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SIGNIFICANCE STATEMENT 1 

Pigmentation variation in the polytypic brown trout (Salmo trutta) has an unknown 2 

genomic basis. Using redundancy analyses and genome-wide association studies, authors 3 

showed that pigmentation has a large polygenic basis in this species, based on hundreds of 4 

loci known to be associated to colour. Redundancy analysis also showed that backcrossed 5 

wild trout converged to a locally adaptive Mediterranean pigmentation pattern despite the 6 

release of Atlantic hatchery fish. 7 

  8 
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ABSTRACT 32 

The association of molecular variants to phenotypic variation is a main issue in biology, 33 

often tackled with genome-wide association studies (GWAS). GWAS are challenging, with 34 

increasing, but still limited use in evolutionary biology. We used redundancy analysis (RDA) 35 

as a complimentary ordination approach to single- and multi-trait GWAS to explore the 36 

molecular basis of pigmentation variation in brown trout (Salmo trutta) belonging to wild 37 

populations impacted by hatchery fish. Based on 75,684 single nucleotide polymorphic 38 

(SNP) markers, RDA, single- and multi-trait GWAS allowed to extract 337 independent 39 

“colour patterning loci” (CPLs) associated with trout pigmentation traits, such as the 40 

number of red and black spots on flanks. Collectively, these CPLs (i) mapped onto 35 out of 41 

40 brown trout linkage groups indicating a polygenic genomic architecture of pigmentation, 42 

(ii) were found associated to 218 candidate genes, including 197 genes formerly mentioned 43 

in the literature associated to skin pigmentation, skin patterning, differentiation or 44 

structure notably in a close relative, the rainbow rout (Onchorhynchus mykiss), and (iii) 45 

related to functions relevant to pigmentation variation (e.g., calcium- and ion-binding, cell 46 

adhesion). Annotated CPLs include genes with well-known pigmentation effects (e.g., 47 

PMEL, SLC45A2, SOX10), but also markers associated to genes formerly found expressed in 48 

rainbow or brown trout skins. RDA was also shown to be useful to investigate management 49 

issues, especially the dynamics of trout pigmentation submitted to several generations of 50 

hatchery introgression. 51 

 52 

Keywords: ancestry – admixture – genetic drift – linkage disequilibrium – melanocytes— multi-trait 53 

phenotype – salmonid 54 
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1— INTRODUCTION 55 

Testing for genotype-phenotype association is common in many biological disciplines, 56 

including the study of genotype-phenotype relationships in biomedical, agronomical, or 57 

evolutionary studies. Using data generated from genome-wide single nucleotide 58 

polymorphism (SNP) surveys, genotype-phenotype associations are often viewed through 59 

the lens of genome-wide association studies (GWAS). Despite their success (e.g., Visscher 60 

et al., 2017; Tam et al., 2019), the use of GWAS remain challenging. The poor ability of 61 

GWAS to detect variants except those with large effects, to tackle complex trait 62 

architectures, and their propensity to be affected by spurious associations have been 63 

commonly reported (e.g., Rockman, 2012; Wellenreuther and Hansson, 2016; Boyle et al., 64 

2017; Tam et al., 2019). These issues, together with robustness over sample sizes, and poor 65 

consideration of population stratification still limit the application of GWAS in wild 66 

populations (‘wild GWAS’; Santure and Garant, 2018). GWAS remain underrepresented in 67 

evolutionary studies so far (Ahrens et al., 2018). However, increased access to genome-68 

wide distributed markers through next-generation sequencing technologies allowed for an 69 

extended application of ‘wild GWAS’ to detect SNPs involved in adaptive trait variation 70 

(e.g., Johnston et al., 2011; Hansson et al., 2018; Duntsch et al., 2020; Lundregan et al., 71 

2020; Blanco-Pastor et al., 2021). This includes the Atlantic salmon (Salmo salar) with focus 72 

on age at maturity as the trait of interest (e.g., Barson et al., 2015; Sinclair-Waters et al., 73 

2020; but see Hecht et al., 2013). Without searching to minimize findings reported in these 74 

studies, the use of GWAS yielded mixed results as no or very few candidate SNPs or genes 75 

linked to the trait(s) of interest were detected. For example, because of a low sample size 76 

which is the rule in most studies of wild organisms, Hansson et al. (2018) reported no 77 
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association using GWAS for wing length variation in warblers, while adaptive markers were 78 

previously identified. 79 

It seems legitimate to question if other association methods could perform 80 

reasonably well to (i) detect relevant SNPs or genomic regions associated to phenotypic (or 81 

life-history) traits, (ii) identify candidate genes with functional significance for the trait(s) 82 

of interest (i.e., known to be expressed in a tissue relevant for that trait), and (iii) inform 83 

onto eco-evolutionary processes that operate in wild populations. In a former review on 84 

multivariate data analysis using molecular markers, Jombart et al. (2009) reported that 85 

RDA— a constrained ordination method that has been used for decades in numerical 86 

ecology (Legendre and Legendre, 2012; Capblancq and Forester, 2021)— was neglected in 87 

population genetics studies so far. The gap was filled over years, and RDA became a 88 

standard to identify adaptive markers in genotype-environment association (GEA) studies 89 

(Capblancq and Forester, 2021). This includes fish GEA (e.g., Hecht et al., 2015; Brauer et 90 

al., 2016; Babin et al., 2017; Dalongeville et al., 2018; Bekkevold et al., 2019). However, 91 

RDA appears largely – if not totally— restricted to GEAs, while GWAS are devoted to 92 

genotype-phenotype associations. This observation has no methodological support as 93 

environmental and phenotypic data are interchangeable in RDA. Moreover, RDA could 94 

potentially better manage some of the drawbacks associated to GWAS. Indeed, 95 

associations detected by RDA were shown poorly dependent on  false positive SNPs 96 

(Capblancq et al., 2018; Forester et al., 2018), and robust over sample sizes tested (Forester 97 

et al., 2018). Performances of RDA to investigate an adaptive genotype-phenotype 98 

association have yet to be tested, at least empirically. 99 
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In this study, we performed RDA and GWAS on a genomic dataset (>75K SNPs) 100 

produced by Leitwein et al. (2018), coupled with a high quality phenotypic characterisation 101 

of body pigmentation in 112 brown trout (Salmo trutta). As variation in body colour and 102 

pigmentation patterns are of wide interest in biology and are often adaptive (Hubbard et 103 

al., 2010; Cuthill et al., 2017; San José and Roulin, 2017; Orteu and Jiggins, 2020), the choice 104 

of the brown trout appears an interesting case study to evaluate the performance and 105 

complimentarity of GWAS and RDA to detect relevant variants involved in adaptive 106 

genotype-phenotype association. Indeed, S. trutta is a highly polytypic species for many 107 

traits, including body colour and pigmentation, going from continuous colour (silver, 108 

brownish, greenish) to complex spotty, marbled, blotchy and striped patterns (Colihueque, 109 

2010). These patterns are traditionally included for subspecies and lineage description, but 110 

also population characterisation and the detection of hybrids (e.g., Mezzera et al., 1997; 111 

Delling et al., 2000; Aparicio et al., 2005; Kocabaş et al., 2018; Duchi, 2018; Lorenzoni et al., 112 

2019). Indeed, specific pigmentation patterns (e.g., spots) in trout have been shown to be 113 

under simple genetic control in controlled-crosses experiments (Blanc, Poisson and Vibert, 114 

1982; Blanc, Chevassus and Krieg, 1994; Skaala and Jørstad, 1988; Colihueque, 2010). 115 

However, the genomic architecture of pigmentation variation (i.e., the number and 116 

distribution of loci over the genome), and the genes responsible for adaptive pigmentation 117 

variation are largely unknown in trout with still limited insights coming from gene 118 

expression studies (Sivka et al., 2013; Djurdjevič et al., 2019). We thus expect that RDA 119 

and/or GWAS could inform on the molecular basis of pigmentation pattern variation 120 

observed among Atlantic and Mediterranean hatchery trout, but also wild-caught 121 

Mediterranean trout that present different levels of admixture with hatchery individuals 122 

(Leitwein et al., 2018). 123 
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The main aim of this study is thus to document the ability of RDA and GWAS to 124 

identify relevant candidate loci involved in pigmentation variation in the brown trout, 125 

including wild trout from Mediterranean populations and hatchery individuals issued from 126 

the Mediterranean and Atlantic lineages. We also use the information extracted by RDA to 127 

illustrate shift in pigmentation patterns that occurred over multiple generations of 128 

hatchery introgression in these local populations. 129 

 130 

2 - MATERIALS AND METHODS 131 

2.1 - BROWN TROUT’S GENOMICS DATA  132 

Double digested restriction site-associated DNA sequencing (ddRADseq) data used in this 133 

study are from Leitwein et al. (2018) and available at NCBI Short Read Archive under the 134 

study accession SRP136716. The data set consists in 75,684 genome-wide SNPs distributed 135 

over 40,519 RAD-loci (i.e., a RAD-locus may contain several linked SNPs) for 112 trout of 136 

hatchery and wild caught origins. As in Leitwein et al. (2018), loci were retained according 137 

to the following filters (a) a minimum depth of 5 reads; (b) a genotype call rate of at least 138 

80%, (c) a minimum allele frequency of 2%, and (d) a maximum observed heterozygosity of 139 

80%. Over the112 trout, eighty-two wild caught individuals were fished in the headwaters 140 

of three rivers within the Mediterranean Orb River catchment (France) (Gravezon, Mare, 141 

and Orb rivers; Leitwein et al., 2016, 2018 for details). Rivers are located less than 30km 142 

apart from each other (air-line distance). This small Mediterranean catchment has been 143 

seeded by alien hatchery fish of Atlantic origin for decades, and seeded by a locally derived 144 

strain of Mediterranean origin over the last 15 years (Leitwein et al., 2016, 2018). Atlantic 145 

and Mediterranean trout refer to two distinct evolutionary lineages within the brown trout 146 
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species complex (e.g., Sanz, 2018). They differ from each other for body colour and 147 

patterning (e.g., Lascaux, 1996; Aparicio et al., 2005). Leitwein et al. (2018) showed that 148 

these wild caught individuals consisted in released hatchery individuals of both 149 

Mediterranean and Atlantic origins, F1’s, F2’s, ‘early’ and ‘late’ backcrossed individuals, and 150 

‘pure’ natural Mediterranean fish (Leitwein et al., 2018). ‘Early’ and ‘late’ backcrossed 151 

individuals correspond to Mediterranean wild-caught fish with distinct distributions of 152 

Atlantic ancestry tracts in their genome. Thirty hatchery individuals have been also 153 

considered. Hatchery fish included in this study consisted in N = 15 hatchery trout of 154 

Atlantic origin, and N = 15 hatchery trout of Mediterranean origin. Atlantic hatchery fish 155 

originated from the Cauterets hatchery that maintain a brown trout strain distributed 156 

worldwide (Bohling et al., 2016). Mediterranean hatchery fish have been randomly 157 

sampled in a local strain formerly established using mature trout from the Gravezon River 158 

by a local fishery authority (Fédération Départementale de Pêche de l’Hérault) in 2004, and 159 

now used to seed Mediterranean local rivers within the Orb catchment to minimize the 160 

release of foreign Atlantic trout. Private hatcheries are also located in the Orb catchment, 161 

notably on the Gravezon River, and escapees may still impact natural populations (Leitwein 162 

et al., 2018). Fishing was carried out by this authority under the agreement DDTM34-2021-163 

03-11786. 164 

 165 

2.2 - PHENOTYPIC DATA  166 

Acquisition of pigmentation data followed Lascaux (1996) and is used by numerous 167 

management authorities in France. Similar analysis and quantification of pigmentation data 168 

are performed in other fish species (e.g., cichlids; Albertson et al., 2014). The set of 169 
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variables considered in this protocol is listed and illustrated on pictures in Suppl. Mat. Fig. 170 

S1. Data were recorded from individual photographs of the 112 fish considered for genomic 171 

analyses. Photographs were taken at fishing on slightly anesthetized trout with eugenol. A 172 

camera Canon® EOS 1000D was used. After recovery, fish were released in the wild or in 173 

hatchery tanks, respectively. Scales were not sampled and the age of wild-caught fish was 174 

not estimated. Sizes of wild caught fish ranged from 10.1 cm to 33.7cm, indicating juveniles, 175 

sub-adults and adult fish. All hatchery fish have size > 24.0 cm. Quantitative (N =19) and 176 

semi-quantitative variables (N =11) were recorded by visual examination of photographs 177 

of the left flank of each individual fish as in Westley, Conway and Fleming (2012). 178 

Quantitative variables refer to punctuation patterns of the brown trout (e.g., number and 179 

diameter of spots) and are recognized important for this species (Blanc et al., 1982, 1994). 180 

Semi-quantitative variables refer to ‘ornamental’ appearance patterns (e.g., parr marks, 181 

fringes on fins, white ring around spots). Each quantitative punctuation variable was 182 

measured independently. Ornamental variables have been coded by modalities, either 183 

present/absent [1,2] or, e.g., absent/partial/complete [1,2,3] (Table 1 and Suppl. Mat. 184 

Table S1). This set of variables avoided focusing only on peculiar attributes of the 185 

pigmentation patterns. Other traits participating to body colour that can be also important 186 

for trout (e.g., background colour, brightness) were not considered in this study because of 187 

non-standard light conditions during field data acquisition.  188 

In addition to pigmentation data, size (fork length) of individuals was acquired in 189 

the field (age is unknown and not considered in this study). Furthermore, as sex was shown 190 

to influence (Yaripour et al., 2020) or not (Kocabaş et al., 2011) body pigmentation in trout,  191 

individuals have been sexed using a microsatellite marker targeting a salmonid sex-192 

determining locus (Yano et al., 2013). Correlations among the full set of phenotypic 193 



10 

 

variables—pigmentation, sex, and size— were checked for minimizing collinearity in this data 194 

set. A conservative r > 0.7 rule-of-thumb was considered to discard explanatory variables 195 

(Dormann et al., 2013). Pictures and phenotypic data have been deposited in Dryad (doi: 196 

completed under acceptance). 197 

 198 

2.3 - GENOTYPE-PHENOTYPE ASSOCIATION 199 

The evaluation of the genotype-phenotype association between SNPs and pigmentation 200 

patterns was performed using three distinct approaches: RDA, single- and multi-trait 201 

GWAS. Hereafter, a ‘colour patterning locus’ (CPL) was coined as any candidate RAD-locus 202 

found significantly associated with at least one of the uncorrelated variables considered in 203 

this study. 204 

2.3.1 – Redundancy analysis – We used RDA to investigate any association between 205 

genomic and pigmentation trait data. RDA was performed with the uncorrelated 206 

pigmentation variables as the explanatory and the SNPs as the response variables. Missing 207 

genomic data (2.63%) were imputed by the most commonly observed genotype. Missing 208 

phenotypic data (3.54%) were imputed by the mean of observed trait for quantitative data, 209 

and the most commonly observed phenotype for semi-quantitative data. We classified 210 

SNPs as showing statistically significant association with individual 211 

pigmentation/ornamental traits when they loaded with more than 2.5 standard deviations 212 

(S.D.) from the mean. 213 

A forward model selection was used to select for the relevant uncorrelated 214 

phenotypic variables in the RDA (Blanchet et al., 2008). Indeed, increasing the number of 215 

explanatory variables makes RDA similar to unconstrained ordination method (i.e., 216 
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principal component analysis [PCA]) as the percentage of variation explained increases 217 

when considering more explanatory variables. Models were defined, first including the 218 

eleven uncorrelated phenotypic response variables, then reducing this number. The Aikake 219 

Information Criterion was computed in each case to select the model minimizing deviance. 220 

Permutation tests (N = 999) were performed by permuting individuals in each model. This 221 

procedure was first established for the RDA, then for each successive RDA axis to 222 

investigate if observed patterns carried significant association between relevant traits and 223 

SNPs. Analyses were performed with the vegan package (https://cran.r-224 

project.org/web/packages/vegan/index.html), following rules provided by B. Forester in a 225 

vignette on population genetics with R (https://cran.r-project.org/) and available at: 226 

https://popgen.nescent.org/2018-03-27_RDA_GEA.html. Once relevant variables were 227 

identified in models, each significant SNP was associated to the specific trait it was the most 228 

significantly correlated with. As the  2.5 S.D. threshold is arbitrary (e.g., Babin et al., 2017), 229 

we looked at seventeen specific genes known to be involved in pigmentation in vertebrates 230 

in order to evaluate if important candidate genes might have been dismissed by RDA. They 231 

include classical players of pigmentation regularly studied in fish, mice and/or human 232 

(Mc1r, Tyr, Dct, Oca2, Mitf1, Kit, Tyrp1, Pomca1, Pomca2, Pomcb, Asip, Slc24a5, Oa1, 233 

Ednrb, Hdac1, Vps18 and Scg2a; see, e.g., Raposo and Marks 2007; Protas and Patel 2008; 234 

Kelsh et al., 2009; Baxter et al., 2019, Wang T. et al., 2020). Genes given in bold were more 235 

specifically studied for gene expression differences in brown trout skin (Sivka et al., 2013; 236 

Djurdjevič et al., 2019). 237 

2.3.2 - Genome-wide association studies – GWAS are typically based on linear mixed models 238 

to fit one SNP at a time to a single trait (Hackinger and Zeggini, 2017). These are simple 239 

statistical models, but one SNP may correlate with several traits. These correlations can be 240 
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used in multi-trait linear mixed models for GWAS to reduce false positives and increase the 241 

statistical power for association mapping (O’Reilly et al., 2012; Korte et al., 2012). Both a 242 

single- and a multi-trait analysis were performed in this study. 243 

A single-trait association (single-trait GWAS, hereafter) was first considered by 244 

fitting each phenotypic pigmentation variable with SNPs by linear regression. We used a 245 

penalized maximum-likelihood least absolute shrinkage and selection operator (LASSO) 246 

model to select for sets of SNPs implied in each trait association, then solving:  247 

                      (1) 248 

in which Y ∈ ℝ represents the response phenotypic variable, X ∈ ℝ p a vector of predictor 249 

variables (i.e., SNPs), λ the penalty parameter, β0 the y-intercept of multiple linear 250 

regression, and β  ℝ p a vector of βj coefficients (Friedman et al., 2010). This vector of βj 251 

coefficients represents the effect size βj of the jth SNP conditional on the effects of all other 252 

SNPs. The penalized term λ shrinks the regression coefficient towards zero, keeping only a 253 

small number of SNPs with large effects in the model. A cyclical coordinate descent 254 

procedure was retained for model selection (Friedman et al., 2010). The retained model 255 

was determined by cross-validation. Log(λ) was estimated by minimizing the mean 256 

quadratic error. The number of positive βj coefficients was estimated from log(λ), with each 257 

βj coefficient associated to a suite of SNPs considered as involved in the association. 258 

Analyses were performed with the glmnet package (https://cran.r-259 

project.org/package=glmnet). 260 

https://paperpile.com/c/hNK78S/Z1PM
https://paperpile.com/c/hNK78S/Z1PM
https://paperpile.com/c/hNK78S/Z1PM
https://paperpile.com/c/hNK78S/Z1PM
https://paperpile.com/c/hNK78S/Z1PM
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A multi-trait association (Multi-trait GWAS, hereafter) was also implemented. We 261 

used the MultiPhen package (O’Reilly et al., 2012) to test for the linear combination of 262 

phenotypes associated with the genotypes at each SNP. Such one approach may capture 263 

effects hidden to single-trait GWAS. It performs a ‘reversed regression’, with multiple 264 

phenotype predictors and genetic variant as outcome (i.e., G SNPs X(i) = {X(i1),…, X(iG)} are 265 

explained by K phenotypic pigmentation variables Y(i) = {Y(i1),…, Y(iK)}). SNPs are encoded by 266 

allele count (X(ig) ∈ {0, 1, 2}). An ordinal logistic regression was considered to derive the 267 

probability than one SNP is associated to a multi-trait phenotype (Porter and O’Reilly, 268 

2017). Permutation tests were performed to determine one genome-wide false discovery 269 

rate (FDR) adjusted significance threshold to detect false positives (Dudbridge and 270 

Gusnanto, 2008). A FDR-adjusted probability P < 5  10-8 was retained to consider one SNP 271 

as significantly implied in a multi-trait pigmentation association. 272 

In single- and multi-trait GWAS, we controlled for population stratification by using 273 

nine distinct trout samples depending on the length and number of ancestry tracts resulting 274 

from admixture between foreign Atlantic and local Mediterranean populations (Leitwein 275 

et al., 2018). The nine groups include the two original hatchery samples (Atlantic [n = 15], 276 

Mediterranean [n = 15]), then seven distinct clusters of wild-caught trout. Following 277 

Leitwein et al. (2018), wild-caught trout were grouped as follows: F1’s (n = 7), F2’s (n = 4), 278 

‘early’ (n = 20) and ‘late’ (n = 15) backcrossed individuals resulting from crossings between 279 

wild and released hatchery fish, then ‘pure’ wild individuals assigned to each of the three 280 

local populations (Mare: n = 4; Orb: n = 10; Gravezon, n = 15). As some wild caught trout 281 

were identified as released hatchery individuals (Leitwein et al., 2018), they have been 282 

grouped with individuals sampled in the hatchery type they have been assigned (Atlantic: 283 

https://paperpile.com/c/hNK78S/buOH
https://paperpile.com/c/hNK78S/buOH
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n = 6 caught in the Gravezon River, probably escapees from private hatchery; 284 

Mediterranean: n = 1 caught in the Mare River). 285 

 286 

2.4 - MAPPING AND ANNOTATION 287 

CPLs detected by RDA and GWAS have been mapped on the Atlantic salmon genome (Lien 288 

et al., 2016; Genbank assembly: GCA_000233375.4) and on the high density linkage map 289 

of S. trutta (Leitwein et al., 2017). The final VCF and the PLINK files for S. trutta LGs are 290 

available at NCBI under the study accessions SRZ187687 and SRZ187688 291 

(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP136716). We searched for 292 

genes located in a 25kb window upstream or downstream of each CPL (arbitrary range). 293 

When one association with a gene was detected, markers were assigned to the gene body 294 

(exons and introns), to the upstream/downstream sequences of the genes, or other specific 295 

entities (transposable elements, pseudogenes). Using S. salar annotations as inputs, gene 296 

ontologies (GO) for biological processes and molecular functions were derived for genes 297 

associated to CPLs using QuickGO (https://www.ebi.ac.uk/QuickGO/). When annotations 298 

were unavailable on the salmon genome, a search was launched on UniProtKB 299 

(https://www.uniprot.org/uniprot/) for the protein sequence encoded by the gene. Only 300 

annotations with similarity >90% were retained. 301 

The functional relevance of gene sets issues from RDA and GWAS has been 302 

evaluated by screening (i) curated lists of pigmentation gene provided by Baxter et al. 303 

(2019) for zebrafish, but also mice and human, (ii) genes found differentially expressed in 304 

skin of brown trout belonging to the Atlantic and marbled (S. t. marmoratus) lineages, as 305 

well as their hybrids (Sitka et al., 2013; Djurdjevič et al., 2019), (iii) genes identified as 306 



15 

 

differentially expressed among early life stages (i.e., when developmental signals for the 307 

establishment of pigmentation patterns take place) of the closely-related yellow mutant 308 

rainbow trout (Onchorhynchus mykiss) (Wu et al., 2022), and (iv) the available literature, 309 

including the associated supplementary information that might report lists of differentially 310 

expressed genes. This literature review focused on vertebrates. Because many genes 311 

associated to melanocyte development (i.e., melanin-producing neural-crest derived cells 312 

primarily responsible for skin colour and pigmentation) are also implied in melanoma 313 

development and skin colour variation when mutated (e.g., Uong and Zon, 2010; D’Mello 314 

et al., 2016), this literature search used specific queries. Queries were made using the gene 315 

ID (or aliases taken from GeneCards, https://www.genecards.org/) and a specific keyword. 316 

The retained keywords first aimed to cover the diversity of skin pigment cells in fish 317 

(chromatophores, including melano-, irido-, leuco-, and xanthophores) (e.g., Nüsslein-318 

Vollard and Singh, 2017; Parichy, 2021), all present in salmonid skin and trout in which 319 

erythrophores have also been found (Djurdjevič et al., 2015). The other keywords used 320 

were: skin, melanocyte, melanophore, melanosome (melanin-containing organelle), 321 

melanoma (squamous, cutaneous and uveal), pigment/-ation, keratinocyte (associated to 322 

melanocyte), chromatophore, iridiophore, xanthophore, follicle (hair or skin), nevus/-i 323 

(melanocyte proliferation), (epi)dermis, vitiligo, piebald/-ism, erythema/-tous, and 324 

sebocyte. This search was updated until August, 2021, each time using the Web of Science, 325 

PubMed and Google Scholar as databases, the latter providing access to a ‘grey’ literature 326 

(e.g., Ph.D. or M.Sc. thesis, patents). 327 

 328 

2.5 - GENOMIC DIFFERENTIATION 329 
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Distributions of FST values (Weir and Cockerham, 1984) were established using all SNPs, 330 

then for the subset of CPLs found significant in the RDA and GWAS. Single-locus FST values 331 

were estimated considering five distinct trout samples: the two samples of hatchery fish, 332 

then trout caught in each of the three rivers within the Orb catchment. The R package 333 

assigner (https://rdrr.io/github/thierrygosselin/assigner/man/fst_WC84.html) was used 334 

for these computations.  335 

 336 

3 - RESULTS 337 

 338 

3.1 - PIGMENTATION VARIABLES 339 

Eleven colour patterning variables over thirty were found not significantly correlated (r < 340 

0.7) (Suppl. Mat. Table S2), and retained for subsequent analysis (Table 1). Sex and size 341 

were also found uncorrelated to pigmentation variables (Suppl. Mat. Table S2) and also 342 

retained for next step analysis. 343 

 344 

3.2 - REDUNDANCY ANALYSIS  345 

Forward model selection showed that a model based on eight over the eleven 346 

pigmentation variables retained minimized the deviance in RDA (Macrost, N.PR.Tot, Zeb, 347 

Fr.An, L.Lat, Fr.P, Diam.PN and N.PN.Tot). Sex and sizewere not retained by the forward 348 

selection process, indicating they had no significant role in trout pigmentation variation in 349 

this study (Suppl. Mat. Table S3). Constrained inertia (i.e., the percentage of variation 350 
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explained by the eight uncorrelated pigmentation variables) was found to represent 351 

35.50% of the total inertia. 352 

Patterns of variation explained by the RDA were found to significantly structure the 353 

association between SNPs and pigmentation variables (P < 0.001). The first axis of RDA was 354 

also found significant (P < 0.001), and to represent 29.81% of the total inertia (Fig. 1). RDA 355 

axis 2 was found to explain only a tiny fraction of observed phenotypic variation (2.10%; 356 

Fig. 1), and was marginally significant (P = 0.051). Axis 1 represented approx. 84% (ratio: 357 

29.81/35.50) of constrained inertia, while axis 2 explained only approx. 6% (2.10/35.50). 358 

RDA results have been represented as a triplot in which individuals are positioned 359 

according to the relationship established between response and explanatory variables (Fig. 360 

1). The ornamental trait Macrost (a large pre-opercular black stain/spot) and the 361 

pigmentation trait N.PR.Tot (total number of red spots) explained 23.6% and 22.7%, 362 

respectively, of the total loading scores of phenotypic variables onto RDA axis 1. 363 

Results showed a clear distinction between colour patterns of Mediterranean and 364 

Atlantic hatchery fish, but also of the three wild trout populations that did not cluster 365 

together indicating that they do not present identical pigmentation patterns (Fig. 1A). This 366 

observation illustrates the polytypic nature of pigmentation in trout, even at a local scale. 367 

Atlantic hatchery fish were characterised by the total number of red spots, while the 368 

macrostigma spots, and the total number of black spots (N.PN.Tot) (i.e., melanic traits) 369 

characterised Mediterranean hatchery fish along RDA axis 1. This illustrates a potential 370 

trade-off between red vs black ornaments, thus in the presence of two different pigment 371 

cells, probably erythrophores and melanophores (Djurdjevič et al., 2015). According to 372 

their position along RDA axis 1, results confirmed that few wild caught individuals from the 373 



18 

 

Gravezon River were released Atlantic hatchery fish and that one individual from the Mare 374 

River is a released Mediterranean hatchery fish (Leitwein et al., 2018). Other individuals 375 

from the Gravezon River and ‘late backcrossed’ individuals have patterns close to hatchery 376 

Mediterranean fish (Fig. 1A; the hatchery was seeded by individuals caught in this river [see 377 

Materials and Methods section]). Individuals identified as F1’s (near equal hatchery Atlantic 378 

and wild Mediterranean ancestry) and wild individuals of the Mare and Upper Orb rivers 379 

presented intermediate positions between Mediterranean and Atlantic fish along RDA axis 380 

1 (Fig. 1A), while the few segregating F2 and ‘early’ backcrossed individuals were dispersed 381 

onto the RDA map. 382 

The position of the wild caught Orb River individuals referred to the marginally 383 

significant second axis of the RDA and to specific variables (L. Lat, Fr.P) that were mostly 384 

unobserved in other fish (Fig. 1A). 385 

The ordination of SNPs by RDA is further detailed in Fig.1B. A total of 1,130 distinct 386 

loci (1.49% of 75,684 SNPs) were found significantly associated to the first two RDA axes 387 

(i.e., > 2.5 S.D. from the mean). Only 22 loci (0.03%) were significantly associated to each 388 

of the two axes for distinct phenotypic variables, indicating independence (orthogonality) 389 

of RDA axes. Different numbers of SNPs were found associated with pigmentation 390 

variables: 299 with Fr.P, 269 with N.PR.Tot, 225 with N.PN.Tot, and 213 with Macrost. Each 391 

SNP was only associated with the variable it was the most significantly associated (i.e., 392 

pleiotropic effects not considered). As axis 2 was however found only marginally significant 393 

and substantially affected by individuals from one single population (Orb River, above), only 394 

SNPs associated to the first RDA axis will be considered further. This discarded loci 395 

associated to Fr.P that explained most of the variation for the second RDA axis. This results 396 
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in three hundred and twenty SNPs associated with the main RDA axis (0.42% of 75,684 397 

SNPs). Results are summarized in Table 2. 398 

We further searched for the loading scores of SNPs associated to 17 pigmentation 399 

genes regularly studied in fish within the distribution of loci over the RDA axis 1. We 400 

detected only eight of these genes representing 30 SNPs for which sequencing reads were 401 

available in our data (Dct, Mitf1, Kit, Tyrp1, Pomca1, Pomca2, Pomcb and Scg2a; Suppl. 402 

Mat. Fig. S2). Only one SNP located downstream the Mitf1 (microphthalmia-associated 403 

transcription factor 1) gene was close to the  2.5 S.D. threshold considered in this study. 404 

The Mitf1 gene is a pleiotropic gene involved in the differentiation, proliferation, migration 405 

and survival of melanocytes (Levy et al., 2006; Cheli et al., 2010). With a negative loading 406 

score on the first axis of the RDA, this SNP is effectively associated to the expression of 407 

black colour (Fig. 1B). The Scg2a (Secretogranin 2a) gene found differentially expressed in 408 

trout skin (Sivka et al., 2013) was relatively close to significance (Suppl. Mat. Fig. S2). This 409 

may indicate RDA false negatives. However, SNPs associated to Mitf1 and Scg2a were not 410 

identified as putative CPLs by GWAS either (Suppl. Mat. Table S4). 411 

 412 

3.3 - SINGLE- AND MULTI-TRAIT GWAS 413 

After selection of the penalized term using the cyclical descent procedure, only two 414 

pigmentation variables allowed for relevant LASSO model construction in single trait 415 

GWAS: N.PN.Tot (total number of black spots: 17 candidate SNPs), and N.PR.Tot (total 416 

number of red spots: 9 candidate SNPs) (Table 2; Suppl. Mat. Table S4). These two variables 417 

were found significant in RDA, and negatively correlated (Fig. 1). The location of candidate 418 

SNPs detected using single GWAS models are reported in Fig. 2A. 419 
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Two multi-trait GWAS models were retained (Fig. 2B). The first one jointly 420 

retained N.PN.Tot and N.PR.Tot as variables for which some SNPs were found associated. 421 

The second selected model considered seven of the eight variables formerly retained in the 422 

RDA (except Zeb). Seven and thirty-one SNPs were considered as significant in these multi-423 

trait GWAS, respectively (Table 2; Suppl. Mat. Table S4). Lower number of SNPs detected 424 

in both the single- and multi-trait GWAS might be indicative of associations involving large 425 

effect loci. 426 

Despite similarities for the phenotype variables put forward by the different 427 

genotype-phenotype association methods (Table 2), only one single SNP (RAD-locus) was 428 

found in common between RDA and the single-trait GWAS for number of black spots (Fig. 429 

2A). No other SNP was commonly detected by distinct genotype-phenotype association 430 

methods, and especially no SNP was shared among single- and multi-GWAS models. 431 

However, both a multi-trait GWAS model and the RDA indicated a genotype-phenotype 432 

association at the ITGAV (Integrin Alpha 5) gene located on LG24 of the brown trout, but 433 

methods did not identify the same locus (Suppl. Mat. Table S4). Overall, the combination 434 

of RDA, single- and multi-trait GWAS resulted in a total of 384 SNPs considered as CPLs 435 

putatively involved in pigmentation variation in the brown trout (0.51% of the total number 436 

of SNPs). These CPLs corresponds to 337 RAD-loci (0.83% of the total number of RAD-loci). 437 

The 337 CPLs are listed in Suppl. Mat. Table S4. The main information regarding variables 438 

and loci found associated in each method are summarized in Table 2. 439 

 440 

3.4 - GENOMIC DIFFERENTIATION 441 
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The distributions of FST values for the 40,519 RAD-loci and the 320 CPLs associated to axis 442 

1 of the RDA are reported in Fig. 3. The mean FST was estimated to FST = 0.286 [95% CI: 443 

0.284, 0.287] for the full set of SNPs, while this estimate was FST = 0.575 [95% CI: 0.569-444 

0.583] for the 320 CPLs detected with the RDA. Observed mean FST values were FST = 0.176 445 

(min. 0.02 – max: 0.38) and FST = 0.025 (min.: 0.00; max. 0.20) for the single- and the multi-446 

trait GWAS, respectively. Min/max values are reported rather than 95% CI because the low 447 

number of SNPs associated to phenotypic variables in each GWAS. The FST value for the 448 

Mitf1-associated locus found close to the significance for RDA axis 1 was FST = 0.478. 449 

 450 

3.5 - MAPPING ON S. TRUTTA LINKAGE GROUPS AND ANNOTATION  451 

Only the set of 337 RAD-loci CPLs was considered. Three hundred CPLs were mapped onto 452 

35 of the forty brown trout LGs defined in Leitwein et al. (2017) (Fig. 4), while 37 of them 453 

could not be adequately positioned on this high density linkage map because they mapped 454 

to several LGs probably due to the ancestral duplication of salmonid genomes, or because 455 

portions of this map remain unsufficiently characterized. The distribution of these 300 CPLs 456 

on each LG varied from zero (LG13, LG14, LG15, LG20, LG39) to 23 (LG22; 20 from RDA, 3 457 

from a GWAS), then 86 (LG31; 85 from RDA, 1 from a GWAS). LG22 and LG31 contained 458 

36.33% of mapped CPLs, while others were found evenly distributed across remaining LGs. 459 

The presence of false positives will be briefly discussed below, but, whatever the method 460 

CPLs were detected, they are distributed over several LGs, suggestive of a polygenic 461 

architecture of pigmentation in trout. 462 

The annotations of the 337 CPLs are reported in Suppl. Mat. Table S4. 463 

Supplementary Material Table S4 also provides details on gene names, their position and 464 
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the location of each CPL. Among them, 71 (21.07%) did not match with any gene in the 465 

25kb window retained in this study, and 254 were found located in the gene body (n = 141; 466 

41.84%) or in the upstream-downstream of genes (n = 113; 33.53%). The remaining portion 467 

(3.56%) was found associated to pseudogenes (n = 3) or long non-coding (lnc) RNA (n = 9) 468 

(Suppl. Mat. Fig. S3). Overall, this translated into CPLs associated to 218 distinct candidate 469 

genes in a 25kb window (Table 2; Suppl. Mat. Table S4). More than ninety percent (90.36%; 470 

197 out of 218) of these annotated genes have literature match dealing with their 471 

involvement in colour/pigmentation, skin patterning, differentiation or structure. This 472 

specifically includes 144 out of 218 annotated genes (66.05%; 22 detected by GWAS, 120 473 

by RDA, and two by RDA and GWAS) found expressed in the skin transcriptomes of rainbow 474 

trout produced by Wu et al. (2022). 475 

An excerpt of twenty-five of these 218 genes (11.93%) is reported in Table 3. Thirty-476 

two CPLs were found close to these 25 genes that have been reported in former 477 

pigmentation studies, in curated lists of pigmentation genes provided by Baxter et al. 478 

(2019) or Wu et al.’s (2022) rainbow trout transcriptomes. Table 3 includes seven CPLs 479 

associated to genes formerly found differentially expressed in the brown trout (Djurdjevič 480 

et al., 2019). 481 

 482 

3.6 - GO TERMS 483 

GO terms for molecular functions and biological processes of the 337 CPLs are reported in 484 

Suppl. Mat. Fig. S4. Calcium and metal ion binding were found to be the most 485 

representative molecular functions. GO-terms for biological functions highlighted cellular 486 
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adhesion processes (Suppl. Mat. Fig. S4A), signal transduction and translation, and 487 

transmembrane transport (Suppl. Mat. Fig. S4B). 488 

 489 

4 - DISCUSSION 490 

While recognized as a polytpic species with very distinct colour morphs, few studies were 491 

interested in pigmentation variation in the brown trout. Previous studies were either based 492 

on experimental crosses to study patterns of inheritance of few pigmentation traits (Blanc 493 

et al., 1982, 1994; Skaala and Jørstad, 1988; Skaala, Jørstad and Borgstrøm, 1991), or on 494 

the analysis of gene expression variation to investigate the molecular basis of pigmentation 495 

variation (Sivka et al., 2013; Djurdjevič et al., 2019). The genomic architecture of 496 

pigmentation variation was not investigated yet. The present study partly fills this gap by 497 

analyzing variation at >75,000 SNPs and several pigmentation variables in 112 brown trout 498 

using diverse association methods, namely RDA, single- and multi-trait GWAS whose 499 

findings were never compared yet. RDA is traditionally not considered to illustrate 500 

genotype-phenotype associations, but single- and multi-trait GWAS remain rarely 501 

compared, especially in fish (Yoshida and Yáñez, 2021). A single empirical study on the 502 

brown trout does not aim to discard the effectiveness of GWAS in fish (e.g., Barson et al., 503 

2015; Lemopoulos et al., 2019) or pigmentation studies (e.g., Kim et al., 2019; Wang S. et 504 

al., 2020; Wang et al., 2021). However, RDA showed interesting properties in GEAs such as, 505 

for example, robustness over sample sizes that may also benefit genotype-phenotype 506 

association studies in wild organisms. In the case of the brown trout, however, the effects 507 

of ontogenetic and environmental variations, but also sexual maturation on pigmentation 508 
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patterns were not or poorly investigated in this study (e.g. parr marks, present on too few 509 

individuals to be relevant in the model), and certainly deserve more attention. 510 

 511 

4.1 - RDA: A POWERFUL GENOTYPE-PHENOTYPE ASSOCIATION METHOD  512 

Capblancq and Forester (2021) coined redundancy analysis as the Swiss Army Knife for GEA, 513 

and the present study demonstrates it is a quite useful association analysis to investigate 514 

the molecular basis of a genotype-phenotype association in wild populations. In the brown 515 

trout, RDA highlighted the same main phenotypic variables than GWAS (total number of 516 

black or red spots), completed by other traits that were also selected the multi-trait GWAS. 517 

The presence of red and black spots reported by each approach is commonly reported to 518 

distinguish Atlantic and Mediterranean trout, respectively (Lascaux, 1996; Aparicio et al., 519 

2005).  520 

Unlike PCA (e.g., Duforet-Frebourg et al., 2016), or FST outlier methods (e.g., Hassl 521 

and Payseur 2016; Ahrens et al., 2018), RDA promoted only candidate SNPs with large FST 522 

values involved in observed phenotypic variation. For example, a classical application of a 523 

FST outlier method generally selects for the top 1% or 5% loci with the largest FST values 524 

irrespective of a relationship with a trait of interest (see Neethiraj et al., 2017 for a 525 

pigmentation study). Applied to brown trout data, most RDA candidates will have been not 526 

considered with an outlier approach while many other would have been despite lack of any 527 

functional relationship with processes regulating pigmentation patterns (Fig. 3). As PCA 528 

however, RDA promotes useful graphical interpretation to contrast groups of individual 529 

from each other (Fig. 1A; see Discussion below). 530 
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Results derived from RDA are strongly supported by functional evidence. This is 531 

illustrated by the high number of RDA-defined CPLs associated to genes involved in 532 

pigmentation at the developmental, tissular or cellular levels in other fish or vertebrates. 533 

Of outstanding importance is that one hundred and twenty genes detected by RDA as 534 

involved in pigmentation variation in the brown trout were effectively found differentially 535 

expressed across life-stages in the skin transcriptome of the rainbow trout yellow mutant 536 

(Wu et al., 2022). While body colours differ between trout, these genes are thus involved 537 

in the establishment of pigmentation phenotypes in close relatives. Functional evidence is 538 

also supported by GO-terms for molecular or biological functions. For example, calcium 539 

binding is important for melanogenesis (Bush and Simon, 2007; Bellono and Oancea, 2014; 540 

Jia et al., 2020), including regulation of spots on butterfly wings (Özsu and Monteiro, 2017). 541 

Metal ion binding is necessary in colour patterning and at various steps of melanogenesis, 542 

including transmembrane transport, melanocyte migration, or melanosome trafficking 543 

within melanocytes (e.g., Denecker et al., 2014; Logan et al., 2006; Hong and Simon, 2007; 544 

Wiriyasermkul et al., 2020). Furthermore, the main biological functions highlighted in this 545 

study (e.g., cellular adhesion processes, signal transduction and translation) are involved in 546 

chromatophore development, interactions among chromatophores or between 547 

melanocytes and other skin cell types (fibroblasts, keratinocytes) (Yamaguchi et al., 2007; 548 

Raposo and Marks, 2007; Patterson et al., 2014; Wiriyasermkul et al., 2020).  549 

Interestingly, some RDA-defined CPLs were also found associated to genes known 550 

to be involved in background colour adaptation (GABRA2, gamma-aminobutyric acid 551 

receptor subunit alpha 2; Bertolesi et al., 2016), or light-induced colour change (FGFR1, 552 

fibroblast growth factor receptor 1; Czyz, 2019). This suggests a genomic basis to 553 

https://paperpile.com/c/hNK78S/V8X7+iaAt
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environmentally-induced pigmentation variation in trout, and thus genotype x 554 

environment interaction (Westley, Stanley and Fleming, 2013). 555 

 556 

4.2 - RDA IS NOT ENOUGH 557 

RDA, however, cannot be promoted unequivocally for several reasons. Indeed, Forester et 558 

al. (2018) showed that RDA suffered less false positives in GEA, but this however does not 559 

mean it is not affected. For example, linkage disequilibirum (LD) that promotes marker 560 

inheritance in a block-like manner impacts the loading scores in PCA, and RDA suffers the 561 

same bias (Lottherhos, 2019). If the ‘true’ CPL involved in the genotype-association is 562 

effectively present, linked loci might be identified as false positives. For example, 86 CPLs 563 

have been identified onto LG31 in this study (n = 85 by RDA; Fig. 4), LG31 effectively 564 

contains relevant CPLs (Table 3), but 40 of 86 were not associated to any genes and false 565 

positives are likely. Marker density has to be increased to reach better conclusion on the 566 

nature of association. For example, Wang S. et al. (2020) showed that a window <0,5Mb 567 

was necessary to detect the most likely variant involved in pigmentation variation in North 568 

American warblers, one intronic variant effectively close to pigmentation genes. This 569 

threshold is not reach in this study. Another source related to the detection of false 570 

associations by RDA is the use of a  2.5 SD significance threshold to retain SNPs as CPLs. 571 

In this case, one SNP associated to Mitf1 may represent a false negative, ignored by RDA 572 

despite its biological importance in fish pigmentation (e.g., Wang T. et al., 2020). Methods 573 

aiming at capturing allele frequency variation differently than RDA or FST should possibly 574 

be considered to correct for false positive/negative loci (e.g., Field et al., 2016; Chen and 575 

Narum, 2021), but are not under the scope of this study. 576 
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Furthermore, despite the low sample size considered in this study, GWAS also 577 

provided relevant CPLs. The power of GWAS was undoubtedly improved by considering 578 

population stratification based on admixture patterns of individuals defined by Leitwein et 579 

al. (2018). Controlling for population stratification by admixture mapping (i.e., levels of 580 

ancestry) is crucial in association studies (e.g., Zhu et al., 2008; Lin et al., 2021), and has 581 

been already successfully used in pigmentation studies (Shriver et al., 2003; Daya et al., 582 

2014; Brelsford et al., 2017), including fish (Miller et al., 2007; Malek et al., 2012). 583 

Furthermore, as trout presents low local effective population sizes (Ne) (e.g., Charlier et al., 584 

2012) and might be inbred (Magris et al., 2022), strong LD may increase the power to detect 585 

of large effect loci involved in phenotypic variation. This may favor GWAS that reported loci 586 

involved in pigmentation and/or body colour variation in vertebrates (e.g., SOX10 [Sex-587 

determining region Y-box 10], PMEL [Premelanosome protein], SLC45A2 [Solute Carrier 588 

Family 45 Member 2]) (e.g., Greenhill et al., 2011; Moran et al., 2022; Wu et al., 2022; 589 

Fukamachi, Shimada and Shima, 2001; Dooley et al., 2013; Ahi and Sefc, 2017; Luo et al., 590 

2019). SOX10 and PMEL were found differentially expressed in skin of trout belonging to 591 

different lineages (Djurdjevič et al., 2019). GWAS retrieved loci with FST values closer to the 592 

background neutral estimation and sometimes nearly null FST values that RDA ignored. The 593 

association of relevant variants to high FST values is not the rule (e.g., McCluskey et al., 594 

2021), and stabilizing or balancing selection have also been shown crucial in pigmentation 595 

variation (Croucher et al., 2011; Bourgeois et al., 2016; Lindtke et al., 2017; Schweizer et 596 

al., 2018). GWAS thus provided information not reached by RDA and the genomics 597 

landscape of trout pigmentation was probably better assessed by their respective 598 

performance. 599 

 600 
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4.3 - A POLYGENIC ARCHITECTURE OF PIGMENTATION PATTERNS 601 

Pigmentation and/or colour associated loci are often hundreds (e.g., Bennett and 602 

Lamoreux, 2003; Baxter et al., 2019), and recent genomic studies revealed an ever-603 

increasing polygenic basis of pigmentation patterns (e.g., skin and hair in human: Crawford 604 

et al., 2017; Pavan and Sturm, 2019; structural colour variation or eyespot numbers in 605 

butterflies: Brien et al., 2019; Rivera-Colón et al., 2020). Recently, Baxter et al. (2019) 606 

reported 311 genes responsible for pigmentation in zebrafish, and RNA sequencing studies 607 

supported a large molecular basis associated to pigmentation variation in, e.g., cichlids 608 

(Henning et al., 2013), tilapia (Zhu et al., 2016), common carp (Li et al., 2015), and other 609 

salmonids (Wu et al., 2022). Such a large molecular basis is expected because of the 610 

diversity of skin pigment cells, their own interactions and interactions with other cell types 611 

that affect their distribution, the increased understanding in the mechanisms of pigment 612 

cell fates during development that mobilize numerous interacting molecular pathways to 613 

express extensive pigmentation variation in fish (e.g., Nüsslein-Volhard and Singh, 2017; 614 

Irion and Nüsslein-Volhard, 2019; Patterson and Parichy, 2019). In line with this complexity, 615 

the combination of RDA and GWAS support a polygenic architecture of body pigmentation 616 

in the brown trout based on dozens of polymorphic loci distributed in coding, non-coding 617 

and regulatory regions over many LGs. 618 

This observation contrasts with former knowledge. Indeed, models depending on 619 

few major quantitative trait loci (QTLs) and simple inheritance mechanisms were often 620 

found sufficient to explain pigmentation variation in salmonids (Blanc et al., 1982, 1994; 621 

Boulding et al., 2008; Colihueque, 2010; Smith et al., 2020), and other fish species (e.g., 622 

Barson et al., 2007; Miller et al., 2007; Greenwood et al., 2011; Malek et al., 2012; O’Quin 623 

et al., 2012, 2013; Henning et al., 2014; Yong et al., 2015). Only few exceptions have been 624 
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documented so far in fish (Tripathi et al., 2009; Albertson et al., 2014). It was shown that 625 

increasing the number of pigmentation traits as done in this study translated into the 626 

detection of more putative QTLs or variants distributed over more LGs. 627 

CPLs detected in this study were found located in both gene body and upstream-628 

downstream regions close to genes. The distribution of SNPs in distinct genomic regions is 629 

important in evolutionary studies, and now often reported in the literature (e.g., She and 630 

Jarosz, 2018; Fruciano et al., 2021). Within pigmentation studies, literature initially 631 

emphasized both the relative roles of coding (Protas and Patel, 2008; Uy et al., 2016), and 632 

upstream-downstream regulatory variation (Larter et al., 2018; Toomey et al., 2018) – 633 

more rarely their interactions (Vickrey et al., 2018)— during colour pattern establishment 634 

and evolution. The role of regulatory variation in observed pigmentation variation received 635 

increased interest and support in many organisms in the past few years (Lewis and Van 636 

Belleghem, 2020, for a review), including fish (zebrafish: Irion and Nüsslein-Volhard, 2019; 637 

threespine stickleback: Miller et al., 2007; cichlids: Roberts et al., 2009; Santos et al., 2014; 638 

Urban et al., 2021; 2020; fighting fish; Wang et al., 2021). Data suggest that regulatory 639 

variation by upstream-downstream sequences across genes might be important in trout 640 

pigmentation phenotypes. However, it is difficult to fully appreciate their potential 641 

contribution as ddRADseq provides a reduced genome representation that targets only a 642 

tiny portion of the genome (discussed in Gauthier et al., 2020, for pigmentation). While 643 

quite few were detected in this study, lncRNAs might also be important in the regulation 644 

of pigmentation and melanogenesis in fish (Luo et al., 2019; Gan et al., 2021). 645 

 646 

4.4— DYNAMICS OF PIGMENTATION VARIATION AND MANAGEMENT 647 
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How differences in body pigmentation are related to admixture is still poorly studied in fish 648 

yet (Boulding et al., 2008; Egger et al., 2012; Malek et al., 2012; Meier et al., 2018; Moran 649 

et al., 2022). RDA (Fig. 1B) illustrated shifts in pigmentation variation in hatchery and wild 650 

trout with different levels of admixture (Leitwein et al., 2018). While wild-caught F1’s are 651 

intermediate from Atlantic and Mediterranean fish for pigmentation, RDA showed that 652 

‘late-backcrossed’ individuals clustered close to the local Mediterranean hatchery strain 653 

and wild individuals of the Gravezon River that were used to seed this strain. Shift in trout 654 

pigmentation patterns during introgression are thus transient, with individuals identified 655 

as ‘late backcrossed’ by Leitwein et al. (2018) almost reaching the initial Mediterranean 656 

local pigmentation after few dozens of generations (Atlantic introgression in these 657 

Mediterranean rivers was estimated to range from 22 to 31 generations in average; 658 

Leitwein et al., 2018). Rapid trait evolution is often reported in salmonids (e.g., Hendry et 659 

al., 2000; Jensen et al., 2017), but this was not shown for pigmentation yet. The dispersion 660 

of F2 and ‘early backcrossed’ trout sensu Leitwein et al. (2018) along RDA axis 1 showed 661 

these individuals might be either more Atlantic- or Mediterranean-like. This very probably 662 

reflects the diversity of ancestry tracts and thus CPLs they inherited through recombination 663 

events that lead to large variation in expression of pigmentation. A similar pattern was also 664 

shown in backcrosses of Danio quagga and D. kyathit by McCluskey et al. (2021) that were 665 

shown much more diverse in backcrosses than in parents. 666 

The shift to Mediterranean pigmentation pattern in late-backcrossed individuals 667 

might be explained by not mutually exclusive hypotheses. First, counter selection of 668 

Atlantic pigmentation alleles (or ancestry tracts) may have occurred in the Orb River 669 

catchment. Counter-selection of Atlantic alleles was formerly suspected by Poteaux et al. 670 

(1998, 1999) using allozymes, including the Orb River catchment. Second, successive 671 
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recombination events that decreased the number and shortened the length of Atlantic 672 

ancestry tracts did not allow for specific regulatory mechanisms to maintain the expression 673 

of an Atlantic-like pigmentation within a Mediterranean genomic background. Phenotypic 674 

integration of ‘pigmentation modules’ could constrain possible combinations and force 675 

certain phenotypic changes to coincide, leading to the expression of a Mediterranean-like 676 

pigmentation once a threshold or dosage is reached, and depending on the restoration of 677 

Mediterranean genome expression. Whatever the right hypothesis, Mediterranean 678 

pigmentation appears to be adaptive as it converges to the Mediterranean wild type, but, 679 

during this process, it is not related to the level of admixture of individual trout. 680 

Indeed, the distribution of individuals along RDA axis 1 also illustrated that the 681 

pigmentation patterns observed in trout are likely a poor proxy of introgression. For 682 

example, ‘pure’ Mediterranean individuals fished in the Orb and Mare rivers showed 683 

pigmentation patterns that are more like F1’s (Orb) or Atlantic-like (Mare) regarding RDA 684 

axis 1, while they present no or few Atlantic ancestry tracts within their genome (Leitwein 685 

et al., 2018). Thus decision-making on the ‘genetic integrity’ of local trout based on their 686 

pigmentation phenotype is questionable (see Aparicio et al., 2005). Partial convergence of 687 

phenotypes in the Orb and Mare rivers to the Atlantic phenotype may reflect local selection 688 

or drift. For example, intermediate F1-like plumage colouration observed in the North 689 

American owl Strix varia was shown unrelated to plumage colouration introgression from 690 

S. occidentalis, and was better explained by selection (Hanna et al., 2018). However, as 691 

genetic drift certainly predominates in trout because of small local Ne, it may have a critical 692 

role in shaping the architecture of local adaptation for polygenic traits (Yeaman, 2015; 693 

Stephan and Jones, 2020). We may hypothesize that changes in allele frequencies at CPLs 694 

might promote the emergence of distinct phenotypes in local populations. This was 695 



32 

 

demonstrated for other complex traits in isolated populations (e.g., Southam et al., 2017). 696 

Local shifts in pigmentation patterns are common in trout (Skaala and Solberg, 1997; 697 

Westley et al., 2012), and the relative role of selection and drift has to be investigated 698 

further. 699 

 700 

5 - CONCLUSIONS 701 

As suggested by Jombart et al. (2009), RDA mainly used in GEA studies was shown useful 702 

and complimentary to GWAS to investigate a genotype-phenotype relationship for 703 

pigmentation variation in trout. In the case of trout in which ancestry tracts were 704 

accessible, RDA also documented the patterns of phenotypic evolution across generations 705 

for a suite of pigmentation traits and suggested that Mediterranean body pigmentation is 706 

locally adaptive. Replication of this study and data coming from more natural populations, 707 

clades and/or subspecies within the S. trutta complex remain however necessary in order 708 

to better investigate and elucidate both the proximate and ultimate causes of pigmentation 709 

pattern variation in the polytypic brown trout. This necessitates to include (i) further 710 

phenotypic (e.g., background color, hue, reflectance), and (ii) –omic data coming from or 711 

associated to controlled settings (e.g., Gerwin et al., 2021; McCluskey et al., 2021). The 712 

effect of age and size of fish should probably be investigated in more details. Innovative 713 

pigmentation studies based on gene editing or improvement in reaction-diffusion and self-714 

organization models (Irion and Nüsslein-Völlard, 2019; Parichy, 2021; Wang et al., 2021) 715 

formerly used in salmonids (Miyazawa et al., 2010) could also be a basis to future 716 

multidisciplinary in vivo and in silico research aiming to explain flexibility and robustness of 717 

pigmentation variation in the brown trout. 718 
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Captions of the Figures 1378 

 1379 

Fig. 1: RDA triplots for canonical axes 1 and 2, respectively. Pigmentation-related variables 1380 

retained by forward modelling are represented by arrows (see Table 1 for abbreviations). 1381 

Length of arrows is proportional to the strength of correlation of each variable with 1382 

individual axis. Arrows pointing to different direction indicate negatively correlated 1383 

variables, and distinct phenotypes. The percentage of variance associated to each axis is 1384 

reported, as well as the eigenvalue graph for constrained axis. (A): Individual trout are 1385 

positioned on the map with positioning of SNPs as a grey block to the centre of the factor 1386 

map. Individuals are coloured according to nine ancestry groups (Leitwein et al 2018). G 1387 

and M indicates released hatchery fish caught in the Gravezon (n = 6) and Mare (n = 1) 1388 

rivers, that effectively clustered with Atlantic and Mediterranean hatchery fish, respectively. 1389 

(B): Zoom on the centre of the map to illustrate the position of SNPs. SNPs  2.5 S.D. either 1390 

on RDA axis 1 or axis 2 are coloured by the pigmentation-related variable they are the most 1391 

associated with in the model, while SNPs in grey are within 2.5 S.D. and are not considered 1392 

in the study. Percentages of variation explained by each RDA axis are reported.  1393 

 1394 

Figure 2: Manhattan plots of SNPs found associated to pigmentation variables in GWAS 1395 

models considered in this study. (A): Results for the multi-trait GWAS model with two 1396 

variables (N. PN.Tot and N.PR.Tot). SNPs found significant in this model are represented by 1397 

circles (n = 7 CPLs). Results from single-trait GWAS have been added to this panel to 1398 

provide a full summary of results for the N. PN.Tot (17 associated CPLs; black arrows) and 1399 

N.PR.Tot. (9 associated CPLs; red arrows) variables. An asterisk indicates two loci to close 1400 
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to each other to be indicated by distinct arrows. The CPL associated to the GJD2 gene on 1401 

LG9 also detected by the RDA is indicated by a longer arrow. (B): Results for the multi-trait 1402 

GWAS based on the variables retained with the RDA, except Zeb (31 candidate SNPs). The 1403 

significance of SNPs with each variable of the model is indicated by a different symbol. The 1404 

full list of candidate SNPs detected using single and multi-trait GWAS are reported in Suppl. 1405 

Mat. Table S4. Variables are labelled as in Table 1. The y-axis reports values of -log10(P), 1406 

with P being the probability of one association between a variable and a SNP. The red line 1407 

indicates the 5 × 10−8 significance threshold retained in this study. Details in text. 1408 

 1409 

Figure 3: Distribution of FST values for the 40,519 RAD-loci (blue) and for CPLs reported 1410 

in this study. The insert at the top right reports detail for CPLs associated to the first axis of 1411 

the RDA. For each data set, mean FST values and confidence intervals are provided as full 1412 

and hatched lines, respectively. Mean values for the single- and multi-trait GWAS 1413 

approaches are illustrated by the green and the orange lines, respectively. No confidence 1414 

intervals are reported for GWAS because of the low number of CPLs detected with these 1415 

approaches. Details in text. 1416 

 1417 

Figure 4: Positioning of the 300 mapped RAD-loci CPLs detected in this study on the forty LGs of the 1418 

brown trout. Loci found associated to at least one single phenotypic trait are indicted by green, red 1419 

and yellow circles when detected with the RDA, single- or multi-GWAS analyses, respectively. 1420 

Horizontal bars indicate the distribution of the full set of SNPs over LGs. The number of CPLs 1421 

detected on each LG is indicated. As numerous loci are close to each other, symbols may overlap. 1422 

Details in text. 1423 



53 

 

Figure 1 1424 

 1425 

  1426 



54 

 

Figure 2 1427 

 1428 

  1429 



55 

 

Figure 3 1430 

 1431 

  1432 



56 

 

Figure 4 1433 

 1434 


