Ultrahigh-density superhard hexagonal BN and SiC with quartz topology from crystal chemistry and first principles
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Based on superdense C 6 with quartz (qtz) topology, new ultrahigh-density hexagonal binary phases, qtz BN and qtz SiC, have been identified from full geometry structure relaxations and ground state energies using calculations based on the quantum density functional theory (DFT) with gradient GGA exchange-correlation XC functional. Like qtz C 6 with respect to diamond, the resulting binary qtz BN and qtz SiC were found to be less cohesive than cubic BN and cubic SiC, respectively, but were confirmed to be mechanically (elastic constants) and dynamically (phonon band structures) stable.

Higher densities of the new phases correlate with their higher hardness values compared to cubic BN and cubic SiC. In contrast to the regular tetrahedra that characterize the cubic BN and SiC phases, the corner-sharing tetrahedra in the new phases are distorted, which accounts for their exceptional density and hardness. All three qtz phases were found to be semiconducting to insulators with reduced band gaps compared to diamond, cubic BN and cubic SiC.

Introduction

Diamond is the hardest known material with a Vickers hardness (H V ) at the level of 100 GPa and density ρ = 3.635 g/cm 3 [START_REF] Brazhkin | Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible[END_REF]. Its structure (space group Fm-3m) is formed by corner-sharing tetrahedra of sp 3 -hybridized carbon atoms with C-C-C = 109.47° and is characterized by the highest atomic density (i.e., the number of atoms per unit cell volume) and the highest density per valence electron [START_REF] Stishov | compressibility and covalency in the carbon subgroup[END_REF]. A rare hexagonal form of diamond (lonsdaleite) (space group P6 3 /mmc) with virtually the same density has been claimed to be stronger and stiffer than diamond [START_REF] Qingkun | Lonsdaleite -A material stronger and stiffer than diamond than diamond[END_REF].

The network topologies of diamond and lonsdaleite are dia and lon, respectively, and many theoretically predicted carbon allotropes have been identified with these topologies (see [START_REF] Öhrström | Network topology approach to new allotropes of the group 14 elements[END_REF] and references therein). The topology determination for the new phases is now made easy with the TopCryst program [START_REF] Shevchenko | Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system[END_REF]. Information on all carbon allotropes extracted from the literature is indexed in the "SACADA" database [START_REF] Hoffmann | Homo Citans and carbon allotropes: For an ethics of citation[END_REF], which currently contains 703 allotropes.

Diamond (both cubic and hexagonal) is still considered to have superior atomic density, elastic moduli and hardness [START_REF] Brazhkin | Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible[END_REF]. Recently, however, several superdense (ρ > 3.635 g/cm 3 ) carbon allotropes have been predicted from the first-principles studies [START_REF] Zhu | Denser than diamond: Ab initio search for superdense carbon allotropes[END_REF][START_REF] Luo | A triatomic carbon and derived pentacarbides with superstrong mechanical properties[END_REF], and hexagonal (space group P 6 222) C 3 with assigned quartz topology (SACADA qtz #11) has even been claimed to have a hardness of 113 GPa [START_REF] Luo | A triatomic carbon and derived pentacarbides with superstrong mechanical properties[END_REF], i.e., 15% harder than diamond. Also, very recently superdense (ρ = 3.666 g/cm 3 ) ultrahard (H V ≈ 102 GPa) hexagonal C 6 (space group P6 5 22) allotrope with qtz topology was proposed by us [START_REF] Matar | First principles search for novel ultrahard high-density carbon allotropes: hexagonal C 6 , C 9 and C 12[END_REF].

The quartz topology is also observed in binary (ZnTe) and ternary (GaAsO 4 , FePO 4 ) compounds. In particular, under pressure, in addition to the cubic sphalerite structure (space group F-43m) characteristic of zinc chalcogenides, ZnTe also exhibits a trigonal -HgS-type structure (space group P3 1 21) [START_REF] Mcmahon | Crystal structure studies of II-VI semiconductors using angle-dispersive diffraction techniques with an image-plate detector[END_REF] with qtz topology. This may be because the Pauling electronegativity ()of the chalcogen decreases from oxygen ((O) = 3.44) to tellurium ((Te) = 2.10). Knowing (Zn) = 1.65, ZnO is an ionic compound (|Zn-O|=1.79), while ZnTe is already a covalent compound (|Zn-Te| = 0.45).

In this regard, the aim of the present work was to search for ultrahigh-density superhard polymorphs of the binary compounds BN and SiC with quartz topology based on qtz C 6 [START_REF] Matar | First principles search for novel ultrahard high-density carbon allotropes: hexagonal C 6 , C 9 and C 12[END_REF] by quantum mechanical calculations of crystal structures and physical properties in the framework of Density Functional Theory (DFT) [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF][START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF].

Computational framework

The structures of the binary compounds have all been subjected to geometry relaxations of the atomic positions and lattice constants down to the respective ground states characterized by minimum energies. The protocol consists of iterative calculations performed using the DFT-based plane-wave Vienna Ab initio Simulation Package (VASP) [START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF][START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmented wave[END_REF]. For the atomic potentials, the projector augmented wave (PAW) method was used [START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmented wave[END_REF][START_REF] Blöchl | Projector augmented wave method[END_REF]. The exchange and correlation effects were treated within a Generalized Gradient Approximation (GGA) scheme [START_REF] Perdew | The Generalized Gradient Approximation made simple[END_REF]. The relaxation of the atoms to the ground state geometry was done by applying a conjugate-gradient algorithm [START_REF] Press | Numerical Recipes[END_REF]. A tetrahedron method [START_REF] Blöchl | Improved tetrahedron method for Brillouin-zone integrations[END_REF] with corrections according to the Methfessel-Paxton scheme [START_REF] Methfessel | High-precision sampling for Brillouin-zone integration in metals[END_REF] was used for geometry optimization and energy calculations, respectively. A special k-point sampling [START_REF] Monkhorst | Special k-points for Brillouin Zone integration[END_REF] was applied to approximate the reciprocal space Brillouin zone (BZ) integrals. For better reliability, the optimization of the structural parameters was carried out along with successive self-consistent cycles with increasing k-mesh until the forces on atoms were less than 0.02 eV/Å and the stress components were below 0.003 eV/Å 3 . The plane waves energy cutoff was 400 eV.

The mechanical properties were derived from the elastic constants calculations [START_REF] Voigt | Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[END_REF][START_REF] Blaschke | Averaging of elastic constants for polycrystals[END_REF]. The phonon dispersion band structures were calculated to verify the dynamic stability of the new phases. The phonon modes were computed considering the harmonic approximation by finite displacements of the atoms around their equilibrium positions to obtain the forces from the summation over the different configurations. The phonon dispersion curves along the direction of the Brillouin zone were then obtained using the "Phonopy" interface code [START_REF] Togo | First principles phonon calculations in materials science[END_REF]. The crystal information files (CIF), the structure sketches including the tetrahedral representations as well as the illustrations of the charge density plots were generated using the VESTA graphics software [START_REF] Momma | VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data[END_REF]. The electronic band structures and densities of states were obtained with the full-potential augmented spherical wave ASW method based on DFT using the same GGA scheme as above [START_REF] Eyert | Basic notions and applications of the augmented spherical wave method[END_REF].

Crystal chemistry

The structure of qtz C 6 is shown in Fig. 1a. A differentiation of carbon into two different sites was highlighted by resolving the initial C 6 structure (space group P6 5 22, No. 179) with unique (6a) sites [START_REF] Matar | First principles search for novel ultrahard high-density carbon allotropes: hexagonal C 6 , C 9 and C 12[END_REF] into carbon atoms with (3c) and (3d) Wyckoff positions within space group P6 4 22, No. 181 as shown in Table 1. Such an elementary modification allowed to consider the binary compounds B 3 N 3 and Si 3 C 3 . The lattice parameters of the ground state structures are given in columns 3 to 5 of Table 1. The corresponding crystal structures are shown in Figs. 1b -1d with ball-and-stick and tetrahedral representations, the latter being characterized by corner sharing irregular tetrahedra (vide infra). The atoms are described with general Wyckoff positions, i.e., at (3c) ½, 0, 0 and at (3d) ½, 0, ½. Differences are observed in the volumes (total and atom-averaged) and in the interatomic distances, which increase along the series due to the increase in the respective atomic radii. If we look at the angles related to the constituent tetrahedra, they differ significantly from the regular tetrahedral one (109.47°), thus indicating the specificity of the qtz topology.

All three qtz phases were found to be cohesive with negative E coh /atom values (see Table 1), which are systematically lower than the corresponding values of diamond (-2.43 eV), cubic BN (-2.63 eV) and cubic SiC (-1.72 eV).

Mechanical properties from the elastic constants

The analysis of the mechanical behavior was carried out using the elastic properties by performing finite distortions of the lattice. The phase is then described by the bulk (B) and the shear (G) moduli obtained by averaging of the elastic constants. Here we used Voigt's method (cf. original [START_REF] Voigt | Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[END_REF] and modern [START_REF] Blaschke | Averaging of elastic constants for polycrystals[END_REF] works) based on a uniform strain. The calculated sets of elastic constants C ij (i and j corresponding to directions) are given in Table 2. All C ij values are positive. The elastic constants of qtz C 6 have the largest values, close to diamond [START_REF] Brazhkin | Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible[END_REF], and smaller magnitudes were obtained for qtz BN and qtz SiC. The bulk (B V ) and shear (G V ) moduli (see the last two columns of Table 2) were calculated using the equations for the hexagonal system [START_REF] Blaschke | Averaging of elastic constants for polycrystals[END_REF]:

B V = 1/9 {2(C 11 + C 12 ) + 4C 13 + C 33 } G V = 1/30 {C 11 +C 12 + 2C 33 -4C 13 + 12C 44 + 12C 66 }
qtz C 6 has the largest moduli, close to the accepted values for diamond (B V =445 GPa and G V = 550 GPa [START_REF] Brazhkin | Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible[END_REF]), while the binary phases, especially qtz SiC, have much smaller values.

Four modern theoretical models [START_REF] Mukhanov | The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties[END_REF][START_REF] Lyakhov | Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO 2[END_REF][START_REF] Mazhnik | A model of hardness and fracture toughness of solids[END_REF][START_REF] Chen | Modeling hardness of polycrystalline materials and bulk metallic glasses[END_REF] have been used to predict the Vickers hardness (H V ) of new phases. The thermodynamic (T) model [START_REF] Mukhanov | The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties[END_REF], which is based on thermodynamic properties and crystal structure, generally shows good agreement with experiment, and is therefore recommended for hardness evaluation of superhard and ultrahard phases [START_REF] Solozhenko | Prediction of novel ultrahard phases in the B-C-N system from first principles: Progress and problems[END_REF]. The Vickers hardness and bulk modulus values calculated using this model are summarized in Table 3. The Lyakhov-Oganov (LO) model [START_REF] Lyakhov | Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO 2[END_REF] takes into account the topology of the crystal structure, the strength of covalent bonding, the degree of ionicity and directionality; and the empirical models, Mazhnik-Oganov (MO) [START_REF] Mazhnik | A model of hardness and fracture toughness of solids[END_REF] and Chen-Niu (CN) [START_REF] Chen | Modeling hardness of polycrystalline materials and bulk metallic glasses[END_REF], are based on elastic properties, namely, bulk and shear moduli. As shown previously [START_REF] Solozhenko | Prediction of novel ultrahard phases in the B-C-N system from first principles: Progress and problems[END_REF], in the case of superhard (H V ≥ 40 GPa) compounds of light elements, the Lyakhov-Oganov model gives slightly underestimated values of hardness, while empirical models are not reliable. Fracture toughness (K Ic ) was evaluated using the Mazhnik-Oganov model [START_REF] Mazhnik | A model of hardness and fracture toughness of solids[END_REF]. Table 4 shows the hardness and other mechanical properties of the dense carbon, BN and SiC phases calculated using all four models.

It is noteworthy that the density of all three phases with quartz topology is higher than the density of the corresponding cubic phases (see Table 3), i.e., qtz C 6 , qtz BN and qtz SiC are ultrahigh density phases.

The hardness and mechanical properties of qtz C 6 are, as expected, close to those of diamond and lonsdaleite. The corresponding values for qtz BN and especially for qtz SiC are significantly lower and are at the level of the mechanical properties of cubic boron nitride and cubic silicon carbide, respectively. It should be noted, however, that the hardness of all three phases with quartz topology is about 5% higher than that of the corresponding cubic phases. Such increased hardness is probably related to the ultrahigh densities of the qtz phases resulting from the distorted tetrahedron building blocks.

Dynamic and thermal properties from the phonons

Phonon band structures

A relevant criterion for phase stability can be obtained from the dynamic properties derived from the phonon modes. The phonon energies for qtz C 6 , qtz BN and qtz SiC were then calculated, and the corresponding band structures were plotted along the hexagonal Brillouin zone in the reciprocal space.

The corresponding band structures are shown in Fig. 2.

The bands develop along the main lines (horizontal direction) of the hexagonal Brillouin zone (reciprocal k-space). The vertical direction shows the frequencies ω, which are given in terahertz (THz). There are 3N phonon total modes with 3 acoustic modes starting from zero frequency (ω = 0 at the  point, center of the Brillouin zone), up to a few terahertz and 3N-3 optical modes at frequencies higher than three. The three acoustic modes correspond to the lattice rigid translation modes with two transverse modes and one longitudinal mode. The remaining bands correspond to the optical modes. In all three subfigures there are no negative frequencies, and the corresponding carbon allotrope and two binary phases are dynamically stable. The latter indicates that these phases, once synthesized, can exist at ambient conditions. In qtz C 6 , the highest band culminates in the vicinity of ω ~ 40 THz, a value that has been observed for diamond by Raman spectroscopy [START_REF] Krishnan | Raman spectrum of diamond[END_REF]. Binary compounds are characterized by lower energy bands. ....

Thermodynamic properties

The thermodynamic properties of the new phases were calculated from the phonon frequencies using the statistical thermodynamic approach [START_REF] Dove | Introduction to lattice dynamics[END_REF] on a high-precision sampling mesh in the Brillouin zone.

The temperature dependencies of the heat capacity at constant volume (C v ) and entropy (S) of qtz С 6 , qtz BN and qtz SiC are shown in Fig. 3 in comparison with experimental C v data for diamond [START_REF] Desorbo | Specific heat of diamond at low temperatures[END_REF][START_REF] Victor | Heat capacity of diamond at high temperatures[END_REF], cubic BN [START_REF] Solozhenko | Thermodynamic properties of boron nitride[END_REF] and cubic SiC [START_REF]Thermodynamic properties of individual substances[END_REF]. It is quite expected that the heat capacities of all three phases with quartz topology formed by distorted tetrahedra are higher than the heat capacities of the corresponding cubic phases.

Electronic band structures and density of states

Using the crystal structure parameters given in Table 1, the electronic band structures were obtained using the all-electrons DFT-based augmented spherical method (ASW) [START_REF] Eyert | Basic notions and applications of the augmented spherical wave method[END_REF] and are shown in Figure 4.

The bands develop along the main directions of the primitive hexagonal Brillouin zones. To the extent that all three phases exhibit band structures characterized by energy gaps between the valence band (VB) and the empty conduction band (CB), the energy reference along the vertical energy axis is with respect to the top of the VB: (E-E V ). qtz C 6 has a twice smaller band gap than diamond (~5 eV), showing a different behavior between dia and qtz topologies in the electronic structure behavior. The largest band gap is observed for qtz BN, which remains smaller than for cubic BN. The same feature of reduced band gap is observed for qtz SiC. It is also relevant to highlight that continuous VB in qtz C 6 versus two blocks in the binary compounds with a separation between low energy lying s-like states and higher energy lying p-like states up to E V . In conclusion, the phases with qtz topology are provided with enhanced covalence.

The band structure features are reflected in the site-projected electronic densities of states, DOS, shown in Fig. 5 with energy along the horizontal axis and DOS in 1/eV units along the vertical axis. qtz C 6 , expressed as C1 3 C2 3 , is characterized by identical DOS for both sites and a continuous VB extending over ~27 eV, indicating the purely covalent nature of the carbon allotrope. The sharp DOS peak at 1 eV below EV belongs to the carbon p-states, which are more localized than the s-states smeared in the lower part of the VB. The (empty) CB also shows structured p-DOS. Turning to the binary compounds, the VB is now divided into two parts corresponding to s-states up to -15 eV in qtz BN (-9 eV in qtz SiC), followed by a broad block up to EV. The band gap in qtz BN is the largest, ~5 eV, which is close to c-BN, while qtz SiC has the smallest band gap of about 1.5 eV.

With Pauling electronegativities B = 2.04; C = 2.55; N = 3.04, and Si = 1.80, one obtains |B-N| = 1 and |Si-C| = 0.75. These results indicate a larger covalence of SiC compared to the polar covalence of BN, hence the larger band gap in boron nitride.

Conclusions

This paper presents a new class of binary compounds with quartz topology using boron nitride and silicon carbide as examples. The structures of qtz BN and qtz SiC have been constructed from the template carbon allotrope C 6 with quartz topology. It has been shown that the new phases are the densest among all known BN and SiC polymorphs. Accordingly, they are characterized by the highest hardness. In addition to mechanical stability, the new phases are also dynamically stable as indicated by the phonon band structures. The heat capacities of the new phases calculated from the phonon frequencies were found to be higher than those of the corresponding cubic phases; this is also true for qtz C 6 compared to diamond. It can be assumed that all of the above is a consequence of the presence of distorted tetrahedra in the crystal structures of the phases with quartz topology. Finally, from the analysis of electronic band structures and densities of states, it was found that the new phases exhibit semiconducting behavior.
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 1 Figure 1. Ball-and-stick and tetrahedral representations of the crystal structures of three phases with quartz topology: (a) C 6 or C1 3 C2 3 (cf. Table 1) (brown and white balls for C1 and C2, respectively), (b) BN (green and gray balls for B and N), (c) SiC (blue and brown balls for Si and C).
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 2345 Figure 2. Phonons band structures of qtz C 6 (a), qtz BN (b) and qtz SiC (c).

Table 3

 3 Vickers hardness (H V ) and bulk moduli (B 0 ) of dense carbon, BN and SiC phases

			calculated using the thermodynamic model of hardness [26]	
				S Sp pa ac ce e g gr ro ou up p	a a = = b b ( (Å Å) )	c c ( (Å Å) )	ρ ρ ( (g g/ /c cm m 3 3 ) )	H H V V ( (G GP Pa a) )	B B 0 0 ( (G GP Pa a) )
	D Di ia am mo on nd d	F Fd d--3 3m m	3 3. .5 56 66 66 61 1 [ [3 31 1] ]	3 3. .5 51 17 7	9 98 8	4 44 45 5 [ [1 1] ]
	L Lo on ns sd da al le ei it te e	P P6 6 3 3 / /m mm mc c	2 2. .5 52 22 21 1 [ [3 32 2] ]	4 4. .1 11 18 86 6 [ [3 32 2] ]	3 3. .5 51 16 6	9 97 7	4 44 43 3
	q qt tz z C C 3 3	# #1 18 80 0 [ [7 7] ]	P P6 6 2 2 2 22 2	2 2. .6 60 05 5 [ [7 7] ]	2 2. .8 80 01 1 [ [7 7] ]	3 3. .6 63 35 5	1 10 01 1	4 46 60 0
	q qt tz z C C 3 3	# #1 18 80 0 [ [8 8] ]	P P6 6 2 2 2 22 2	2 2. .6 61 13 3 [ [8 8] ]	2 2. .8 81 11 1 [ [8 8] ]	3 3. .6 60 00 0	1 10 00 0	4 45 56 6
	q qt tz z C C 6 6	# #1 18 81 1	P P6 6 2 2 2 22 2	2 2. .5 59 97 70 0	5 5. .5 58 86 65 5	3 3. .6 66 67 7	1 10 02 2	4 46 64 4
	c c--B BN N # #2 21 16 6	F F--4 43 3m m	3 3. .6 61 16 60 0 [ [3 33 3] ]	3 3. .4 48 87 7	5 55 5	3 38 81 1 [ [3 34 4] ]
	w w--B BN N # #1 18 86 6	P P6 6 3 3 / /m mc c	2 2. .5 55 50 05 5 [ [3 35 5] ]	4 4. .2 21 10 0 [ [3 35 5] ]	3 3. .4 47 75 5	5 54 4	3 37 75 5 [ [3 36 6] ]
	q qt tz z B BN N # #1 18 81 1	P P6 6 4 4 2 22 2	2 2. .5 59 95 54 4	5 5. .7 79 99 93 3	3 3. .6 65 54 4	5 58 8	3 39 95 5
	S Si iC C ( (3 3C C) ) # #2 21 16 6	F F--4 43 3m m	4 4. .3 35 58 81 1 [ [3 37 7] ]	3 3. .2 21 18 8	3 34 4	2 23 38 8
	q qt tz z S Si iC C # #1 18 80 0	P P6 6 2 2 2 22 2	3 3. .0 07 78 87 7	7 7. .0 05 53 37 7	3 3. .4 45 50 0	3 36 6	2 25 55 5

Table 4

 4 Mechanical properties of dense carbon, BN and SiC phases: Vickers hardness (H V ), bulk modulus (B), shear modulus (G), Young's modulus (E), Poisson's ratio () and fracture toughness (K Ic )

  Ref. 26 † Ref. 27 ‡ Ref. 28 § Ref. 29** E and  values calculated using isotropic approximation † † Calculated by Voigt averaging of literature data on elastic constants[START_REF] Lambrecht | Calculated elastic constants and deformation potentials of cubic SiC[END_REF] 

	ia am mo on nd d	9 98 8	9 90 0	1 10 00 0	9 93 3	4 44 45 5 [ [1 1] ]	5 53 30 0 [ [1 1] ]	1 11 13 38 8	0 0. .0 07 74 4	6 6. .4 4
	L Lo on ns sd da al le ei it te e	9 97 7	9 90 0	9 99 9	9 94 4	4 44 43 3	4 43 32 2	5 52 21 1	1 11 11 15 5	0 0. .0 07 70 0	6 6. .2 2
	q qt tz z C C 3 3	# #1 18 80 0 [ [7 7] ]	1 10 01 1	9 90 0	--	8 88 8 [ [7 7] ]	4 46 60 0	4 43 33 3 [ [7 7] ]	--	--	--	--
	q qt tz z C C 3 3	# #1 18 80 0 [ [8 8] ]	1 10 00 0	8 88 8	1 11 13 3 [ [8 8] ]	1 11 10 0	4 45 56 6	4 45 52 2 [ [8 8] ]	5 58 87 7 [ [8 8] ]	1 12 22 29 9	0 0. .0 04 47 7	6 6. .8 8
	q qt tz z C C 6 6	# #1 18 81 1	1 10 02 2	9 90 0	1 10 04 4	1 10 00 0	4 46 64 4	4 44 40 0	5 54 46 6	1 11 15 59 9	0 0. .0 06 61 1	6 6. .4 4
	c c--B BN N # #2 21 16 6	5 55 5	5 50 0	7 73 3	6 67 7	3 38 81 1 [ [3 34 4] ]	3 39 99 9 [ [3 34 4] ]	8 88 87 7	0 0. .1 11 12 2	4 4. .8 8
	w w--B BN N # #1 18 86 6	5 54 4	5 50 0	7 72 2	6 65 5	3 37 75 5 [ [3 36 6] ]	3 39 90 0	3 39 97 7	8 88 89 9	0 0. .1 12 20 0	5 5. .1 1
	q qt tz z B BN N # #1 18 81 1	5 58 8	5 51 1	6 63 3	5 56 6	3 39 95 5	3 39 96 6	3 37 70 0	8 84 47 7	0 0. .1 14 43 3	6 6. .4 4
	S Si iC C ( (3 3C C) ) # #2 21 16 6	3 34 4	3 30 0	3 32 2	3 35 5	2 23 38 8	2 22 25 5 † † † †	1 19 99 9 † † † †	4 46 61 1 † † † †	0 0. .1 15 53 3 † † † †	3 3. .3 3
	q qt tz z S Si iC C # #1 18 80 0	3 36 6	3 31 1	3 31 1	3 34 4	2 25 55 5	2 22 28 8	1 19 97 7	4 46 60 0	0 0. .1 16 65 5	3 3. .3 3
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