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In chiral crystals crystalline symmetries can protect multifold fermions, pseudo-relativistic masless
quasiparticles that have no high-energy counterparts. Their realization in transition metal mono-
silicides has exemplified their intriguing physical properties, such as long Fermi arc surface states
and unusual optical responses. Recent experimental studies on amorphous transition metal mono-
silicides suggest that topological properties may survive beyond crystals, even though theoretical
evidence is lacking. Motivated by these findings, we theoretically study a tight-binding model
of amorphous transition metal mono-silicides. We find that topological properties of multifold
fermions survive in the presence of structural disorder that converts the semimetal into a diffusive
metal. We characterize this topological diffusive metal phase with the spectral localizer, a real-
space topological indicator that we show can signal multifold fermions. Our findings showcase how
topological properties can survive in disordered metals, and how they can be uncovered using the
spectral localizer.

Introduction — Crystalline topological metals host
quasiparticles classified according to the symmetries re-
quired to protect them. For example, Weyl semimet-
als require no symmetries to realize Weyl quasiparti-
cles, which are spin-half, gapless low-energy quasiparti-
cles governed by the Weyl equation [1]. Weyl bands dis-
perse linearly around a two-band crossing point, accom-
panied by a quantized flux of Berry curvature, known
as the monopole charge. The absence of symmetry re-
quirements endowsWeyl points with a relative robustness
against disorder [2–20], explaining why they have been
predicted to survive even in non-crystalline lattices [21].

Higher-spin generalizations of Weyl quasiparticles
known as multifold fermions, predicted and observed in
chiral crystals [22–31], seem more delicate. Their bands
disperse linearly around a multi-band crossing points
and can have an associated monopole charge. However,
in contrast to Weyl quasiparticles, they require crys-
talline symmetries to ensure their robustness. The ef-
fect of disorder on multifold semimetals is much less ex-
plored [32, 33], and it seems paradoxical that topology
can survive the absence of long-range lattice order.

In this work we investigate to what extent the above
expectation holds in a non-crystalline amorphous model.
Our main result is that topological properties of multi-
fold fermions can survive the absence of crystal symme-
try. Recently, amorphous insulators have been predicted
and observed to display topological phases, owing to the
finite energy scale endowed by the gap [34–47]. Indeed,
models of amorphous Chern insulators [34–36, 38–40],
quantum spin-Hall insulators [41–44] and 3D topolog-
ical insulators [34, 45, 46], demonstrate that topology
survives the amorphicity, and can even be induced by
it [43]. Moreover, average crystalline symmetries can also
protect amorphous topological states, provided that the
disorder strength is smaller than the band gap [48–52].

In turn, the survival of topology in amorphous met-
als is much more challenging to address due to the ab-

sence of a gap. Methods to detect metallic topology in
real-space are scarce, especially in the presence of time-
reversal symmetry where local Chern markers [53, 54] are
identically zero.

To make progress, here we amorphisize a known crys-
talline model of a chiral crystal in space group 198 [24,
27, 55, 56]. Materials in this space group, such as the
transition metal mono-silicides RhSi or CoSi, lack inver-
sion and mirror symmetries yet exhibit nonsymmorphic
symmetries. These materials manifest exotic physical
properties such as multifold fermions at the Fermi level,
long Fermi arcs surface states [55], a quantized circular
photogalvanic effect [31, 55, 57–60] and unusual magneto-
transport features [23, 55, 61, 62]. Moreover, a recent ex-
perimental study on amorphous CoSi (a-CoSi) has found
a range of intriguing magneto-transport properties [63].

Using the recently introduced spectral localizer [64–
69], we find that multifold fermions enter a topological
diffusive phase in the presence of moderate structural dis-
order. We find that localizer in-gap modes can be traced
back to the existence of multifold fermions and coexist-
ing with spectral properties characteristic of a diffusive
metal [13]. Upon increasing disorder, the localizer in-gap
modes are lost, leaving behind a trivial diffusive metal
that eventually localizes into a trivial Anderson insula-
tor. Using the spectral localizer to define topological dif-
fusive metals can be extended to any symmetry class,
and hence is the main result of this work (see Fig. 1a).

Model Hamiltonian — Amorphous systems lack long-
range order, but they display short-range ordering, dic-
tated by the local chemistry of the elements [70]. This
implies the existence of preferred bond lengths and an-
gles peaked around the crystalline values [71–73]. Hence,
we first revisit the crystalline model of RhSi and CoSi, in
space group 198, on which we base our amorphous model.
This space group has three non-intersecting twofold screw
symmetries s2x,y,z and a diagonal cubic threefold rota-
tion C3,111. The spin-orbit coupling in RhSi [55] and
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CoSi [74] is weak (tens of meV), and is neglected in
our simulations. In this case, the band-structure near
the Fermi level is captured by a tight-binding Hamilto-
nian with four s-type orbitals (A, B, C, D) positioned at
(0, 0, 0), (a2 , 0,

a
2 ), (

a
2 ,

a
2 , 0) and (0, a

2 ,
a
2 ), see Fig. 1b [55].

In the following, we measure all distances in units of
a. Nearest-neighboring orbitals are connected by inter-
orbital hoppings while second nearest-neighbors are con-
nected via intra-orbital hoppings. Fig. 1c, illustrates the
inter-orbital hoppings within the unit cell, which take two
values (v1 ± vp)/4, depending on the bond orientation.
The amplitude v2/2 of intra-orbital hoppings is indepen-
dent of the bond orientation. The Bloch Hamiltonian is
discussed further in the Supp. Mat. (SM) [75].

It is convenient to consider two parameter regimes, ex-
pressed in eV: (1) when only vp = −0.762 is non-zero,
and (2) when v1 = 0.55, v2 = 0.16, vp = −0.762 eV.
The hopping amplitudes in regime (2) are chosen such
that the crystalline tight-binding Hamiltonian [75] repro-
duces well the density-functional theory calculated band-
structure of RhSi near the Fermi level [55]. Hence, in
the following we refer to regime (2) as a-RhSi regime.
The red curves in Figs. 1d,e show bulk spectra for the
two regimes, respectively. In regime (1), the spectrum is
doubly degenerate in the entire Brillouin zone and fea-
tures two double-Weyl fermions, one at Γ and one at
the R point, occurring at the same energy E = 0. In
the a-RhSi regime, v1, v2 turn the double-Weyl at Γ into
a threefold fermion, energetically shifted with respect to
the double-Weyl fermion at the R point. In both regimes,
the crossings at Γ and R have monopole charges C = 2,
and −2, respectively.

We create the amorphous lattice by displacing every
site n (representing a single orbital) of crystalline RhSi by
δrn = (δxn, δyn, δzn) drawn from a Gaussian distribution

D(δrn) =
1

2πσ2
exp

[
−|δrn|2

2σ2

]
. (1)

The variance σ2 is typically proportional to the quench-
ing temperature to form the amorphous solid, σ2 ∝
kBT [43]. To avoid artificial clustering of sites, we im-
pose a minimal distance of dmin = 0.4 [48]. The possi-
ble hoppings ṽα (α = 1, 2, p) between sites at positions
ri = (xi, yi, zi) and rf = (xf , yf , zf ) are determined from

ṽα = ṽα(d)ṽα(θ, ϕ) exp

[
1− d

d0α

]
Θ(dc − d), (2)

in spherical coordinates (d, θ, ϕ) with d = |rf − ri|.
Here, d0α depends on whether the hopping is inter-orbital,
where d01 = d0p = 1/

√
2, or intra-orbital, where d02 = 1.

Since the intra-orbital hopping v2/2 of crystalline
RhSi is independent of bond orientation [75], we take
ṽ2(θ, ϕ) = 1 and ṽ2(d) = v2/d. The inter-orbital hop-
ping of crystalline RhSi has amplitudes (v1 ± vp)/4, see
Fig. 1c, where the hopping vp is direction dependent, un-
like v1. Hence, we take ṽ1(θ, ϕ) = 1, ṽ1(d) = v1/

√
2d and

Figure 1. (a) Schematic phase diagram found in this work,
including the multifold semimetal (MSM), topological diffu-
sive metal (TDM), the diffusive metal (DM) and the Anderson
insulator (AI) phases, as a function of the disorder variance
σ. The TDM is signaled by in-gap states of the localizer as
well as a finite DOS at EF , typical of a diffusive metal, un-
til σTDM, defined in Fig. 4. σl and σAI delimit the crossover
between the diffusive metal and the Anderson insulator and
are defined in Fig. 3. (b) Orbitals of the crystalline unit cell.

(c) Shows the nearest-neighbor inter-orbital hoppings
v1±vp

4
represented by solid and dashed lines. The color denotes
hoppings between different set of orbitals: red for A-B/C-D,
blue for A-D/B-C and green for A-C/B-D. (d) Band-structure
for parameter regime (1) with v1 = v2 = 0, vp = −0.762,
(e) Band-structure for parameter regime (2), a-RhSi, with
v1 = 0.55, v2 = 0.16, vp = −0.762. Solid and dashed curves
correspond to maximum hopping radii dc = 1.01, 1.5, respec-
tively. In (c), the spectrum is doubly degenerate with two
double-Weyl fermions occurring at Γ and R points. In (d),
a-RhSi regime, we see a threefold fermion at Γ point and a
double-Weyl fermion at R point.

ṽp(d) = vp/d. In contrast, the hopping ṽp(θ, ϕ) depends
on the type of orbitals that form the bond as detailed in
the SM [75]. The ṽα recover the original tight-binding
Hamiltonian in the crystalline limit when σ → 0 [55, 75].

The step function Θ in (2) ensures that the maximum
distance between two sites is dc, whose effect is shown in
Figs. 1c,d. Notably for a-RhSi longer range hoppings re-
duce the energy difference between threefold and double
Weyl fermions. In our simulations, dc = 1.5 which allows
to account for longer-range hoppings (see SM [75]).

Lastly, to account for possible potential disorder [48],
we add random onsite potentials drawn from the Gaus-
sian distribution Eq. (1). Thus, our model accounts for
all types of disorder expected in amorphous solids: on-
site, hopping and structural disorder.

Spectral properties – The density of states (DOS) char-
acterizes disordered topological semimetals [15], and can
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Figure 2. (a) ρ(E) vs E as a function of σ. Dashed and
dotted lines represent fit functions αE2 and α + β|E|, re-
spectively. (b) The averaged zero-energy DOS ρ̄0 as a func-
tion of disorder strength σ; ρ0 becomes nonzero at σ ≈ 0.1.
(c) ρ̄(2)(0) vs σ peaks around σc = 0.08 independent of
system size (L = 12, 20) and KPM order NC . We define

ρ̄(2)(0) =
∑Ndis

λ=1 (ρ
λ)(2)(0) where (ρλ)(2)(0) is estimated from

a fit ρλ(E) = ρλ0+(ρλ)(2)(0)E2 in the energy range (−0.2, 0.2)
for independent disorder realizations λ.

be defined as

ρλ(E) =
1

V

∑

n

δ(E − En), (3)

where λ labels a disorder realization, n runs over all states
of the system, and V = 4L3 for a cubic system with L
unit cells in each direction. For every disorder realiza-
tion, the DOS is calculated using the numerically effi-
cient kernel polynomial method (KPM), which relies on
a Chebyshev polynomial expansion up to order NC [76].
In the following, we study the disorder averaged DOS
ρ̄(E) = 1

Ndis

∑Ndis

λ=1 ρ
λ(E) with Ndis = 16.

We focus first on regime (1) that has two double Weyl
fermions at E = 0 in the crystalline limit. Figs. 2a and
b show ρ̄(E) for different disorder strengths and ρ̄0 ≡
ρ̄(E = 0) for different KPM orders NC , respectively. We
see that for σ ⪅ 0.04, ρ̄(E) → |E|2, as in periodic systems
with (double-) Weyl fermions at the same energy. Once
the disorder strength is increased up to σ ≈ 0.07, ρ̄ ∝ |E|
close to E = 0. Additionally, at σ = 0.1 the DOS at
E = 0 becomes nonzero. Fig. 2b reveals that ρ̄0 ̸= 0
for σ ≥ 0.1 signaling that the system becomes a diffusive
metal, a phase with constant DOS in a range of energies.

This behavior suggests a putative quantum critical
point (QCP) at a certain σc, where the semimetal phase
is replaced by a diffusive metal [13, 16]. To study this

phase transition in more detail, Fig. 2c shows ρ̄
(2)
0 , ex-

tracted from a low energy fit ρ̄(E) = ρ̄0 + ρ̄
(2)
0 E2 to the

DOS [13]. It remains finite with a maximum at σc ≈ 0.08,
that shifts little with increasing system size or the order
of the KPM expansion. This non-divergent behavior sig-
nals that the putative QCP is avoided [13].

Avoiding such QCP is enabled by the presence of
statistically-rare states [13]. Rare states are low-energy
eigenstates that are quasi-bounded to the real space re-

gions with uncharacteristically large potential strengths
that are statistically rare. In the thermodynamic limit,
these statistically rare events are likely to occur for any
nonzero σ. As a result, ρ̄0 becomes exponentially small
in disorder strength but nonzero, implying a crossover
from semimetal to diffusive metal phase instead of a per-
turbative transition [13, 16], see SM [75] for more details.

Importantly, it is the vanishing DOS at the band cross-
ing that makes rare-states dominate the physics of dis-
ordered Weyl semimetals. The DOS vanishes at E = 0
for parameter regime (1), where two Weyl nodes coexist
at the Fermi level, but not for the a-RhSi regime (2).
In the latter, disorder can couple states without energy
penalty [77], turning the a-RhSi regime into a diffusive
metal for any infinitesimal amount of disorder.

Anderson localization – While eigenstates of diffusive
metals are extended, sufficiently strong disorder will turn
metallic systems into Anderson insulators with localized
eigenstates [15]. Localized states interact weakly, thus
producing an uncorrelated energy spectrum that obeys a
Poisson distribution function [78]. On the metallic side,
the overlap of delocalized states leads to the repulsion of
associated energy levels. For spinless and time-reversal
symmetric systems, like a-RhSi, such a spectrum falls
under the Gaussian Orthogonal Ensemble (GOE) of ran-
dom matrices [79].

To distinguish between metallic and insulating
regimes, we calculate the adjacent energy level spacing
ratio and the inverse participation ratio (IPR) of states
at the Fermi level EF . The adjacent level spacing ratio
is defined as

r =
1

NE − 2

∑

n

min(En,n−1, En+1,n)

max(En,n−1, En+1,n)
, (4)

where En,m = En − Em and the energy levels are ar-
ranged such that En > En−1. The sum is performed over
NE energy levels within the interval [EF−∆E,EF+∆E].
The GOE and Poisson spectra have rGOE ≈ 0.54 and
rP ≈ 0.39, respectively [80]. To quantify the localization
of a set of eigenstates near EF , we use the IPR, defined
as IPR = 1

NE

∑
n

∑
r |Ψn(r)|4. Here Ψn is the eigenstate

corresponding to n-th eigenvalue, and the sum is taken
over the same energy window NE as for r. The IPR is
close to zero for delocalized states and unity for localized
states.

In the following, we focus on small system sizes L =
6, 8 where exact diagonalization is possible. We choose
first to quantify the localization of double-Weyl fermions
in parameter regime (1). We fix EF = 0,∆E = 0.1

and calculate the disorder averaged r, r̄ = 1
Ndis

∑Ndis

λ=1 r
λ.

Here, Ndis = 101 for L = 6 and Ndis = 51 for L = 8. The
results are shown in Fig. 3a, where we see that r̄ ≈ 0.54,
as expected for the GOE, in the range 0 < σ < σl where
σl ≈ 1.2. For σ > σAI ≈ 3.95, r̄ transitions to ≈ 0.39
expected for the Poisson class. This transition is also
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Figure 3. Panels (a) and (b) show adjacent level spacing
ratios at EF = 0 as a function of disorder strength σ for a
system in parameter regime (1) and a-RhSi regime, respec-
tively. Here, rGOE = 0.536 and rP = 0.387 are represented by
dotted gray lines, while dashed green lines represent disorder
strengths σl and σAI. The insets show the inverse participa-
tion ratios at the Fermi energy of respective panels.

reflected in the change of the disorder averaged IPR, ¯IPR,
shown in the inset of Fig. 3a. We see that ¯IPR remains
close to zero up until σl, after which it starts increasing
with disorder. Stronger disorder strengths (σ > σAI)
localize further the states at EF , where ¯IPR → 1.

To study the a-RhSi regime, we choose EF = 0 and
∆E = 0.1 in order to probe localization at energies com-
parable to the threefold fermion. We show the disor-
der averaged r̄ and ¯IPR in Fig. 3b and its inset, respec-
tively. Because of the enhanced DOS compared to regime
(1), diffusive metal phase persists up to a larger disorder
strength σl ≈ 1.7. The Anderson localization is also de-
layed to stronger disorder strengths σAI ≈ 4.6.

Topological phase diagram – Lastly, we are interested
in quantifying to what extent the topological properties
of multifold fermions survive disorder. In time-reversal
symmetric systems like RhSi, we cannot use real space
invariants like the local Chern marker [54] or the Bott in-
dex [53], used for time-reversal breaking Weyl semimet-
als [21, 81]. Instead, we resort to the recently introduced
spectral localizer [67–69].

In three-dimensions, the spectral localizer is defined
as [67, 69]

L(r, E) = κ

d∑

j=1

γj(Xj − xjI) + γd+1(H − EI), (5)

where Xj are position operators corresponding to the
Hamiltonian H, and the matrices γj form a Clifford rep-
resentation {γj , γi} = 2δij . We choose γj = τzσj for
j = 1, 2, 3 and γ4 = τxσ0, where σ and τ are Pauli matri-
ces. The coefficient κ fixes the units and relative weights
between Xj and H [65, 69]. While the spectral localizer
can be evaluated at any position rj and energy E, here
we choose rj to be at the center of our system (rj = 0)
in order to probe their bulk properties, and E = 0. In
the following, we abbreviate L(0, 0) with L0.

The spectrum of L0 consists of pairs (ϵ,−ϵ) because
L0 obeys chiral symmetry C = τyσ0I. In the crystalline
limit, the parameter regime (1) yields four states pinned
at ϵ = 0, that are separated from the remaining states

Figure 4. (a) and (c) show the disorder averaged DOS of the
operator L0 as a function of disorder strength σ for regime (1)
a-RhSi regime, respectively. Panels (b) and (d) show the dis-
order averaged energies of the midgap and first-excited states
ϵ̄0, ϵ̄1 as a function of σ for the two parameter regimes. Here,
dashed green lines represent the topological phase transition
point σTDM. The dashed black line represents a fit ϵ̄0 = a

√
σ,

where a = 0.0692 in regime (1) and a = 0.0696 for regime (2).
The insets of (b) and (d) show how well ϵ̄0 matches with the
predicted form κ0.75σ [68] (gray line) in case of small disorder
strengths. For all plots κ = 0.1 and Ndis = 25.

by a gap of order
√
κ. Using a semi-classical analysis of

the operator L2 [68, 75], it is possible to show analyti-
cally that each Weyl node contributes exactly one zero
mode [68]. We have generalized such an analysis [75]
for the case of a system with threefold and double-Weyl
fermions, i.e., the a-RhSi regime, predicting four midgap
modes as well [75]. The number of midgap modes of L0

can be thus used to signal multifold fermions in both
regimes, as trivial metals present different midgap mode
counting [82].
To study how L0 changes with disorder, we focus on its

DOS ρL0
, calculated using the KPM [76] with an energy

resolution ∆ϵ = 5× 10−4 (NC ∼ 6000). The system size
is L = 12 (we obtain similar results for L = 20) and we
consider Ndis = 25 disorder realizations. Fig. 4a shows
the disorder-averaged DOS ρ̄L0 , as a function of disor-
der strength σ for regime (1). From Fig. 4a, we see that
as σ is increased, the four zero-energy states split into
a pair of peaks that move away from ϵ = 0 in a sym-
metric fashion. In parallel, disorder reduces the spectral
localizer gap and, at around σTDM = 0.3, the energies
of the midgap and first-excited states become compara-
ble, indicating the transition into a trivial diffusive metal.
The existence of the topological in-gap modes of L0 for
σ < σTDM defines the topological diffusive metal phase
(see Fig. 1a).
The transition from a topological to a trivial diffu-

sive metal is also apparent by tracking, for every disor-
der realization λ, the peak positions ϵλ0 , ϵ

λ
1 corresponding

to the midgap mode and the first excited state, respec-
tively. In Fig. 4b, we plot their disorder averaged en-
ergy ϵ̄0,1 = 1

Ndis

∑Ndis

λ=1 ϵ
λ
0,1 as a function of σ. We see
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that ϵ̄0 and ϵ̄1 approach each other for σ < σTDM and
evolve together, without crossing, for σ ⪆ σTDM. For
small disorder strengths, see inset of Fig. 4b, we find
that ϵ̄0 = σκ3/4 consistent with the analytical predic-
tion concerning weakly disordered Weyl semimetals [68].
Moreover, we find that ϵ̄0 can be fitted with a function
a
√
σ (a ≈ 0.07) in the entire disorder range.
In Figs. 4c,d we show results for the a-RhSi regime.

Even though the system supports a threefold fermion in
the crystalline limit, ρ̄L0

behaves similarly to regime (1)
with two double-Weyl fermions. In both Fig. 4c and d the
gap between midgap and excited modes seems to close
for σTDM ≈ 0.3. Furthermore, we recover ϵ̄0 = σκ3/4

behavior in the limit of small disorder, as well as ϵ̄0 ∝ √
σ

for the entire disorder range.
We find that both regimes behave similarly as long the

hopping amplitude vp is the largest energy scale. This
condition ensures a sizable difference between the ampli-
tudes of direction dependent nearest-neighbor hoppings
(v1 ± vp)/4. This condition is met by the RhSi parame-
ters but not for those of a-CoSi, where the parameter v1 is
more than three times larger than the parameter vp. As a
result, the topological properties of a-CoSi are expected
to be less robust compared to a-RhSi (see SM [75]).

Conclusion – We have shown that a topological type
of diffusive metal can exist in transition metal mono-
silicides in the presence of structural, potential and hop-
ping disorder. Characterizing this novel phase required
us to extended the recently discovered spectral localizer
L to accommodate multifold fermions. The spectral lo-
calizer can be used to signal topological diffusive metals
in any symmetry class, including those for which other
real-space methods yield trivial results or are ill-defined.

Our analysis highlights a-RhSi as a more robust plat-
form than a-CoSi to realize the topological diffusive metal
due to a larger anisotropy between nearest neighbor hop-
pings. Looking forward, it is worth studying whether
such stability permeates to physical properties such as
the photogalvanic effect or negative magneto-resistance.
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telides, and B. Özyilmaz, Synthesis and properties of free-
standing monolayer amorphous carbon, Nature 577, 199
(2020).

[72] P. Corbae, J. D. Hannukainen, Q. Marsal, D. Muñoz-
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Appendix A: The Bloch Hamiltonian

We begin this section with classifying, by separation
distance, all neighboring orbitals of a crystalline system
within radius dc = 1.5, where a is the lattice constant.

For each of these distances, we provide a Bloch Hamilto-
nian for a hopping term between two orbitals. To show
that these Bloch Hamiltonians correctly describe the bulk
of a finite crystal, we compare their band-structure with
the momentum resolved spectral function A(k, E).

The radial distribution function g(d) gives us the prob-
ability of finding two sites separated by distance d. It is
defined as

g(d) =
δnd

δVdη
, (A1)

where δnd represents the number of sites within a spher-
ical shell of thickness δd and volume δVd = 4πd2δd, and
η is the bulk density of sites. We measure all distances
in units of lattice constant a.

In Fig. S1a, we show g(d) for a crystalline transition
metal mono-silicide. We see that the first nearest neigh-
boring orbitals are located at a distance d = 1/

√
2. As

discussed in the main text, the hopping between these
orbitals are angle dependent as described by the Hamil-
tonian [1]

H1 =v1[γxδ0 cos
kx
2

cos
ky
2

+ γxδx cos
ky
2

cos
kz
2

+ γ0δx cos
kz
2

cos
kx
2
]+

vp[γyδz cos
kx
2

sin
ky
2

+ γyδx cos
ky
2

sin
kz
2

+ γ0δy cos
kz
2

sin
kx
2
],

(A2)

that is written in the basis Ψ = (cA, cB , cC , cD), where
cα represents the annihilation operator of a particle at
orbital α = A,B,C,D.

The second nearest-neighbor hopping connects orbitals
of the same kind, separated by a distance d = 1. These
hoppings are captured by the Bloch Hamiltonian [1]

H2 = v2[cos kx + cos ky + cos kz]γ0δ0. (A3)

Since we allow the cut-off radius to vary, our model
may involve longer range hoppings. Thus we extend the
model of Ref. [1] to incorporate longer-range hoppings,
i.e, beyond second-nearest neighbors.

All the longer-range hoppings can also be split into
inter-orbital and intra-orbital hoppings, and we deter-

mine their amplitudes following Eq. (2) of the main text.
For completeness, we repeat it here

ṽα = ṽα(d)ṽα(θ, ϕ) exp

[
1− d

d0α

]
Θ(dc − d), (A4)

where d, θ and ϕ are the relative spherical coordinates be-
tween the positions of the two sites involved in the hop-
ping. Their radial and angular dependencies are given in
Table I.
Third nearest-neighbor hoppings connect orbitals at

a distance d =
√

3/2. Following Eq. (A4) and Ta-
ble I, the hopping amplitudes for a crystalline lattice read
v1√
3
exp
[
1−

√
3
]
and

vp
3 exp

[
1−

√
3
]
. The corresponding

Bloch Hamiltonian reads
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α ṽα(d) ṽα(θ, ϕ) orbitals involved

1 v1/
√
2d 1 A ↔ B/C/D;B ↔ C/D,C ↔ D

2 v2/d 1 A ↔ A;B ↔ B;C ↔ C;D ↔ D

p vp/d sin θ cosϕ A ↔ B/C ↔ D

p vp/d sin θ sinϕ A ↔ C/B ↔ D

p vp/d cos θ A ↔ D/B ↔ C

Table I. Radial and angular amplitudes of hoppings in tran-
sition metal mono-silicides.

H3 =
v1√
3
e1−

√
3[γxδ0 cos

kx
2

cos
ky
2
2 cos kz + γxδx2 cos kx cos

ky
2

cos
kz
2

+ γ0δx cos
kz
2
2 cos ky cos

kx
2
]+

vp
3
e1−

√
3[γyδz cos

kx
2

sin
ky
2
2 cos kz + γyδx2 cos kx cos

ky
2

sin
kz
2

+ γ0δy cos
kz
2
2 cos ky sin

kx
2
].

(A5)

Orbitals of the same type at a distance d =
√
2 are

fourth nearest-neighbors, and are related by hopping am-
plitudes v2√

2
exp
[
1−

√
2
]
, following Eq. (A4) and Table I.

The Bloch Hamiltonian reads

H4 = 2
v2√
2
exp
[
1−

√
2
]
[cos kx cos ky + cos ky cos kz + cos kz cos kx]γ0δ0. (A6)

In our simulations, we choose a cutoff at dc = 1.5 such
that the Bloch Hamiltonian H = H1+H2+H3+H4 de-
scribes bulk properties of a crystalline transition metal
mono-silicide. In the following, we focus on RhSi in
parameter regime (2). Its band-structure is shown in
Fig. S1b. Compared to Ref. [1], where H = H1 +H2, we
see that when longer-range hoppings are added the three-
fold fermion at Γ is closer in energy to the double-Weyl
fermion at R.

To verify that this band-structure accurately describes
the bulk of the constructed crystalline system, we cal-
culate the momentum resolved spectral function A(k, E)
for a finite system. The spectral function is calculated by
projecting the real space spectral function onto a plane-
wave basis [2]

A(k, E) = − 1

π
Im

〈
k

∣∣∣∣
1

H− E

∣∣∣∣k
〉
, (A7)

where H = H1 + H2 + H3 + H4 and H1,H2,H3,H4

are real space tight-binding Hamiltonians deduced from
Eqs. (A2), (A3), (A5) and (A6), respectively. Moreover
|k⟩ = exp[ikrn] at site n with position rn. The spectral
function can be measured in angle-resolved photoemis-
sion (ARPES) experiments, where momentum k repre-
sents the momentum of the photo-emitted electron [2].

For a system with 203 unit cells and under periodic
boundary conditions (PBCs), we plot A(k, E) in Fig. S1c.
We observe that the spectral function calculated with H
captures well the energies of threefold and double-Weyl
fermions in Fig. S1b, calculated with H, as well as the

bandwidth of each band.

Appendix B: Rare states

In this section, we demonstrate the existence of rare
states [3] in a-RhSi in parameter regime (1).
In this parameter regime, the density of states of the

crystalline system vanishes at E = 0. Once disorder
strength σ is non-zero, statistically rare regions, with
exceptionally strong disorder strength, are possible. Be-
cause ρ(E = 0) = 0, these regions may trap states at low
energies that we call rare states. To confirm the existence
of these rare states for our amorphous systems, we follow
the procedures outlined in Ref [3].
In finite systems, the energy scales of rare states and

the double-Weyl fermions are comparable thus compli-
cating the detection of rare states. For this reason, we
study the spectra of infinite systems obtained by impos-
ing twisted boundary conditions. These boundary condi-
tions assume that hoppings between outermost orbitals
belonging to different surfaces are vα exp[iθ] (α = 1, 2, p),
where θ is called the twist angle. For θ = 0/π, we say
the system in under periodic/anti-periodic boundary con-
ditions. As explained in Ref [3], combining appropri-
ate boundary conditions with different system sizes we
can maximally separate the energy scales of double-Weyl
fermions and disorder induced rare-states.
In the following, we consider a crystalline system with

an even number of unit cells L in all directions. In the



3

Figure S1. Panel (a) shows the radial distribution function
g(d) as a function of distance d for the crystalline transition
metal mono-silicide. Panel (b) shows the band-structure for
crystalline RhSi (v1 = 0.55, v2 = 0.16 and vp = −0.762) for a
cutoff distance dc = 1.5 along path Γ−R in the Brillouin zone,
calculated using the Bloch Hamiltonian H with up to fourth-
nearest neighbours. Panel (c) shows A(k, E) along the same
path in BZ, and for the same set of parameters, calculated
using the real-space Hamiltonian H.

Figure S2. The low-energy spectrum of a crystalline system
in parameter regime (1) with double-Weyl fermions pinned
at E = 0 under (a) periodic boundary conditions and (b)
anti-periodic boundary conditions. Both types of boundary
conditions are applied in all three directions. Here, we con-
sider a cubic system with 123 unit cells.

limit θ = 0, this system has eight gapless states, see
Fig. S2a. These states reflect the existence of two zero-
energy double-Weyl fermions at the Γ and R points of the
Brillouin zone. Applying anti-periodic boundary condi-
tions (APBCs) in all directions shifts these states away
from E = 0, as shown in Fig. S2b. This creates an energy
gap that fills up with rare states once σ ̸= 0.

We now study the amorphous system in regime (1),
with 123 unit cells and with APBCs in all directions. In
Fig. S3a, we plot the Hamiltonian spectrum as a function
of different disorder realizations for σ = 0.07. We color
all eigenstates of this spectrum according to their inverse
participation ratio (IPR) IPRn =

∑
n

∑
r |Ψn(r)|4, such

that blue and green color indicates smaller and larger
IPR, respectively. States that are shifted away from
E = 0 have low IPR, indicating they are perturbatively

Figure S3. The low-energy spectrum of an amorphous system
in parameter regime (1) under (a) anti-periodic boundary con-
ditions and (b) twisted boundary conditions. Panel (c) shows
probability density distributions several states of the amor-
phous system created in disorder realization λ = 2, which
spectrum is shown in panel (a). Here, red color represents
the low-energy state near E = 0, and blue color represents
joint probability density distributions of three excited states
lowest in energy. We assume a cubic system with 123 unit
cells.

dressed Weyl states [4]. For disorder realizations λ = 2, 8,
we observe two low-energy states with increased localiza-
tion compared to the higher-energy states.
In the following, we focus on disorder realization λ = 2.

The low-energy spectrum of this system as a function
of twist angle θ is shown in Fig. S3b. We see that a
low-energy state disperses weakly with θ compared to
higher-energy states, suggesting it is a localized state [5].
Fig. S3c shows its probability density distribution (red
color) at θ = π along with the joint probability distribu-
tion of three excited states lowest in energy (blue color).
We see that the low-energy state is localized in a small
region, while excited states spread over large portions of
the system.

Appendix C: Semi-classical analysis of the spectral
localizer

In this section, we analytically derive the low-energy
spectrum of the spectral localizer for crystalline tran-
sition metal mono-silicides. This can be done using a
semi-classical analysis that maps the problem of finding
zero modes of the operator L to a well-known problem of
solving for the spectrum of harmonic oscillators [6–8]. As
in [6, 7], semi-classical refers to the fact that we ignore
tunneling between between harmonic oscillator wells, en-
sured by choosing a small value of κ, as defined next.

We start with the spectral localizer introduced in
Eq. (5) of the main text that is here rewritten in the
following form

L =

(
κD σ0H

σ0H −κD

)
. (C1)

Here, we are interested in bulk properties close to zero
energy and thus choose r = 0 at E = 0. We de-
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fine D =
∑

j σjXj , with Xj and H being the real-
space position and Hamiltonian operators, respectively.
Next, we perform a Fourier transform F on L. Using

F [D] = −i
∑d

j=1 σj∂kj
and H = F [H], we obtain

Lk =

(
−iκ

∑
j σj∂kj

σ0H
σ0H iκ

∑
j σj∂kj

)
. (C2)

We study the spectral properties of the operator

L2
k =

(
σ0(H2 − κ2∇2

k) −iκ
∑d

j=1 σj∂kjH
iκ
∑d

j=1 σj∂kjH σ0(H2 − κ2∇2
k)

)
(C3)

that is, by construction, non-negative and, as will be

shown shortly, has harmonic potential wells at Weyl
points [6].

1. Parameter regime (1)

To build intuition we focus on crystalline systems in
parameter regime (1) with nonzero hoppings vp. To sim-
plify our analysis, we consider the case with cutoff radius
dc = 1.01 such that only nearest-neighbors are related by
nonzero hoppings. From Eq. (A2), we get

H = vp[γyδz cos
kx
2

sin
ky
2

+ γyδx cos
ky
2

sin
kz
2

+ γ0δy cos
kz
2

sin
kx
2
]. (C4)

We are interested in the low-energy counterpart of this
Hamiltonian in order to study the low-energy spectrum
of L2

k. To probe a double-Weyl fermion at the Γ point,
we expand H close to k = 0 to first order in k and obtain

H = vp[γ0δy
kx
2

+ γyδz
ky
2

+ γyδx
kz
2
]. (C5)

We can bring this Hamiltonian into a block-diagonal form

characteristic for double-Weyl fermions [9], by perform-
ing a unitary transformation UHU† with U = 1√

2
(γ0 −

iγx)δ0 and redefining momenta as kx → ky → kz → kx.
This results in

H =
vp
2
[γzδxkx + γ0δyky + γzδzkz]. (C6)

From here, we readily obtain the operator L2
k as

L2
k =

(
σ0γ0δ0[

v2
p

4 (k2x + k2y + k2z)− κ2∇2
k] −i

vpκ
2 (σxγzδx + σyγ0δy + σzγzδz)

i
vpκ
2 (σxγzδx + σyγ0δy + σzγzδz) σ0γ0δ0[

v2
p

4 (k2x + k2y + k2z)− κ2∇2
k]

)
. (C7)

We observe that the diagonal elements [−κ2∇2
k+

v2
p

4 (k2x+

k2y + k2z)] describe the equation of a 3D quantum har-
monic oscillator in momentum space upon identifying
ℏ = κ,m = 1

2 and ω = vp. The eigenvalues of this

harmonic oscillator are ϵdn = ℏω(n + 3
2 ) = κvp(n + 3

2 )

where n ∈ N. The lowest energy ϵd0 =
3vpκ
2 is obtained

for n = 0. Note that these eigenvalues are sixteen-fold
degenerate because they originate from the diagonal part
of L2

k.

The eigenvalues of the off-diagonal part can be ob-
tained by its diagonalization. The sixteen eigenvalues

consists of doubly degenerate ± 3vpκ
2 and sixfold degen-

erate ±vpκ
2 . Thus, because diagonal and off-diagonal

parts of operator L2
k commute, its spectrum can be ob-

tained by simply summing their respective eigenvalues,
i.e., ϵn = ϵdn + ϵoff−d. For n = 0, we see that the dou-

bly degenerate ϵoff−d = − 3vpκ
2 exactly cancels out the

diagonal contribution ϵd0 =
3vpκ
2 , resulting in two zero

modes for the operator L2
k. Thus, we obtain that a sin-

gle double-Weyl fermion at Γ point yields two zero modes
of operator L2

k, and via the inverse Fourier transforma-
tion, also for the operator L2. Similarly, the double-Weyl
fermion at R point also contributes two zero modes of the
operators L2

k, and L. Hence, we can predict analytically
that the operator L will have four zero modes for crys-
talline systems described by the Hamiltonian Eq. (C4).

The presence of longer range hoppings, such as the
third nearest neighbor hoppings does not alter this con-
clusion. This is because such hopping terms, given by
Eq. (A5), have the same matrix structure as the Hamil-
tonian Eq. (C4). Hence, when expanding up to linear
order in k, the matrix structure remains the same as for
the Hamiltonian Eq. (C5), and the only difference is in
the prefactors. Thus, longer range hoppings with ampli-
tudes proportional vp can only alter states higher in the
spectrum of L.
We confirm this analytical prediction numerically for
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Figure S4. Panels (a, c, e) and (b, d, f) show the spectra of the operators L2 and L, respectively. These operators are
calculated for κ = 0.1 and a crystalline system of linear size L = 8. Panels (a, b) and (c, d) consider parameter regime (1) and
has dc1.01 and dc = 1.5, respectively. Panels (e,f), consider parameter regime (2) with dc = 1.01. We use hopping amplitudes
vp = −0.762 and v2 − 0.16. Red and blue color represents zero modes and excited states, respectively.

vp = −0.762. Figs. S4a and b show the spectrum of
operators L2 and L, respectively for the system with
linear size L = 8 and κ = 0.1 in case of nonzero
nearest-neighbor hoppings. Furthermore, we obtain sim-
ilar spectra once the third-nearest-neighbor hoppings are

included, see Figs. S4c, d. We see that adding more
hoppings preserves the existence of four degenerate zero
modes but reduces the gap between them and states at
higher energy.

2. Parameter regime (2)

Next, we study how including hoppings with amplitudes v1, v2 affect the spectrum of the operator L. For simplicity,
we assume that only nearest-neighbor and second-nearest-neighbor hoppings are present. In parameter regime (2),
the crystalline system hosts a threefold fermion at the Γ point and a double-Weyl fermion at the R point. Since we
derived the low-lying localizer spectrum for a double-Weyl in the previous section, here we focus on the Γ point. Close
to Γ, the low-energy Hamiltonian reads

H = 3v2γ0δ0 + v1[γxδ0 + γxδx + γ0δx] +
vp
2
[γyδzky + γyδxkz + γ0δykx]. (C8)

As before, we perform the unitary transformation on H with U = 1√
2
(γ0 − iγx)δ0 and exchange momenta as

kx → ky → kz → kx. This yields

H = 3v2γ0δ0 + v1[γxδ0 + γxδx + γ0δx] +
vp
2
[γzδxkx + γ0δyky + γzδzkz]. (C9)

After squaring this Hamiltonian, we perform a unitary transformation UH2U† = H̃2 with U = 1√
2
(γ0 − iγx)δ0 to

write it in the following form

H̃2 =[3v21 + 9v22 +
v2p
4
(k2x + k2y + k2z)]γ0δ0 + (2v21 + 6v1v2)[γxδ0 + γxδx + γ0δx]+

v1vp[kzγzδy − kxγyδ0 + kyγxδy] + 3v2vp[kyγ0δy − kxγyσx − kzγyσz].

(C10)

In the eigenbasis, the matrix H̃2 has eigenvalues

3v21 + 9v22 +
v2p
4
(k2x + k2y + k2z)− 2v1(v1 + 3v2)± vp(v1 − 3v2)

√
k2x + k2y + k2z , (C11)
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and

3v21 + 9v22 +
v2p
4
(k2x + k2y + k2z) + 2v1(v1 + 3v2)± (v1 + 3v2)

√
16v21 + v2p(k

2
x + k2y + k2z). (C12)

Following Eq. (C3), the diagonal elements of H̃2, written in the eigenbasis, become part of the diagonal elements of

L2
k. We focus first on Eq. (C11) of of matrix H̃2 which leads to the diagonal entries

−κ2∇2
k +

v2p
4
(k2x + k2y + k2z)± vp(v1 − 3v2)

√
k2x + k2y + k2z + 3v21 + 9v22 − 2v1(v1 + 3v2) (C13)

of L2
k. Upon identifying κ = ℏ,m = 1

2 and ω = vp, we recognize Eq. (C13) as the Hamiltonian of a 3D quantum
harmonic oscillator under a constant force and with a constant energy offset. Using the spherical coordinates (kx =
k cos θ sinϕ, ky = k cos θ cosϕ and kz = k sin θ), we obtain

Hh.o. = −κ2∇2
k +

v2p
4
k2 ± vp(v1 − 3v2)k + v21 + 9v22 − 6v1v2, (C14)

and by completing the square in k, Eq. (C14) becomes

Hh.o. = −κ2∇2
k +

v2p
4

(
k ± 2(v1 − 3v2)

vp

)2

. (C15)

Upon replacing κ2 → ℏ2

2m ,
v2
p

4 → mω2

2 , k′ = k ± 2(v1−3v2)
vp

and ∇2
k → ∇2

k′ , we recognize an equation of a 3D quantum

harmonic oscillator in spherical coordinates. Hence, for each diagonal element Eq. (C11) of matrix H̃2, we obtain
that matrix L2

k has eigenvalues ϵd,1n = τ0σ0κvp(n+ 3
2 ).

We are left to calculate the diagonal elements of L2
k corresponding to Eq. (C12), which read

−κ2∇2
k +

v2p
4
(k2x + k2y + k2z) + 3v21 + 9v22 + 2v1(v1 + 3v2)± (v1 + 3v2)

√
16v21 + v2p(k

2
x + k2y + k2z). (C16)

In this case we are not able to find an general analytical expression, and so we resort to first-order perturbation theory
in v1, v2 to determine the corresponding ground state energies. For this, we separate two unperturbedHh.o. = −κ2∇2

k+
v2
p

4 (k2x + k2y + k2z) and the perturbation term H±
p = 3v21 + 9v22 + 2v1(v1 + 3v2)± (v1 + 3v2)

√
16v21 + v2p(k

2
x + k2y + k2z),

which contains all terms proportional to v1, v2. In spherical coordinates, Hh.o. = −κ2∇2
k+

v2
p

4 k2 and H±
p = 3v21+9v22+

2v1(v1+3v2)±(v1+3v2)
√

16v21 + v2pk
2. The ground state energy of Hh.o. is

3κvp
2 and the corresponding wave-function

is ΨGS(k) = (β2/π)3/4 exp
[
−β2k2/2

]
where β =

√
vp/2κ. In the first approximation, H±

p contributes with the energy

E±
p = 4π

∫∞
0

Ψ∗
GS(k)Hh.o.ΨGS(k)k

2dk. Here, we have already used the fact that Hh.o. is a spherically symmetric
function such that the angular dependence is already integrated out. We solve this integral numerically. To simplify
the analysis, we assume that parameters v1 and v2 are not independent. In particular v2 = v1/χ where χ = 3.4375 is
chosen such that it reflects the ratios of amplitudes v1 and v2 for crystalline RhSi. In Fig. S5, we plot the perturbed

eigenvalues ϵd,2±0 =
3κvp
2 + E±

p as a function of parameter v1. We see that H+
p monotonously increases the ground

state energy while H−
p mildly reduces it for v1 ⪅ 1.9.

Lastly, we evaluate the eigenvalues of the off-diagonal block of operator L2
k. From Eqs. (C3) and (C9), we obtain

κ
d∑

j=1

σj∂kj
H =

vpκ

2
(σxγzδx + σyγ0δy + σzγzδz). (C17)

The eigenvalues of this off-diagonal part are not changed upon subsequent unitary rotations used to obtain matrix

H̃ and bring it into the eigenbasis. They consist of doubly degenerate ϵoff−d,1± = ± 3vpκ
2 and six-fold degenerate

ϵoff−d,2± = ±vpκ
2 .

Finally, we can determine the ground state energy of
operator L2

k. As before, it is a sum of diagonal and
off-diagonal contributions. Since the maximal ampli-

tude of off-diagonal contributions is
3vpκ
2 , we focus on
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Figure S5. Ground state energy for the Hamiltonians
Eq. (C16) as function of v1. This energy is determined us-
ing first-order perturbation theory. Dashed and dotted lines
represent positive eigenvalues of the matrix Eq. (C17).

n = 0 limit for the diagonal contributions. These are

eight-fold degenerate ϵd,10 =
3κvp

2 and four-fold degen-

erate ϵd,2±0 =
3κvp
2 + E±

p plotted in Fig. S5. Clearly,

ϵd,10 + ϵoff−d,1− = 0 and is doubly degenerate because

ϵoff−d,1± is doubly degenerate. Moreover, ϵd,10 + ϵoff−d,2±
0

is always nonzero. Regarding ϵd,2±, ϵd,2± + ϵoff−d,1− =
E±

p that is nonzero 0 < v1 < 1.5 as shown in Fig. S5.
This range of values covers the parameter regimes of
RhSi and CoSi. From Fig. S5, we see that ϵd,2± never
crosses any off-diagonal contribution ϵoff−d,1±/ϵoff−d,2±

that is represented with dashed/dotted horizontal red
lines. Thus, for 0 < v1 < 1.5 these diagonal terms can
never produce zero states of operator L2

k. We conclude
that the operator L2

k has two zero modes for a threefold
fermion of monopole charge C = 2 in case of RhSi/CoSi.
Due to a double-Weyl fermion at the R point, L2

k will
have four zero states in total for parameter regime (2).
This semi-analytical result is confirmed upon diagonaliz-
ing the full real space operators L2 and L for parameters
v1 = 0.55, v2 = 0.16, vp = −0.762, see Fig. S4e, f.

In numerics, we observe that increasing values of κ re-
duces the range of v1, v2 values for which our analytical
prediction holds. This is consistent with the expectation
stemming from a more rigorous analysis of the eigenval-
ues of operator L2

k in Eq. (C3), where κ is necessarily
assumed to be a small quantity [6, 7]. Indeed, for large
values of κ, we cannot ignore the tunnel effect between
two harmonic wells that increases the energies of states
within these wells [6]. Hence, the analysis in this section
is usually referred to as semi-classical [6, 7].

In addition, for smaller values of κ ∼ 0.1, we obtain
that increasing v1, v2 also leads to the breakdown of the
semi-classical analysis. Such a behavior is expected be-
cause nonzero v1, v2 produce multifold fermions at Γ and
R points at different energies. The energy difference in
fact increases with larger v1, v2, implying that the spec-
tral localizer calculated at E = 0 is not anymore cap-
turing only the low-energy physics of the problem. The
spectrum of operator L in this case can be derived by

Figure S6. The band-structure of crystalline CoSi in pa-
rameter regimes (1) and (2) is shown in panels (a) and (b),
respectively. Red curves show the spectrum for cutoff dis-
tance dc = 1.01, while blue curves show the spectrum once
dc = 1.5.

mapping it to the Dirac equation [8].

Appendix D: Results for CoSi

In the main text, we have analyzed how amorphicity
affects RhSi using different quantities such as the den-
sity of states, adjacent level spacing ratio and spectral
localizer. In this section, we repeat those calculations for
parameters chose to model a-CoSi.
Like in the main text, we consider two parameter

regimes. In regime (1), parameters read v1 = v2 = 0
and vp = 0.41. The regime (2) has parameters µ =
0.551, v1 = 1.29, v2 = 0.25 and vp = 0.41, where µ is
the chemical potential represented by H0 = µγ0δ0. Here,
all parameters are given in units of eV. Since parameter
regime (2) reproduces well the band-structure of crys-
talline CoSi at the Fermi level [10], we shall often refer
to it as the a-CoSi regime in the following.
The resulting band-structures for regimes (1) and (2)

are shown in Figs. S6a and b, respectively. Here, solid
red lines represent the band-structure corresponding to
the Hamiltonian H0 +H1 +H2. Dashed blue lines indi-
cate the band-structure for a cutoff distance dc = 1.5 that
corresponds to studying the Hamiltonian H0+H1+H2+
H3 + H4. We see that the spectrum of CoSi in regime
(1) along the Γ−R path looks very similar to the corre-
sponding spectrum of RhSi shown in Fig. 1c of the main
text, in the sense that the threefold fermion is placed
at higher energy compared to the double-Weyl fermion.
This is not anymore the case for regime (2), as we see
that longer range hoppings lift the double-Weyl fermion
higher in energy compared to the threefold fermion, un-
like the situation in RhSi. Lastly, we see that bands along
the Γ−R path disperse less in CoSi than in RhSi.

1. Spectral properties

Having fewer dispersive bands greatly affects spectral
properties of a-CoSi, as it allows disorder to couple states
at different energies with smaller energy penalty. Fig. S7a
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Figure S7. Panel (a) shows how ρ̄(E) vs E changes with σ.
Dashed and dotted lines represent fit functions αE2 and α+
β|E|, respectively. Panel (b) shows how zero-energy averaged

DOS ρ̄0 changes with σ. Panel (c) shows ρ̄
(2)
0 as a function of

disorder strength. We define ρ̄(2)(0) =
∑Ndis

λ=1 (ρ
λ)(2)(0) where

(ρλ)(2)(0) is estimated from a fit ρλ(E) = ρλ0 + (ρλ)(2)(0)E2

in the energy range (−0.2, 0.2) for independent disorder real-
izations λ.

shows the averaged density of states for a-CoSi in pa-
rameter regime (1). We immediately observe that ρ̄(E)
for a crystalline system reaches its maximal values for
approximately two times smaller energies compared to
a-RhSi, see also Fig. 2a of the main text. For small val-
ues of disorder (σ ≈ 0.04) ρ̄(E) ∝ E2, characteristic
for linearly dispersing bands. As disorder strength is in-
creased to σ ≈ 0.07, a behavior ρ̄(E) ∝ |E| emerges that
is characteristic of the proximity of the quantum critical
point. This behavior persists for σ = 0.1, along with
nonzero DOS at zero energy . Finally, stronger disorder
strengths yield broad and featureless DOS characteristic
for diffusive metals. In Fig. S7b, we plot ρ̄0 as a func-
tion of disorder strength, and see it becomes nonzero for
σ ⪅ 0.1.

To study the semimetal-diffusive metal phase transi-

tion, we plot in Fig. S7c the second derivative ρ̄
(2)
0 as

a function of disorder for different system sizes and or-
ders NC of the KPM expansion. This quantity peaks
at σc ≈ 0.06 signaling the proximity of the quantum
critical point. It however does not diverge with varying
parameters, implying that the phase transition between
semimetal and diffusive metal regimes is avoided, just
like for a-RhSi in parameter regime (1).

2. Anderson localization

To study localization properties of a-CoSi, we use the
adjacent level spacing ratio r̄ (Eq. (4) of the main text)
and the inverse participation ratio ¯IPR at the Fermi
level. The results for two parameter regimes are shown
in Fig. S8. From Fig. S8a, we see that the system in
regime (1) is a diffusive metal for σ < σl ≈ 0.8, and
an Anderson insulator for σ > σAI ≈ 3.6 with a grad-
ual transition for σ values in between. In the a-CoSi
regime, we see from Fig. S8b that the diffusive metal
phase persists to much larger disorder strengths, namely

Figure S8. Panels (a) and (b) show adjacent level spacing
ratios at EF = 0 as a function of disorder strength σ for pa-
rameter regimes (1) and (2), respectively. Here, rGOE = 0.536
and rP = 0.387 are represented by dotted gray lines, while
dashed green lines represent disorder strengths σl and σAI

The insets show how the corresponding inverse participation
ratios at the Fermi energy evolve with σ.

up to σl ≈ 2.2. This can be expected because of larger
hopping amplitudes in regime (2), that counteract the ef-
fects of disorder induced localization of eigenstates. The
system experiences a gradual transition to the Anderson
insulator regime that is reached for σAI ≈ 5.

3. Topological phase diagram

Lastly, we review the topological phase diagram of a-
CoSi. The results are shown in Fig. S9. To produce this
figure, we used Ndis = 25 disorder realizations and cubic
systems of linear size L = 12 unit cells.
For parameter regime (1), we observe that the topo-

logical phase diagram shown in Figs. S9a,b looks very
similar to the phase diagrams calculated for a-RhSi in
both regimes. The gap between pairs of midgap modes
and excited states in Fig. S9a closes at σTDM ≈ 0.2. In
addition, we observe from the inset of Fig. S9b that for
low disorder strengths σ ≤ 0.1, the averaged energy ϵ̄0
of the L midgap mode follows the analytically predicted
behavior ϵ̄0 = σ3/4κ [7]. We also find that the depen-
dence of ϵ̄0 on σ can be well approximated in the entire
range σ ∈ [0, 2.5] by an a

√
σ law, where a = 0.077.

In a-CoSi regime, the phase diagram in Fig. S9c re-
veals that the topological properties of a-CoSi are less
robust to effects of disorder compared to a-RhSi. The
gap between midgap and first excited states of L opera-
tor closes at σTDM ≈ 0.075, while in a-RhSi it closes for
σTDM ≈ 0.25. Moreover, In the limit σ = 0, this gap is
approximately two times smaller than the corresponding
gap in regime (1) of the same material. Disorder aver-
aged eigenvalues ϵ̄0, ϵ̄1 shown in Fig. S9d reveal that ϵ̄0 is
well approximated by a

√
σ (a = 0.073) only for σ > 0.5.

The inset of Fig. S9d shows ϵ̄0, ϵ̄1 for very small disor-
der strengths. We see that ϵ̄1 experiences an upturn at
σ ≈ 0.075, while ϵ̄0 cannot be well approximated with
the analytical prediction ϵ̄0 = σ3/4κ, where κ = 0.1.
As mentioned in the main text, we relate this reduced

topological robustness of a-CoSi compared to a-RhSi,
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to different ratios of inter-orbital hoppings for the two
cases. As shown in Fig. 1 of the main text, there are two
types of inter-orbital hoppings v1 and vp. The latter one
changes with the bond orientation, such that the hop-
pings 1

4 (v1 ± vp) are arranged into the chiral structure
resulting in the appearance of multifold fermions in pa-
rameter regime (2). In the presence of structural disorder
that alters hoppings between orbitals, this chiral struc-
ture is gradually lost as σ is increased. Thus, the rele-
vant energy scale at which disorder effects alter topology
is proportional to ∆vnn =

vp
2 = 1

4 (v1 + vp)− 1
4 (v1 − vp).

In crystalline RhSi, v1 = 0.55 and vp = −0.762
such that the nearest-neighbor hoppings have amplitudes
1
4 (v1 + vp) = −0.053 and 1

4 (v1 − vp) = 0.328, and they

differ by |∆vnn| = |v2|
2 = 0.381. For crystalline CoSi,

parameters read v1 = 1.29 and vp = 0.41 implying that
1
4 (v1 + vp) = 0.425, 1

4 (v1 − vp) = 0.22 and their differ-
ence reads |∆vnn| = 0.205. Thus, we conclude that the
disorder strength at which the topological phase transi-
tion occurs is approximately two times smaller for a-CoSi
than for a-RhSi, and this is indeed observed in numerical
analysis using the spectral localizer.

Finally, in Table (D 3), we summarize all critical dis-
order strengths determined in this work for a-RhSi and
a-CoSi in regime (2). Note that the amorphous system
is always in the diffusive metal phase.

quantities a-RhSi a-CoSi

|∆vnn| 0.328 0.205

σTDM 0.3 0.07

σl 1.7 2.2

σAI 4.6 5

Figure S9. Panels (a) and (b) show disorder-averaged DOS
of the operator L as a function of disorder strength σ for
parameter regimes (1) and (2), respectively. In panels (c) and
(d) are plotted disorder averaged energies of midgap and first-
excited states ϵ̄0, ϵ̄1 as a function of σ for these two parameter
regimes. Here, dashed green lines represent the topological
phase transition point σTDM. Dashed black lines represents a
fit ϵ̄0 = a

√
σ, where a = 0.077 in regime (1) and a = 0.073 for

regime (2). The inset of panels (b) and (d) show how well ϵ̄0
matches with the predicted form κ0.75σ [7] (gray line) in case
of small disorder strengths. Here, we use κ = 0.1,Ndis = 25
and L = 12.
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