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Metals and topological insulators have in common that they cannot be described by exponentially localized
wave-functions. Here we establish a relationship between these two seemingly unrelated observations. The
connection is explicit in the low-lying states of the spectral localizer of trivial metals, an operator that measures
the obstruction to finding localized eigenstates. The low-lying spectrum of the spectral localizer of metals is
determined by the zero-mode solutions ofDirac fermionswith a varyingmass parameter. We use this observation,
valid in any dimension, to determine the difference between the localizer spectrum of trivial and topological
metals, and conjecture the spectrum of the localizer for fractional quantum Hall edges. Because the localizer is a
local real-space operator, it may be used as a tool to differentiate between non-crystalline topological and trivial
metals, and to characterize strongly correlated systems, for which local topological markers are scarce.

Introduction Metals and insulators were antagonistic
solid-state physics concepts. Metals are gapless and char-
acterized by a Fermi surface. By definition, states at the Fermi
surface cannot be described by exponentially localized wave-
functions [1, 2]. This behavior contrasts that of atomic in-
sulators, insulators which are adiabatically connected to an
atomic limit of exponentially localized wavefunctions without
undergoing a gap closing. Today we know that not all insu-
lators accept a description in terms of exponentially localized
(Wannier) wave-functions [3–6]. Topological insulators do
not allow such a description [4, 5, 7, 8]. This obstruction man-
ifests physically as metallic boundaries, which we may refer to
as topological zero-modes, as they are gapless.

In this work we ask: is there a relation between the obstruc-
tions to express metals and topological insulators in terms of
exponentially localized wave-functions? Specifically, we are
after an operator that can map one problem into the other.
To be useful, such operator should distinguish between triv-
ial and topological metals and be defined in real space. The
latter property, while not strictly required, is important if we
eventually wish to characterize disordered topological metals,
which has been proved challenging. Indeed, while disordered
topological insulators are understood using local, real-space
topological markers [9–35], such markers are scarce for topo-
logical metals [36, 37]. Moreover, how these local markers
characterize many-body systems is an open question [28, 38].

Here we address these questions by interpreting one these
markers, the spectral localizer [15, 21, 25, 27, 39–44], as a
Dirac Hamiltonian with parameter dependent mass. The spec-
tral localizer L(X,H) is a real-space operator that quantifies
whether the Hamiltonian H and the position operator X can
be continuously deformed to commute, without closing the
band gap or breaking a symmetry. If so, there is no obstruc-
tion to reach an atomic limit with a well defined energy and
position, and the system is topologically trivial. The localizer
is successful in locally identifying all Altland-Zirnbauer topo-
logical insulator classes [15]. For example, the Chern number
is given by the signature of the localizer, the difference between
positive and negative eigenvalues [21, 28, 29, 39, 45]. More
recently, the number of zero-modes of L have been shown to
count the number of Weyl nodes in topological metals [36, 37]

and the presence of edge states in doped Chern insulators [28].
Surprisingly, the localizer has not been discussed for trivial
metals. It remains therefore unclear if or how topological and
trivial metals differ in what concerns L.
In this work we find that the low-lying spectrum of the local-

izer of trivial metals is determined by the spectrum of topolog-
ical insulators surface states. This establishes an unexpected
connection between the obstructions to write exponentially lo-
calized wave-functions for metals and topological insulators.
What we show is that the localizer zero-modes, encoding the
obstruction to Wannierize states at the Fermi surface [36, 37],
follow from the existence of surface states in continuum mod-
els of topological insulators. The surface states are themselves
a consequence of an obstruction to Wannierize topological
bands, connecting both obstructions.
This remarkable connection becomes transparent once we

show that finding the zero-modes of the localizer amounts to
finding the zero modes of a Dirac equation with a varying
mass term. Such re-branding is advantageous because the lo-
calizer spectrum is typically computed numerically in a case
to case basis [15, 21, 25, 27, 39–43], while the Dirac equa-
tion with varying mass is a recurring problem across physics.
The analytical solutions to this equation link very distinct phe-
nomena including solitons in polyacetyline [46, 47], boundary
states of topological insulators [48–52], quantum Hall [53]
and Anderson transitions [54], domain walls in high-energy
physics [55, 56] or cosmic string cosmology [57], to name a
few. Here we take advantage of this vast literature to predict
the spectral differences of L that characterize different types
of metals, including trivial and topological metals, and gap-
less chiral edge-states. Such understanding allows even to go
beyond the single-particle picture and conjecture signatures of
many-body fractional quantum Hall edge states.

Spectral localizer as a Dirac Hamiltonian with a vary-
ing mass The spectral Localizer L(X0, E0) is a local op-
erator defined for a reference energy E0 and position X0 =

(x
(0)
1 , x

(0)
2 , · · · , x(0)d ), in d spatial dimensions [15, 21, 25, 27,

40]

L(X0, E0) = κ(Xi − x(0)i )Γi − (H − E0)Γd+1. (1)
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Here we assume the Einstein summation convention over the
spatial index i = 1, 2, · · · d,H is the Hamiltonian in real space,
andXi are the position operators. The scalar parameter κ fixes
the units and the relative weight between the two terms. Γi
are a set of anti-commuting Clifford matrices (e.g. the Pauli
matrices in d = 2). For each strong topological insulator
class in every dimension, the spectrum σ[L] of L(X0, E0)
encodes whether Xi and H can be continued to commuting
while preserving the necessary symmetries and local gap. For
topological metals, the number of Dirac orWeyl points is equal
to the kernel, or number of zero-modes, of σ[L] [36, 37].
There is a striking resemblance between Eq. (1) and a Dirac

Hamiltonian

HDirac(Ai,m0) = vF (∂xi
−Ai(x))Γi − δm(x)Γd+1. (2)

defined by a Fermi velocity vF , a gauge fieldAi(x) and space-
dependent mass δm(x) = m(x) −m0. It can be made more
explicit by a Fourier transform of Eq. (1), which can diagonal-
ize the Hamiltonian (H → ε(k)) and result in the replacement
X → ∂ki , leading to

Lk(X0, E0) = κ(∂ki − x
(0)
i )Γi − (ε(k)− E0)Γd+1. (3)

This operator has now the same form as the Dirac operator
Eq. (2) if we identify vF with κ, Ai with x

(0)
i and ε(k) − E0

with δm(x). In doing so we think of the momentum variable
k in Eq. (3) playing the role of a space variable x in the Dirac
picture Eq. (2). This argument is appealing, but not rigorous
(we offer in Appendix A a more rigorous discussion). In
practice, however, it turns out to be sufficient to predict the
low-lying spectrum of the localizer.

1D wire As a warm up exercise we wish to find how the lo-
calizer spectrum changes aswe interpolate between a 1D trivial
parabolic dispersion and a 1D Weyl Hamiltonian. This can be
achieved by studying the 1D tight-binding lattice Hamiltonian

H = −t
∑
i

c†i ci+1 + h.c., (4)

which has an energy spectrum ε(k) = −2t cos(k) (see inset
Fig. 1(a)), fixing the lattice constant to a = 1. Close to
the bottom of the band, at k = 0, the dispersion relation
is ε(k) ≈ −2t + tk2 + · · · . We take this as a definition
of a 1D trivial metal: a single-band, parabolic dispersion at
momentum k ∼ 0 and energy ε(k) ∼ −2t with effective mass
m = 1

2t . For energies E0 ≈ 0 we expand around k = ±π/2.
To linear order ε(k)± ≈ 2t(±k+ π

2 ) + · · · . The left and right
moving dispersion relation can be compactly encoded in a 1D
Weyl Hamiltonian of the formHW = 2t(kτz+ π

2 τ0), where τz
and τ0 are the third Pauli matrix and the 2× 2 identity matrix,
respectively.

As we will see the number of zero-energy modes of the
spectral localizer [36, 37] is not enough to distinguish the 1D
parabolic and Weyl limits of Eq. (4). Mapping to a Dirac
Hamiltonian we will be able to predict the differences in the
localizer spectrum between these two limits.

Figure 1. Localizer spectrum σ[L] of bulk and edge metals. (a)
σ[L] (circles) for a 1D finite chain of length L = 100 at E0 = 0
in units of 2

√
tκ as a function of eigenvalue index n, for κ = 0.05,

and t = 1/2. The low-lying spectrum is doubly degenerate, and
follows a sgn(n)

√
n/2 law (dashed line). This is the characteristic√

n law for relativistic fermions, with the 1/2 accounting for the
double degeneracy. Inset: 1D dispersion relation ε(k). (b) Same
spectrum as in (a) as a function of E0. As E0 increases, the two-
fold degeneracy is lifted where the dashed vertical lines E0 ≈ 2t −
losc
√
2n+ 1, with |n| = 0, 1, 2, · · · , meet the localizer levels (black

circles). Horizontal gray lines indicate the pseudo-relativistic
√
n

law. (c) σ[L] (in units of vF /R = κ/
√

(6t+ E0)/t) for a 3D finite
cube of linear length L = 10 at E0 = −2.5, with κ = 0.1, t = 1/2
. The low lying states are spaced in multiples of vF /R (dashed
lines) and their degeneracy, given by the sequence 2, 4, 6, 8, 10, · · · ,
is equal to that of a finite spherical topological insulator of radius
R, see Eq. (10). (d) σ[L] as a function of X0 = (x(0), 0.) for a
square Chern insulator of linear dimension L = 30, with κ = 0.01
and M/t = −1. In the Dirac picture, we expect a zero at the
boundary, |x0| = L/2 = 15, as observed numerically. The shaded
region indicates the system’s interior, where the localizer signature
and Chern number equal −1, [15, 21, 45].

At energies close to E0 = 0, ε(k) is linear, and we may
write the localizer in momentum space as

Lk(0, E0)± = κ∂kσx − 2t(±k +
π

2
)σz. (5)

where we chose Γ1 = σx and Γ2 = σz . Interpreting k as
a coordinate, as discussed below Eq. (3), we recognize this
operator as the 1D Dirac Hamiltonian

H±Dirac = vF∂xσx − δm±(x)σz (6)

with vF = κ and a linearly varying mass δm(x) = −2t(±x+
π
2 ), of which the solutions are well known (see e.g. Ref. [49])
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For each chirality (±), finding its spectrum and eigenfunc-
tions analytically amounts to finding that of a particle in a
Harmonic oscillator [49], with a characteristic length scale
losc =

√
κ/2t. The localizer has thus a spectrum σn =

sgn(n)2
√
tκn. We notice that not only the zero-mode is dou-

bly degenerate, as found in Ref. 36, but also that all states show
this degeneracy, provided that ε(k) can be approximated to be
linear. The spectrum displays (σ,−σ) doublets, because of
the chiral symmetry of the localizer, σyLσy = −L.

Numerically diagonalizing the 1D localizer Eq.(1) with
Γ1 = σx and Γ2 = σz confirms our analytical expectations.
Choosing x(0) at the center of the system, andH to be Eq. (4)
we obtain the spectrum shown in Fig. 1, shown as a function
of eigenvalue index n in (a) and E0 (b). For E0 = 0, the low
energy spectrum consists of doubly degenerate (σ,−σ) pairs.
As predicted, the low-lying spectrum σ follows a

√
n depen-

dence, up to an energy determined by the break down of the
linear approximation to ε(k) leading to Eq. (6), see Fig. 1(a).

As |E0| approaches 2t, i.e. the trivial metal limit, we ob-
serve in Fig. 1(b) that the localizer spectrum looses its double
degeneracy. Higher-energy states loose their degeneracy far-
ther away from |E0| = 2t, compared to the zero-mode, which
looses its degeneracy close to |E0| ≈ 2t. The fact that the zero-
mode remains doubly degenerate can be predicted by writing
the localizer in momentum space close to E0 ≈ −2t:

Lk(0, E0) = κ∂kσx − (−2t+ tk2 − E0)σz. (7)

Interpreting again k as a coordinate we recognize once more
the 1D Dirac Hamiltonian with vF = κ. The mass varies
parabolically δm(x) = tx2 − (E0 + 2t), and not linearly as
in Eq. (5). If |E0| < 2t such mass profile crosses zero twice,
at ±

√
(2t+ E0)/t, and thus we expect two degenerate zero-

modes, as confirmed numerically.
We still require to explain the difference between the lo-

calizer spectrum at |E0| ≈ 2t (trivial metal) and at E0 ≈ 0
(Weyl metal), in particular that higher energy levels start dis-
persing and are no longer doubly degenerate as E0 is in-
creased. These two properties are understood by drawing a
parallelism to Dirac Landau levels, which start dispersing and
loose their degeneracy as they approach an edge [58, 59]. Here
reaching the bandwidth as we increase E0 acts like a sam-
ple edge; the point where the Landau levels start dispersing
and loose their degeneracy is determined by their average ex-
tent, 〈rn〉 = losc

√
2n+ 1 [59]. This prediction matches well

with the numerical diagonalization, as marked by the vertical
dashed lines in Fig. 1(b). In the Dirac equation language, the
two zero-mode solutions begin to hybridize when |E0| ≈ 2t.
The eigenstates of the localizer also confirm the Dirac inter-

pretation. For a single-band Hamiltonian with band dispersion
ε(k) − E0, the wave-function of the localizer zero modes are
of the form:

ψzm(k) = Nexp

(
± 1

κ

∫ k

dk′(ε(k′)− E0)

)
ψ±0 , (8)

where ψ±0 = (1,±1)T are two chiral eigenstates and N is a

normalization constant. These are the well known (Jackiw-
Rebbi) solutions of a Dirac Hamiltonian with a varying mass
term [46, 48, 53], provided we interpret k as a coordinate vari-
able. There are two normalizable solutions, localized close
to where the mass crosses E0. We have confirmed this ex-
pectation numerically by projecting the localizer zero-energy
modes at E0 = 0, obtained by exact diagonalization, onto
plane waves exp(ikx). The zero-modes have the spinor struc-
ture set by Eq. (8), and are localized at k = ±π/2, where
the dispersion relation crosses E0, i.e. where the Dirac mass
changes sign.
Lastly, for energies E0 > 2t, the localizer spectrum is

gapped (see Fig. 1(b)). This is expected in the Dirac pic-
ture because the Dirac mass is always positive if E0 > 2t, and
hence has no sign change, and thus there are no zero modes.
From Eq. (7) we see that the mass δm takes its most negative
value at k = 0, δm(0) = −(2t + E0). This value constrains
how much the mass can vary as we change k in Eq. (8), and
thus how localized are the eigenmodes. At E0 ≥ 2t the zero-
modes hybridize and Eq. (8) is no longer a solution, resulting
in a gapped spectrum. We reach an analogous conclusion for
E0 < −2t, provided we expand the localizer around E0 ≈ 2t
and momentum k = π.
In short mapping the localizer to a Dirac Hamiltonian allows

us to map the problem of finding its spectrum to solving a
Dirac Hamiltonian with a varying mass. One may ask if and
how these considerations carry over to three-dimensions. We
address this point next.

3D trivial metal The distinction between a trivial and a
topological metal becomes explicit in 3D. Let’s first predict,
using the Dirac picture, the localizer spectrum of a trivial
metal. To define a trivial metal in 3D we generalize the 1D
hamiltonian Eq. (4)

H = −t
∑

i=x,y,z

c†i ci+xi + h.c. (9)

which has an energy spectrum ε(k) = −2t
∑
i cos(ki). Close

to k = 0, ε(k) ≈ −6t + t|k|2 + · · · . This is a trivial metal,
with a parabolic dispersion centred at E = −6t withm = 1

2t .
Unlike in 1D, no value of E0 realizes a Weyl semimetal. For
simplicity, we will place E0 close to the band edge, |E0| ≈
−6t, such that the Fermi surface is nearly spherical.
According to our Dirac Hamiltonian picture the varying

mass is determined by the parabolic dispersion relation close
to |E0| ≈ −6t. Hence, the Dirac mass is negative close
to |k| = 0, and grows parabolically to be positive at large
|k|. The Dirac mass hence vanishes at the sphere defined
by ε(k) = 0 = −6t + t|k|2, which defines the boundary
between two 3D time-reversal invariant insulators with masses
of opposite signs. Hence at such boundary, we expect a gapless
boundary state, with a low-lying spectrum determined by a 2D
spherical Dirac equation. Such low-lying spectrum was found
in Ref. 60 and is given by

εn = ±vf
R
|n+ |m|+ 1/2| = ±(1, 2, 3, 4, · · · ), (10)
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Figure 2. Localizer spectrum σ[L] of a Weyl semimetal model
in different limits. (a) Band structure of HWSM for M/t = 2.4
displaying Weyl nodes at ε/t = 0. The shaded area spans the energy
regionwhere theWeyl bands are defined. (b) Corresponding localizer
spectrum for E0/t = −0.4 (dashed line in (a)) with κ = 0.1 for a
3D finite cube of linear length L = 10. The two mid-gap modes
are present whenever E0/t lies within the shaded region in (a). (c)
Band structure in the trivial insulator limit separated Weyl nodes
(M/t = 4). (d) Corresponding localizer spectrum for E0/t = −2.5
(dashed line in (c)) for κ = 0.1, for a 3D finite cube of linear length
L = 10. The spectrum and degeneracy equal those of trivial metal,
i.e. those of a finite spherical topological insulator, given respectively
by Eq. (10) (dashed lines) and the sequence 2, 4, 6, 8, · · · .

where R is the radius of the topological insulator, n =
0, 1, 2, · · · andm = ± 1

2 ,±
3
2 , · · · . These states have degenera-

cies: 2, 4, 6, 8, 10, · · · . As before vf = κ is the velocity of the
effective Dirac Hamiltonian. The radius of the effective topo-
logical insulator is given by the equation R2 = (6t + E0)/t.
With t = 1/2we can setR = 1 by choosingE0 = −2.5. Solv-
ing for the spectral localizer in 3Dwith κ = 0.1, Γi = σi⊗σz ,
Γ4 = σ0 ⊗ σx and plotting the energies in units of vF /R re-
sults in Fig. 1(c). The degeneracies, the distance between
states, and their energies match perfectly with the expectation
for a topological insulator surface state on a sphere, Eq. (10).

Oncemore the knowledge of the solution to theDiracHamil-
tonian allowed us to predict the low-lying spectrum of the lo-
calizer. For both 1D and 3D, finding the localizer spectrum of
a trivial metal amounts to finding the surface state spectrum
of a finite topological insulator in the continuum limit. We
now move to show how the results of Ref. [36, 37] and the
results here can be used to distinguish trivial and topological
semimetals using the spectrum of the localizer.

3D Weyl semi-metal To interpolate between a trivial metal
and a Weyl semimetal we use the two-band Hamiltonian

HWSM = HCI − t cos(kz)τz, (11)

HCI = −t
∑
i=x,y

(sin(ki)τi + cos(ki)τz) +Mτz, (12)

written in momentum space in terms of a Chern insulator
Hamiltonian HCI. For t < M/t < 3t, HWSM displays two
Weyl points at zero energy and k = (0, 0,±kW ) with kW =
arccos(M/t − 2), see Fig. 2(a). For |M/t| > 3t, HWSM has
two trivial parabolic bands separated by a gap, see Fig. 2(c).
In the Weyl phase, solving numerically for the spectrum

of the localizer at E0 = 0 in the bulk of the system (with
Γi = σi ⊗ σz , Γ4 = σ0 ⊗ σx) we observe two mid-gap
states, predicted in Refs. [36, 37]. For E0/t 6= 0, we observe
that the mid-gap states remain (see Fig. 2(b)) so long as E0/t
crosses the twobands forming theWeyl cones (shaded region in
Fig. 2(a)). Additionally, the states are not exactly degenerate;
their separation increases as the Weyl nodes come closer in
momentum space.
Both of these features are explained with our interpreta-

tion of the localizer as a Dirac Hamiltonian with a varying
mass. First, because the Weyl nodes map to zero modes of the
Dirac Hamiltonian, the closer they are in momentum space,
the larger their overlap, and finite size gap. Second, when
E0/t crosses one single band, either because it goes well be-
yond the shaded area or because the Weyl cones are absent
(as in Fig. 2(c)), we recover the localizer spectrum of a trivial
3D metal (Fig. 2(d)). This is confirmed by the degeneracy
counting of the low lying localizer spectrum, and the low ly-
ing states being approximately equally spaced of order κ/t,
which coincide with Eq. (10), see Fig. 2(d). Further support-
ing evidence based on how the localizer spectrum evolves for
different parameters is presented in Appendix B.
With the above analysis, we have learned how to distinguish

a Weyl semimetal from a trivial metal using the localizer. In
1D the Weyl and a parabolic dispersion differ in the degener-
acy of the localizer spectrum. In 3D the spectral differences
between the trivial and topological metal show both in degen-
eracy and energetics of the low lying states. These properties
of the localizer are tied to those of a Dirac Hamiltonian with a
varying mass. More generally, the low-lying spectrum of the
localizer links the obstructions to write maximally localized
wave-functions for metals and topological insulators.

Spectral localizer of 1D chiral Luttinger liquids To finish,
we rephrase a known result for the localizer of aChern insulator
using our Dirac picture. This will allow us to conjecture how
many-body fractional quantumHall edges might emerge in the
spectrumof the localizer, which remains an open problem [28].
Chiral gapless states occur at the boundaries of the quantum

Hall effect andChern insulators. The signature of the localizer,
the difference between the number of positive and negative
eigenvalues, can distinguish between 2D Chern and trivial
insulator phases [15, 21, 28, 29, 45]. The difference between
the two are eigenstates that cross as we move x(0)i from far
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outside the system (x(0) →∞), where the spectrum is particle
hole symmetric, to inside the system (x(0) = 0). We reproduce
this expectation in Fig. 1(d) for HCI in Eq. (12). The lowest
lying state crosses zero as a function of x(0)i , changing the
localizer’s signature from zero outside to one inside of the
Chern insulator (shaded region), see Fig. 1(d).

The zero-mode can be predicted using the varying mass
Dirac picture. Recall that the dispersion of a chiral edge state
is εk = +vF k, where k is the momentum parallel to the edge.
Hence, when x(0)i is close to the edge and such a dispersion is
a good description of the otherwise gapped Hamiltonian, the
localizer takes once more the form Eq. (5). From our previous
discussion, we expect a zero mode at each edge, in agreement
with Fig. 1(d).

The advantage of the Dirac picture is that we can now con-
jecture what would be the spectral Localizer signature of an
edge mode of a fractional quantum Hall edge state, which has
not been previously discussed to our knowledge. For example,
close to the edge of a Laughlin fractional quantum Hall state
at filling fraction ν = 1/m, the edge Hamiltonian is that of a
chiral boson, dispersing as εk = +vF k. The Fermi velocity is
a non-universal factor that depends on ν and residual interac-
tions [61]. Using our Dirac picture, we predict one zero-mode
of the localizer at each edge, as in the non-interacting case.
This prediction may be confirmed numerically in lattice mod-
els, using for example finite DMRG (see e.g. Ref. [62]).

Conclusions In this work we put forward an equivalence
between the localizer of metals and a Dirac equation with a
varyingmass that crosses zero. We have used it to show that the
low-lying spectrum of the localizer of a trivial metal, encoding
the obstruction to Wannierize a Fermi surface, is guaranteed
by the presence of surface states of a topological insulator.
Because the existence of edge states is determined by the ob-
struction to localize topological insulators, we have linked the
obstruction toWannierize ametal with the obstruction defining
topological insulators.

The spectral localizer, understood through the Dirac pic-
ture developed here, is a unifying tool to understand topologi-
cal properties in metallic, disordered and many-body systems.
Metallic phases are harder to classify than insulators, because
of the absence of a gap. Since the localizer maps them to topo-
logical insulators, the localizer is a promising tool to classify
different types of metals. Moreover, the localizer is suitable to
study disorder systems, including amorphous [63, 64], poly-
crystals or quasicrystals[65], as it defined in real space. The
Dirac Hamiltonian picture we presented can be particularly
useful to map the disordered topological metal, a system pos-
ing fundamental open questions [66], to a disordered Dirac
equation, which has been thoroughly studied in the litera-
ture [53]. Lastly, the localizer is well defined for interacting
systems. Here, we used the Dirac picture to conjecture the
edge fingerprint of a fractional quantum Hall edge. We expect
that the localizer will be also useful to distinguish other in-
teresting groundstates such spin-liquids in real space, even in
situations where disorder is dominant [67, 68].
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Appendix A: k-space projection of the Localizer

In the main text we define the spectral localizer in energy and real space as:

L(X0, E0) = κ(Xi − x(0)i )Γi − (H − E0)Γd+1. (A1)

A concise overview of the properties of the spectral localizer to describe gapped topological phases can be found in section II
A of [29]. Here we wish to find its representation in the Bloch basis that diagonalizes the Hamiltonian. This basis is spanned
by the eigenstates |nk〉 of band n and momentum k. We will make use of a result by Blount [70], who expressed the position
operator in this basis:

〈mk′|Xi |nk〉 = δ̄nmδkk′Ainm(k) + δnm(δkk′Ainm(k) + ∂ki
δkk′) (A2)

where δ̄nm = (1− δnm), δkk′ = δ(k − k′) and Ainm(k) = 〈mk′| ∂ki
|nk〉 is the Berry connection. The position operator has

both diagonal (δnm) and off-diagonal (δ̄nm) contributions which we can use to separate the localizer contributions as well:

〈nk′| L(X0, E0) |nk〉 = κ(δkk′Ainn(k) + ∂ki
δkk′ − δkk′x

(0)
i )Γi − (εn(k)− E0)δkk′Γd+1, (A3)

〈mk′| L(X0, E0) |nk〉 = κδkk′Ainm(k)Γi (n 6= m). (A4)

We note that the intraband term n = m expresses the fact that the position operator is highly singular in momentum space.
Observables however can be shown to be well defined even when the operator, in our case the localizer, is expressed in terms
of the position operator. This can be shown by expressing observables in terms of density matrices, as has been thoroughly
discussed in the context of non-linear optics, see for example [71–73]. We shall not deal with this subtlety further.

For a single band Hamiltonian, which is of interest to us as it describes a trivial metal, only Eq. (A3) contributes, and thus we
may write the localizer as

〈nk| L(X0, E0) |nk〉 = κ(∂ki
− x(0)i +Ainn(k))Γi − (εn(k)− E0)Γd+1. (A5)

Eq. (3) has the form of a Dirac particle coupled to a vector potential and a mass term:

HDirac(Ai,m0) = vF (∂xi −Ai(x))Γi − (m(x)−m0)Γd+1. (A6)

if we identify ki ↔ xi, vF ↔ κ, Ai(x)↔ x
(0)
i −Ainn(k) and ε(k)− E0 ↔ m(x)−m0 = δm(x).

There is an emergent gauge degree of freedom carried by the Berry connectionAinn(k). However, since the low-lying spectrum
of the localizer is only sensitive to a local region in k-space, close to where ε(k) − E0 = 0, the gauge connection Ainn(k) can
be gauged away1. This was rigorously proven in Ref. [37] for the case of a Weyl semimetal. With this simplification, we arrive
to Eq. (3) in the main text.

As a side remark, it is interesting but quite involved to investigate formally the role of the different terms in Eqs. (A3) and
(A4). In particular the emergence of the non-abelian Berry connection for multi-band systems in Eq. (A4) deserves further study,
which we leave for future work.

Appendix B: Further discussion of the spectral localizer of a 3D two-band Weyl semimetal model

In the main text we showed that localizer spectra of the Hamiltonian

HWSM = −t sin(kx)τx − t sin(ky)τy + (M − t
∑

i=x,y,z

cos(ki))τz (B1)

can interpolate between the signatures of Weyl and trivial metals. Here we are interested in exploring how the localizer spectra,
σ[L], changes as we vary the Weyl node separation and E0.
First, in Fig. S1 we represent the band structure and localizer spectrum as a function of E0/t for the phase discussed in the

main text in Fig. 2(a) and (b). As advertised in the main text, the two mid-gap states signaling the two Weyl cones exist so long
as E0/t is smaller than the van Hove energy which conects the two nodes (blue shaded area in Fig. S1(a,b)).
To gain more insight on the evolution of the localizer spectrum as a function ofM/t andE0/twe now focus on three particular

cases, displayed in Fig. S2. Focusing on the first row, Fig. S2(a) shows a Weyl semimetal with maximum Weyl node separation
∆KW = π, obtained by setting M/t = 2. For E0/t = 0 (Fig. S2(b)) we recover a gapped spectrum with two zero-modes, as

1 We are indebted to Prof. Schultz-Baldes for this remark.



9

Figure S1. Evolution of the spectral localizer as a function of E0/t. (a) Band structure of the 3D two-band WSM phase withM/t = 2.4, as
in Fig. 2(a) of the main text. (b) Corresponding localizer spectrum as a function of E0/t. The two-fold mid-gap states are pinned close to zero
energy only when E0/t lies within the blue shaded region where the Weyl spectrum is defined.

predicted by [36, 37]. We observe that lowering E0/t (Fig. S2(c)) does not change this fact, so long as E0/t crosses the two
bands composing the Weyl cones.

For the second row,M/t = 2.7, a choice that leads to the band structure shown in Fig. S2(d). Here the Weyl node separation
is smaller than in Fig. S2(a). At E0/t = 0 (Fig. S2(e)) we again find two zero-modes corresponding to the Weyl states, albeit
separated in energy. Comparing Fig. S2(b) and (e) we observe that larger Weyl node separations induce a smaller splitting of the
mid-gap localizer states. As discussed in the main text, this agrees with the intuition based on the Dirac Hamiltonian picture:
the two Dirac zero modes of the localizer are closer together as the Weyl nodes become closer in momentum space, allowing
for the two zero modes to hybridize. The two zero modes lie within the gap until we lower E0 below the van Hove energy, as
seen previously in Fig. S1(b). At energies E0/t = −1.5 the spectrum is dominated by a single trivial parabolic band. Hence,
the localizer spectrum (Fig. S2(f)) displays energies and degeneracies that coincide with a 3D spherical topological insulator, as
discussed in the main text.

Lastly, in the third row, Fig. S2 (c) shows the band structure whenM/t = 4, such that the spectrum is gapped at half-filling.
When E0 lies within the gap the spectrum of the localizer is also gapped. However, as we decrease E0 to cross the band, we
recover a trivial metal, signaled once more by the energies and degeneracies of a 3D spherical topological insulator.
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Figure S2. Evolution of the localizer spectrum for different band structures. (a,d,g) show the band structure for a 3D two-band WSM model
withM/t = 2, 2.7, 4. Dashed lines show the values of E0/t for which we compute the Localizer spectrum, σ[L] in units of κ/t computed.
(b,c) show σ[L] corresponding to maximally separated Weyl cones, shown in (a), at E0/t = 0 and E0/t = −0.75, respectively, with κ = 0.1.
Both show two mid-gap states corresponding to the two Weyl cones. (e,f) show σ[L] corresponding to two Weyl cones closer in momentum
space, shown in (d), at E0/t = 0 and E0/t = −1.5, respectively, with κ = 0.1. The first shows two mid-gap states corresponding to the
two Weyl cones while the second begins to display the characteristic spectrum of a trivial metal. The degeneracy is dictated by the sequence
of a spherical topological surface state, as discussed in the main text. (h,i) show σ[L] corresponding to a two-band trivial insulator, shown in
(c), at E0/t = 0 and E0/t = −2.5, respectively, with κ = 0.1. The first shows a clear gap while the second has a well developed spectrum
characteristic of a trivial metal. The multiplets are equally spaced and their degeneracy is dictated by the sequence of a spherical topological
surface state, as discussed in the main text.
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