertices of zero amplitude or connect to pairs of
vertices with opposite amplitude. This form is a gener-
alization of one identified by Sutherland [5, 68]; we term

it a Sutherland loop.

In Figs. 2(c) and (d) we show two quasicrystallites that
differ by one hat. Diagonalizing, we find no zero-modes in
(c) and one zero-mode in (d). Removing the extra hat al-
lows for a 20-vertex Sutherland loop shown in Fig. 2(d).
Larger quasicrystallites contain integer-amplitude zero-
modes not of the Sutherland loop form. In general, all
integer-amplitude zero-modes of a given quasicrystallite
can be exactly enumerated by finding the Hermite nor-
mal form of the adjacency matrix (see SM [69]) [75, 76].

π-flux zero-modes — The shortest loops, which cir-
cle around a single tile, cannot be Sutherland loops as
they have a length of 13 or 14. However, anti-hats, the
enantiomorphic minority tiles which have two four-fold
coordinated sites (blue hats in Fig. 1(a)), can support a
zero-mode if we allow a sign flip of one of the hoppings
around the anti-hat. This is equivalent to threading a
magnetic flux of π per anti-hat, as the electron wave-
function picks up a minus sign as it goes around due to
the Aharonov-Bohm effect. As all the hats and anti-hats
have the same area, this suggests that applying a perpen-
dicular magnetic field with exactly π-flux per plaquette
should generate one zero-mode per anti-hat. In fact, we
find that these are the only zero-modes in this setting.

To model a perpendicular magnetic field B we intro-
duce a Peierls phase by changing the hopping from site
j to site i as t → t exp(−ιπ ϕ

ϕ0
(xi − xj)(yi + yj)/A),

where A = 8
√
3a2m is the hat area and ϕ0 = h/e is the

magnetic flux quantum. When ϕ/ϕ0 = 1/2 the hoppings
can be chosen to be real, with every hat tile having an
odd number of negative bonds compared to Eq. (1). The
spectrum close to E = 0 is shown in Fig. 2(e). For all
systems inflated from primitive metatiles H0, T0, P0 and
F0 that we have checked, we observe that the number of
zero-modes equals the number of anti-hats (see SM [69]).
Their LDOS is localized exactly at the anti-hats, as ex-
emplified by Fig. 2(f). Because ϕ/ϕ0 = 1/2, the wave-
function amplitude has exactly one defect per anti-hat,
compared to the Sutherland loop sequence, as shown in
Fig. 2(g).

Hofstadter spectrum — In Fig. 3(a) we show the bulk
spectrum of H3, the third inflation of the H metatile,
as a function of ϕ/ϕ0. To isolate the bulk spectrum
we exclude states whose weight inside the yellow line in
Fig. 3(b) is smaller than their weight outside it.

With our normalization, the spectrum is periodic in
the interval ϕ/ϕ0 ∈ [0, 1). This is a special feature of
monotiles, compared to other quasicrystals: as there is
only one type of plaquette there is only one area A to
normalize the flux, and hence the spectrum is periodic.
A typical quasicrystal spectrum is aperiodic as a function
of ϕ/ϕ0 [15, 32, 40, 77], unless one considers commensu-
rate quasicrystals composed of tiles with commensurate
areas [21, 22].

When the magnetic length lB ≪ am, the spectrum
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splits into Landau levels near the bottom of the spectrum
(E ∼ −2.4), and disperses linearly with B [22]. In the
Hofstadter regime lB ≫ am, the spectrum is split into
Hofstadter bands separated by gaps. If the Fermi energy
EF is placed within these gaps, we expect the system
to display topological edge states and a quantized Hall
conductance [78, 79].

The topological properties of aperiodic 2D systems
without time-reversal symmetry are captured by a quan-
tized bulk average C of the local Chern marker Cr [80].
Mathematically, C = 1

Ab

∑
r∈Ab

Cr, with Ab the area of a

bulk region highlighted in Fig. 3(b), Cr = ⟨r| Ĉ |r⟩ and

Ĉ = 2πι
(
P̂X̂Q̂Ŷ P̂ − P̂Ŷ Q̂X̂P̂

)
. (3)

Here P̂ =
∑

E<EF
|Ψ⟩ ⟨Ψ| is the projector onto occupied

states, Q̂ = 1−P̂, and X̂ and Ŷ are position operators. In
a topological phase C ∈ Z and coincides with the Chern
number for periodic systems [80].

Fig. 3(b) shows Cr for EF = −1.58 and ϕ/ϕ0 = 0.2;
C ≈ −1 in the bulk, as expected for a topologically non-
trivial phase [80]. The bulk value of C in the interval
ϕ/ϕ0 ∈ [0, 1/2] is shown in Fig. 3(c). Regions with non-
trivial Chern numbers match the positions of bulk gaps
in Fig. 3(a), confirming the presence of topological edge
states.

The physical imprint of topological edge states is a
quantized two-terminal conductance G, in units of G0 =
e2/h. To confirm this, we attach two leads to two
boundary regions of H3, see Fig. 3(b). These leads con-
sist of decoupled waveguides of dispersion −2 cos kz, ori-
ented along the z -direction and placed such that each
waveguide probes a single site of the Hat quasilattice.
The two-terminal conductance G is then defined in the
Landauer-Buttiker formalism [81] as G = G0Tr[ττ

†],
where G0 = e2/h is the conductance quantum and τ
is the transmission matrix between two leads calculated
using the Kwant package [82].

The conductance map as a function of ϕ/ϕ0 and E
is shown in Fig. 3(d). In regions with non-zero density
of bulk states, the conductance exhibits fluctuations ob-
served in topologically trivial quasicrystals [3]. However,
inside the bulk gaps with nontrivial C = ±1, G = G0,
stemming from a topological boundary state. Finite
size effects are visible in smaller gaps with larger C, see
Fig. 3(c), where G deviates from quantization.

Physical properties of Tile(1,1) — To conclude, we
comment on the physical properties of a vertex model
of Tile(1,1) [47, 48]. With a geometric modification,
Tile(1,1) tiles the plane only aperiodically without its
mirror image. This modified form is called ‘the Spec-
tre’; since we are interested only in graph connectivity
we use the names Tile(1,1) and Spectre interchangeably.
Tile(1,1) contains special tiles similar to the anti-hats.
Here they appear π/6 rotated from the other tiles, which

Figure 3. Hofstadter spectrum and quantized conductance.
(a) The bulk Hofstadter spectrum Eq. (1) calculated for the
H3 quasilattice near the band bottom. (b) The local Chern
marker Cr calculated for the H3 quasilattice (black) at E =
−1.58 and ϕ/ϕ0 = 0.2, i.e. for a state located inside the bulk
gap of panel (a). The yellow dashed line delimits the bulk
area Ab used to produce panels (a) and (c). Inside Ab, the
marker averages to C = −1.03. Thick black lines on the edges
denote sites where leads are attached. (c) C as a function of E
and ϕ/ϕ0. Bulk gap regions of panel (a) have nontrivial Chern
numbers. (d) Corresponding two-terminal conductance map.
Where |C| = 1, the conductance is quantized to G = G0 =
e2/h, confirming the role of topological boundary modes in
transport.

appear only π/3 rotated from one another. As with the
anti-hats, these tiles always have two four-fold coordi-
nated vertices. We term them anti-spectres. As Tile(1,1)
is a member of the continuous family of tiles connected
to the Hat it is pertinent to ask which properties it main-
tains.

Unlike the Hat, the vertices of Tile(1,1) do not fit
to a periodic hexagonal lattice. The graphene-like fea-
tures are therefore washed out. However, the quasilat-
tice remains chiral, so it remains true that A+(ω,k) −
A−(ω,k) ̸= 0. Tile(1,1) also displays strictly localized
zero-modes that have a similar origin to those in the Hat.
In the presence of a π-flux, each anti-spectre again local-
izes a zero-mode. In all the cases we have checked, these
again exhaust all zero-modes. The Hofstadter spectrum
is again periodic (as the Spectre is a monotile), and dis-
plays topological gaps with quantized conductance.

Conclusions — Particles hopping on the Hat and
Spectre monotiles present physical properties that set
them aside from previously known 2D crystals and qua-
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sicrystals. The Hat displays graphene-like features in its
spectral function, notably putative Dirac cones and six-
fold symmetry. Their origin is intrinsic, different from
quasicrystalline graphene bilayers [39, 83, 84] that in-
herit these features from the underlying graphene layers.
In the Hat, the intrinsic Dirac-cone-like features resem-
ble those found in graphene in the presence of a small
density of topological defects [85].

In the near term, a vertex model of the tiling may be
realized in metamaterials, where complex phases mimick-
ing magnetic fields can be engineered [86]. Quasicrystals
have been realized in photonic metamaterials [18, 86–
88], polaritonic systems [89], electrical circuits [90], mi-
crowave networks [91], and acoustic [92] and mechani-
cal [93] metamaterials.

While no material has yet been discovered with the
symmetries of the Hat it would seem likely that nature
would realize such an elegant construction, just as Pen-
rose tilings were discovered to describe the surfaces of
icosahedral quasicrystals [94–97]. A promising solid-state
platform is the engineered adsorption of atoms to con-
strain scattering of surface states. CO molecules on met-
als have been used to construct artificial honeycomb [98]
and fractal [99] lattices. 2D lattices of Shiba states caused
by magnetic ad-atoms on superconductors serve to engi-
neer topological phases [100–102].

Chiral crystals display richer physical responses than
achiral crystals [103]. The Hat tiling should share some of
these features with their chiral crystalline counterparts,
including magnetochiral anisotropy [104] and optical gy-
rotropy [105–108]. Additionally, adding defects or parti-
cle interactions to vertex-monotile models can generalize
other works on interacting quasicrystals [32, 72, 109, 110].
We leave the study of these effects for subsequent work.
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I. FURTHER DETAILS ON ZERO-MODES

A. Zero-modes at zero magnetic field

In the main text we have discussed the conditions that
the wave function must satisfy to be a zero-mode at
ϕ/ϕ0 = 0. In Table I we list the number of zero-modes
for the different inflations of the primitive metatiles
(H0,T0,P0 and F0).

Inflation H T P F

0 0 0 1 1

1 0 0 0 0

2 8 0 1 1

3 51 8 27 32

Table I. Number of exact zero-modes for each generation of
inflation rules in the case of ϕ/ϕ0 = 0.

For completeness, we comment on the expected robust-
ness of these zero-modes compared to other quasicrys-
talline zero-modes. The zero-modes found on the Pen-
rose tiling are topologically protected, in the sense that
they survive arbitrary changes to the hopping integrals
provided these remain nonzero. This is a consequence
of Lieb’s theorem for bipartite graphs [1], and can be
understood in terms of dimer matchings [2–4]. In the
Ammann-Beenker tiling the zero-modes are fragile: they
receive no such protection, and changing the hoppings
breaks the local symmetries of the graph and lifts the
degeneracy of these modes [4]. As the Hat tiling is non-
bipartite, Lieb’s theorem does not apply, and the zero-
modes are expected to be fragile.

B. Zero-modes at π-flux

Introducing a π-flux per plaquette, we have observed
that the number of modes with energies smaller than
5 × 10−5 matches the number of anti-hats in the Hat
quasicrystallites of generations 1, 2 and 3, as shown in
Table II.

An exception to this observation are the P and F Hat
tilings in generation 0, that consist of the same arrange-

Figure S1. Properties of a zero-mode wave-function Ψzm in
case of the P0 Hat. Panels (a) and (b) show |Ψzm|2 and
Ψzm, respectively, in real-space for the case of 0-flux. Panels
(c) and (d) show |Ψzm|2 and Ψzm, respectively, in real-space
for the case of π- flux. In all panels, black lines represent
positive hoppings and red lines negative hoppings.

ment of hat tiles. For this reason, we discuss only P0
Hat tiling in the following. It has no anti-hats but hosts
a single zero-mode. This is surprising since none of the
tiles in these Hats have 2m+2 vertices, required to host
a zero-mode in presence of a π-flux. We observe that
these zero-modes are localized at the outer edges of re-
spective systems and their LDOS and Ψzm is identical
to the LDOS and Ψzm of zero-modes in the case of 0-
flux, see Fig. S1. This suggests that zero-modes in both
cases (0- and π-flux) fulfill the same set of constraints.
We can understand this by noting that it is possible to
find a gauge in which the π-flux is implemented via a sin-
gle, negative hopping amplitude between vertices that are
shared between hats that form P0 Hat tiling. One pos-
sible such configuration of hopping amplitudes is shown
in Figs. S1 (c-d). Therefore, the hopping amplitudes be-
tween vertices belonging to the boundaries of the sample
can always be considered identical. Since there are 4m
(m = 5) such vertices, the system can host a zero-mode
under the same conditions it hosts a zero-mode in case
of 0-flux.

H T P F

Inflation AH ZM AH ZM AH ZM AH ZM

0 1 1 0 0 0 1 0 1

1 3 3 1 1 2 2 2 2

2 22 22 3 3 12 12 14 14

3 147 147 8 8 84 84 98 98

Table II. Number of anti-hats (AH) and exact zero-modes
(ZM) for each generation of inflation rules for magnetic flux
ϕ/ϕ0 = 1/2.
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Another exception we have observed is in quasicrys-
tallites with anti-hats at the boundary (which are there-
fore not generated by inflation). In these cases there are
fewer zero-modes than anti-hats. In such cases the en-
vironment around the boundary anti-hats can frustrate
the zero-mode.

II. ZERO-MODE REAL-SPACE STRUCTURE
AND COUNTING

The electronic zero-modes in the tight-binding model
are solutions to the equation

H |ψzm⟩ = 0, (1)

where H is the tight-binding Hamiltonian described by
Eq. (1) in the main text. This Hamiltonian defines the
adjacency matrix of the undirected graph formed by the
union of hats. The number of zero-modes is then equal to
the rank deficiency of H (the number of columns minus
the number of linearly independent columns).

In the 0-flux case it is possible to find a basis for the
(un-normalized) zero-modes in which the amplitude on
each vertex is an integer, and many vertices have zero
amplitude. These are a generalisation of the strictly lo-
calised zero-modes of Sutherland [5]. To illustrate this,
we study several small quasicrystallites shown in Fig. S2.
If a quasicrystallite system supports a zero-mode, we
then plot the corresponding amplitudes of |ψzm⟩ in real-
space. From Figs. S2(a-b), we see that whenever the
graph contains a cycle of length 4m, with m integer, the
amplitudes around the cycle can be taken to be the re-
peated sequence {0, 1, 0,−1}m and a system supports a
zero-mode. As illustrated in Figs. S2(c-e), these zero-
modes are preserved once additional hats are added to
the quasicrystallite, provided that vertices from the rest
of the graph connect only to cycle vertices of zero am-
plitude. This implies that the remaining graph needs to
connect to vertices separated by even distances along the
cycle, as these vertices can be chosen to have weight zero
without implying nonzero weights off the cycle.

There may also be other integer-amplitude zero-modes

not of the form just stated, see Figs. S2(f-h). This is be-
cause, in general, it is possible to find integer-amplitude
zero-modes by writing H in its Hermite normal form N :

N = UH, (2)

where N contains one column of zeroes for each zero-
mode (there are various further restrictions on the form
of N which render the decomposition unique) [6]. The
integer unimodular matrix U can be calculated efficiently
using Gaussian elimination. For each zero column of N ,
the corresponding column in U contains the amplitudes
of the wave-function on each graph vertex. For example,
the graph of P2 metatile shown in Fig. S2(h) supports a
zero-mode with wave-function amplitudes that range in
magnitude from 0 to 6. Since there is only one mode,
there is no possibility of decomposing it into a different
basis with smaller amplitudes.
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Figure S2. Amplitudes of the zero-mode wavefunction |ψzm⟩ for different quasicrystallites, including the P2 Hat tilling in panel
(h).


