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Foucaud et al. recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For every edge e of G and a set M ⊆ V (G), M is a distance-edge-monitoring (DEM for short) set if there are a vertex x of M and a vertex y of G such that e belongs to all shortest paths between x and y. The DEM number dem(G) is the smallest size of such a set in G. The vertices of M represent distance probes in a network modeled by G; when the edge e fails, the distance from x to y increases, and thus we are able to detect the failure. In this paper, we study Erdös-Gallai-type problems for DEM numbers of general graphs. The exact values or bounds of dem(G) for radix n-triangular mesh networks and hexagonal networks are also given.

Introduction

In 2022, Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] introduced a new graph-theoretic concept called distance-edgemonitoring set, which means network monitoring using distance probes. Networks are naturally modeled by finite undirected simple connected graphs, whose vertices represent computers and whose edges represent connections between them. When a connection (an edge) fails in the network, we can detect this failure, and thus achieve the purpose of monitoring the network. Probes are made up of vertices we choose in the network. At any given moment, a probe of the network can measure its graph distance to any other vertex of the network. Whenever an edge of the network fails, one of the measured distances changes, so the probes are able to detect the failure of any edge. Probes that measure distances in graphs are present in real-life networks. They are e.g. useful in the fundamental task of routing [START_REF] Govindan | Heuristics for Internet map discovery[END_REF][START_REF] Dall'asta | Exploring networks with traceroute-like probes: Theory and simulations[END_REF] and are also frequently used for problems concerning network verification [START_REF] Bampas | Network verification via routing table queries[END_REF][START_REF] Beerliova | Network discovery and verification[END_REF][START_REF] Bilò | Discovery of network properties with allshortest-paths queries[END_REF].

Distance-edge-monitoring numbers

We now proceed with the formal definition of our main concept.

All graphs considered in this paper are undirected, finite and simple. We refer to the book [START_REF] Bondy | Graph Theory[END_REF] for graph theoretical notation and terminology not described here. Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G), respectively. And we use e(G) to express the number of edges in G, that is e(G) = |E(G)|. Let K n be the complete graph of order n. In this paper, for a graph G and x, y ∈ V (G), we denote by d G (x, y) the shortest distance between two vertices x and y in a graph G. If there is no path between the vertices u and v in G, then let d G (u, v) = ∞. For an edge set Y of G, we denote by G -Y the graph obtained by deleting all edges in Y from G. If Y = {e}, we simply write G -e for G -Y . We use X \ S to denote the vertex subset of X obtained by removing all the vertices of S from X and Y -W to denote the edge subset of Y obtained by removing all the edges of W from Y . If S = {v}, we simply write X \ v for X \ S. Definition 1. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with x a vertex of M and y a vertex of V (G) such that d G (x, y) ̸ = d G-e (x, y). In other words, e belongs to all shortest paths between x and y in G. Definition 2. For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). If e ∈ EM (x), we say that e is monitored by x. Definition 3. A set M of vertices of a graph G is distance-edge-monitoring (DEM for short) set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. Equivalently, ∪ x∈M EM (x) = E(G). Definition 4. The DEM number dem(G) of a graph G is defined as the smallest size of DEM sets of G. For the convenience of readers' understanding, we give the following example.

Example 1. Let the vertex set M = {v 1 , v 3 } and e = v 4 v 5 be an edge of G, where the graph G is shown in Figure 1. Then P (M, e) = {(v 3 , v 5 ), (v 5 , v 3 ), (v 3 , v 6 ), (v 6 , v 3 )}. For a vertex v 4 , we have

EM (v 4 ) = {v 1 v 4 , v 2 v 4 , v 3 v 4 , v 4 v 5 , v 5 v 6 }. Let M 1 = {v i | 1 ≤ i ≤ 4}, M 2 = {v 1 , v 2 , v 4 } and M 3 = {v 2 , v 5 , v 6 }.
Then M 1 and M 2 are DEM sets of the graph G, but M 3 is not.

v 1 v 2 v 3 v 4 v 5 v 6 G Figure 1: The graph G in Example 1.
For a graph G, the vertex set V (G) is always a DEM set of G, and hence dem(G) is well-defined. However, the vertex set V (G) is bad as DEM set in G, and hence people are always looking for k such that dem(G) ≤ k (k > 0), normally, we build the smallest possible DEM set of G.

In the recent years, Bampas et al. [START_REF] Bampas | Network verification via routing table queries[END_REF] and Beerliova et al. [START_REF] Beerliova | Network discovery and verification[END_REF] studied a weaker model as a network discovery problem, that is, where we seek a set U of vertices such that for each edge e, there exist a vertex x of U and a vertex y of G such that e belongs to some shortest path from x to y. In [START_REF] Bejerano | Robust monitoring of link delays and faults in IP networks[END_REF], Bejeranoa et al. studied a different and weaker model as the link monitoring problem. One seeks to monitor the edges of a graph network by selecting vertices to act as probes. To each probe is assigned a routing tree (a DFS tree spanning the whole graph), and it is essentially required that each edge of the graph belongs to one of the trees. For more results on the DEM set, we can refer to the papers [START_REF] Harary | On the metric dimension of a graph[END_REF][START_REF] Kelenc | Mixed metric dimension of graphs[END_REF][START_REF] Kelenc | Uniquely identifying the edges of a graph: The edge metric dimension[END_REF][START_REF] Slater | Leaves of trees[END_REF][START_REF] Yang | On the distance-edge-monitoring numbers of graphs[END_REF].

Recent progress and our results

A vertex set U is a vertex cover of G if every edge of G has one of its endpoints in U , and the smallest size of a vertex cover of G is denoted by vc(G).

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] derived the following result for complete graphs.

Theorem 1.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] In any graph G of order n, any vertex cover vc(G) is a DEM set, and thus

dem(G) ≤ vc(G) ≤ n -1. Moreover, dem(G) = n -1 if and only if G is the complete graph of order n.
Given a vertex x of a graph G and an integer i, we let r i (x) denote the set of vertices at distance i of x in G. Lemma 1.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let x be a vertex of a connected graph G. Then, an edge uv belongs to EM (x) if and only if u ∈ r i (x) and v is the only neighbor of u in r i-1 (x). Lemma 1.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a graph and x a vertex of G. Then, for any edge e incident with x, e ∈ EM (x). Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] gave the DEM number of a complete bipartite graph, the grid and the hypercube.

Theorem 1.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For a complete bipartite graph K a,b with parts of sizes a and b, dem(K a,b ) = min{a, b}. Theorem 1.3. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G a,b denote the grid of dimension a × b for a, b ≥ 2. Then dem(G a,b ) = max{a, b}. Theorem 1.4. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For the hypercube

Q n of dimension n, dem(Q n ) = 2 n-1 .
Let t(G) be a graph parameter of G. The Erdös-Gallai-type problems are stated as follows.

Problem 1. Given two positive integers n and k, compute the minimum integer

f (n, k) such that for every connected graph G of order n, if e(G) ≥ f (n, k) then t(G) ≥ k.
Problem 2. Given two positive integers n and k, compute the maximum integer g(n, k) such that for every connected graph

G of order n, if e(G) ≤ g(n, k) then t(G) ≤ k.
In recent years, Wang et al. [START_REF] Wang | Matching preclusion number of graphs[END_REF] investigated some extremal problems on matching preclusion number mp(G). In 2019, Jiang et al. [START_REF] Jiang | Erdös-Gallai-type results for total monochromatic connection of graphs[END_REF] obtained Erdös-Gallai-type results for total monochromatic connection tmc(G) of graphs. In 2022, Li and Li [START_REF] Li | Monochromatic disconnection: Erdös-Gallai-type problems and product graphs[END_REF] solved the Erdös-Gallai-type problems for the monochromatic disconnection md(G). For more results on Erdös-Gallai-type problems, we refer to [START_REF] Balogh | An analogue of the Erdős-Gallai theorem for random graphs[END_REF][START_REF] Cai | Erdős-Gallai-type results for colorful monochromatic connectivity of a graph[END_REF].

In this paper, we consider Erdös-Gallai-type problems for the DEM numbers, where t(G) = dem(G) in the problems. In Section 2, we derive the following results for Problems 1 and 2.

Theorem 1.5. Let n, k be two positive integers with

n ≥ 6, 4 ≤ k ≤ n -2. Then n + 2 ≤ f (n, k) ≤ ( n 2
) -

( n -k 2 
) .

In addition,

f (n, 1) = n -1; f (n, 2) = n; n + 1 ≤ f (n, 3) ≤ 2n -2 for n ≥ 6; f (n, n -1) = ( n 2 
) . Moreover, the bounds are sharp. Theorem 1.6. Let n, k be two positive integers with n ≥ 9. Then

n + 2 ≤ g(n, k) ≤    (k + 1)(n -1) -1, if 4 ≤ k ≤ ⌊(n -1)/2⌋; ( n 2 ) - ( n-k 2 ) , if ⌈n/2⌉ ≤ k ≤ n -2.
In addition, g(n,

1) = n -1; n ≤ g(n, 2) ≤ 2n -4 for n ≥ 5; n + 1 ≤ g(n, 3) ≤ 3n -6 for n ≥ 6; g(n, n -1) = ( n 2 )
. Moreover, the bounds are sharp.

A radix n-triangular mesh network, denoted by T n , is the graph with V (T n ) = {(x, y) | 0 ≤ x + y ≤ n -1} in which any two vertices (x 1 , y 1 ) and (x 2 , y 2 ) are connected by an edge if and only if |x 1 -x 2 | + |y 1 -y 2 | = 1, or x 2 = x 1 + 1 and y 2 = y 1 -1, or x 2 = x 1 -1 and y 2 = y 1 + 1, and we write an edge as ((x 1 , y 1 ), (x 2 , y 2 )) * ; see [START_REF] Xavier | Matching preclusion number of radix triangular mesh[END_REF] for more details. The number of vertices and edges in T n is equal to n(n + 1)/2 and 3n(n -1)/2, respectively; see Figure 2.

In Section 3, we get the DEM numbers of radix n-triangular mesh networks.
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2, n = 2; 3, n = 3; (3n -6)/2, n > 2 and n is even; (3n -5)/2, n > 3 and n is odd.

The following corollary shows the relation between the size and DEM numbers of a radix n-triangular mesh network.

Corollary 1.8. For a radix n-triangular mesh network T n , if n ≥ 4, then dem(T n ) = { ( √ 9 + 24e(T n ) -9)/4, n is even; ( √ 9 + 24e(T n ) -7)/4, n is odd.
It is known that there exist three regular plane tessellations, composed of the same kind of regular polygons: triangular, square, and hexagonal. The triangular tessellation is used to define Hexagonal networks [START_REF] Chen | Addressing, routing, and broadcasting in hexagonal mesh multiprocessors[END_REF].

A hexagonal network HX(n) of dimension n has 3n 2 -3n + 1 vertices and 9n 2 -15n + 6 edges, where n (n ≥ 2) is the number of vertices on one side of the hexagon [START_REF] Chen | Addressing, routing, and broadcasting in hexagonal mesh multiprocessors[END_REF][START_REF] Manuel | On minimum metric dimension of honeycomb networks[END_REF]. There are six vertices of degree three which we call as corner vertices a, b, c, d, f, g; see Figure 3. There is exactly one vertex v at distance n -1 from each of the corner vertices. This vertex is called the centre of HX(n) and is represented by o.

In Section 4, we give the results about DEM numbers of hexagonal networks.

Theorem 1.9. For a hexagonal network HX(n) (n ≥ 2), we have 2n-1 ≤ dem(HX(n)) ≤ 3n-3.

The following corollary shows the relation between the size and DEM numbers of a hexagonal network.

Corollary 1.10. For a hexagonal network HX(n) (n ≥ 2), let t = e(HX(n)). Then we have 

( √ 1 + 4t + 2)/3 ≤ dem(HX(n)) ≤ ( √ 1 + 4t -1)/2.

Erdös-Gallai-type problems for general graphs

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] obtained the following results.

Theorem 2.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For any graph G of order n ≥ 4 and size m, dem(G) ≥ m n-1 .

Theorem 2.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with at least one edge. We have dem(G) = 1 if and only if G is a tree.

The following corollary is immediate. Proof. Let the graph G = K n -e and the edge e = uv. From Theorem 1.1, we have dem

(K n -e) ≤ n -2. To show dem(K n -e) ≥ n -2, let V (K n ) = {v i | 1 ≤ i ≤ n}. Suppose that the vertex set U ⊆ V (G) with |U | = n -3 is a DEM set. Without loss of generality, let U = {v i | 1 ≤ i ≤ n -3}. Since e is incident to at most two vertices in {v n-2 , v n-1 , v n }, say v n-2 / ∈ {u, v} ∪ U , it follows that d G (v i , v n-2 ) = d G (v i , v n-1 ) for each 1 ≤ i ≤ n -3, and hence the edge v n-2 v n-1 / ∈ ∪ x∈U EM (x), and so dem(K n -e) ≥ n -2. Lemma 2.1. For a connected graph G, if G contains a subgraph K r (r ≥ 2), then dem(G) ≥ r -1. Proof. Let G ′ = K r be a complete graph with vertex set V (G ′ ) = {v i | 1 ≤ i ≤ r}. Suppose that the vertex set Q with |Q| = r -2 is a DEM set of the graph G. If |Q ∩ V (G ′ )| = r -2, then Q ⊆ V (G ′ ). From Theorem 1.1, there exists an edge e ∈ E(G ′ ) such that e / ∈ ∪ x∈Q EM (x), a contradiction. If |Q ∩ V (G ′ )| < r -2, then let the vertex set U = Q \ V (G ′ ). For each vertex u ∈ U , there exists a vertex v i ∈ V (G ′ ), where 1 ≤ i ≤ r, such that d G-E(G ′ ) (u, v j ) ≥ d G-E(G ′ ) (u, v i ) = k ≥ 1 for any 1 ≤ j ≤ r with j ̸ = i. If d G-E(G ′ ) (u, v j ) ≥ k + 2, then the edge set {v i v t | 1 ≤ t ̸ = i ≤ r} ⊆ EM (u), which implies that EM (u) ∩ E(G ′ ) = EM (v i ) ∩ E(G ′ ). If d G-E(G ′ ) (u, v j ) = k for 1 ≤ j ̸ = i ≤ r,
then it follows from Definition 1 and Lemma 1.

1 that E(G ′ ) ̸ ⊆ EM (u). If d G-E(G ′ ) (u, v j ) = k + 1 for 1 ≤ j ̸ = i ≤ r, then it follows from Definition 1 and Lemma 1.1 that the edge set {v i v t | 1 ≤ t ̸ = i ≤ r} -{v i v j } ⊆ EM (u), which implies that EM (u) ∩ E(G ′ ) ⊂ EM (v i ) ∩ E(G ′ ). Therefore, the vertex set Q can monitor at most ( r 2 ) -1 edges of E(G ′ ), which contradicts the fact that e(G ′ ) = ( r 2 ) . Lemma 2.2. Let n, k be two positive integers with n ≥ 2. Then (1) f (n, 1) = n -1; (2) f (n, 2) = n; (3) n + 1 ≤ f (n, 3) ≤ 2n -2 for n ≥ 6; (4) f (n, n -1) = ( n 2 )
for n ≥ 4.

Proof.

(1) Let G 1 be a connected graph with order n. Then f (n, 1) ≥ n -1. If G 1 is a tree, then it follows from Theorem 2.2 that dem(G 1 ) = 1, and hence f (n, 1) ≤ n -1, and so f (n, 1) = n -1.

(2) Let G 2 be a connected graph with n vertices such that e(G 2 ) ≥ n. It follows from Corollary 2.3 that dem(G 2 ) ≥ 2, and so f (n, 2) ≤ n. To show f (n, 2) ≥ n, we let G be a connected graph of order n and size n -1. From Theorem 2.2, we have dem(G) = 1 < 2, and hence f (n, 2) ≥ n, and so f (n, 2) = n.

(3) Let G 3 be a connected graph with order n and e(G 3 ) ≤ n. Clearly, dem(G 3 ) ≤ 2. Let F 1 be a connected graph of order n ≥ 6. We construct a graph F 2 as follows: F 2 is the base graph grid G 2,3 of F 1 . Note that the base graph of a graph F 1 is the graph obtained from F 1 by iteratively removing vertices of degree 1. One can easily check that e(F 1 ) = n+1 and dem(F 1 ) = 3, and hence f (n, 3) ≥ n + 1, which shows that the lower bound is sharp. To show the upper bound, we let F 3 be the graph obtained from t (t ≥ 2) triangles with unique common edge e, by adding the edge w 1 w 2 , where e = uv and w 1 , w 2 , . . . , w t are the vertices except u and v in t triangles. Let F 4 be the graph obtained from F 3 by adding all possible edges between the vertices in {w i | 1 ≤ i ≤ t}, besides the edge w 1 w 2 . Then, there exists a clique K 4 induced by the vertices in {u, v, w 1 , w 2 }, then it follows from Lemma 2.1 that dem(F 4 ) ≥ 3, and hence f (n, 3) ≤ e(F 3 ) = 2n -2. Moreover, F 3 can reach a graph whose upper bound is sharp.

(4) Let G 4 be a connected graph with order n. Since dem(G 4 ) = n -1, it follows from Theorem 1.1 that G 4 is a complete graphK n , and hence

f (n, n -1) ≤ ( n 2 )
. For a connected graph G ′ with order n and e(G ′ ) =

( n 2 ) -1, by Proposition 2.1, we have dem(G ′ ) = n -2 < n -1, and hence f (n, n -1) ≥ ( n 2 )
, and so

f (n, n -1) = ( n 2 ) .
A feedback edge set of a graph G is a set of edges such that removing them from G leaves a forest. The smallest size of a feedback edge set of G is denoted by fes(G).

In Figure 4, let two edge sets

E 1 = {v 1 v 2 , v 2 v 4 , v 4 v 5 , v 3 v 5 , v 5 v 6 } and E 2 = {v 2 v 4 , v 2 v 5 , v 4 v 5 , v 3 v 5 } in H.
Then, the graphs H 1 and H 2 obtained by removing E 1 and E 2 from H are two forests, respectively. Therefore, E 1 and E 2 are two feedback edge sets of H. Theorem 2.4. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] If fes(G) ≤ 2, then dem(G) ≤ fes(G) + 1. Moreover, if fes(G) ≤ 1, then the equality holds.

v 1 v 2 v 3 v 4 v 5 v 6 H v 1 v 2 v 3 v 4 v 5 v 6 H 1 v 1 v 2 v 3 v 4 v 5 v 6 H 2
Figure 4: The graphs as an example of feedback edge set.

The following corollary is immediate.

Corollary 2.5. For a connected graph G, if e(G) ≤ n + k -2 (k = 2, 3), then dem(G) ≤ k.
The DEM number of complete multipartite graph is given below.

Proposition 2.2. Let r be an integer with r ≥ 3. For a complete multipartite graph K n 1 ,n 2 ,...,nr ,

n 1 ≤ n 2 ≤ • • • ≤ n r , we have dem(K n 1 ,n 2 ,...,nr ) = r-1 ∑ i=1 n i . Proof. Let G = K n 1 ,n 2 ,...

,nr , and

A i be the vertex set of the part i in G with |A i | = n i , 1 ≤ i ≤ r. Note that V (G) = A 1 ∪ A 2 ∪ • • • ∪ A r . Let the vertex set U = ∪ r-1 i=1 A i .
For each vertex v ∈ U , it follows from Lemma 1.2 that v can monitor all the edges incident with v, and so EM (U ) = E(G). Since EM (U ) represents the union of edge sets monitored by each v ∈ U , it follows that

dem(G) ≤ r-1 ∑ i=1 n i .
To show the lower bound, we arbitrarily choose a vertex set M ⊆ V (G) as a DEM set with

|M | = r-1 ∑ i=1 n i -1. If |M ∩ (A 1 ∪ A 2 ∪ • • • ∪ A r-1 )| = r-1 ∑ i=1 n i -1, then there exists a vertex v such that v ∈ A i but M , 1 ≤ i ≤ r -1.
Then for a vertex u ∈ A r and any vertex w of M , we have

d G (w, v) = d G (w, u) = 1 if w ∈ A j , j ̸ = i;
there exist two shortest paths from w to u if w ∈ A i , and hence the edge uv cannot be monitored by

M . If |M ∩(A 1 ∪A 2 ∪• • •∪A r-1 )| < r-1 ∑ i=1 n i -1, then we take |M ∩ A r | = t ≥ 1. Let M ∩ A r = {u 1 , u 2 , . . . , u t } and (A 1 ∪ A 2 ∪ • • • ∪ A r-1 ) \ M = {v 1 , v 2 , . . . , v t+1 }. Suppose that the vertices v 1 , v 2 , . . . , v t+1 are not in the same part of G. Without loss of generality, let v 1 ∈ A 1 and v 2 ∈ A 2 . Then d G (w 1 , v 1 ) = d G (w 1 , v 2 ) for any vertex w 1 ∈ M ∩ (∪ r i=3 A i ). For any vertex w 2 ∈ M ∩ (A 1 ∪ A 2 ), says w 2 ∈ A 1 ,
we can obtain the two shortest paths w 2 v 2 v 1 and w 2 w 3 v 1 from w 2 to v 1 , and hence the edge v 1 v 2 cannot be monitored by M , where We are now in a position to give the proof of the upper and lower bounds for f (n, k). Let H be the connected graph of order n obtained from K n 1 ,n 2 ,...,nr by adding the all edges formed by every two pairs of vertices in V i for each 1 ≤ i ≤ r -1, where V i is the vertex set of part i in K n 1 ,n 2 ,...,nr , and Proof. We arbitrarily choose a vertex set

w 3 ∈ ∪ r i=3 A i . Otherwise, the vertices v 1 , v 2 , . . . , v t+1 are all in one part of G, says V r-1 . Obviously, since n 1 ≤ n 2 ≤ • • • ≤ n r , then |A r | ≥ t + 1, note that u t+1 / ∈ M . From
|V i | = n i for 1 ≤ i ≤ r and n 1 ≤ n 2 ≤ • • • ≤ n r . Let r-1 ∑ i=1 n i = k, where 4 ≤ k ≤ n -2, which implies that n r ≥ 2. Let the vertex set Q = V 1 ∪ V 2 ∪ • • • ∪ V r-1 ,
M in V (H ′ ) as a DEM set with |M | = k. Let |M ∩ V r | = t ≥ 0 and |M ∩ (∪ r-1 i=1 V i )| = k -t. If t = 0, then we take u 1 , u 2 ∈ V r and u 1 u 2 ∈ E(H ′ )
, and hence d H ′ (w, u 1 ) = d H ′ (w, u 2 ) for any vertex w ∈ M , and so the edge u 1 u 2 cannot monitored by M . If t = n r , then there exist two vertices

v 1 and v 2 in H ′ such that v 1 , v 2 ∈ ∪ r-1 i=1 V i but M , and d H ′ (w, v 1 ) = d H ′ (w, v 2 )
for any vertex w ∈ M , and so the edge

v 1 v 2 cannot monitored by M . If 1 < t < n r , then assume that u 3 ∈ V r , v 3 ∈ ∪ r-1 i=1 V i but u 3 , v 3 / ∈ M . Therefore, d H ′ (w 1 , v 3 ) = d H ′ (w 1 , u 3 ) for any vertex w 1 ∈ M ∩ (∪ r-1 i=1 V i ). For any vertex w 2 ∈ M ∩ V r , let v 4 ∈ ∪ r-1 i=1 V i (v 4 ̸ = v 3 ).
If w 1 and w 2 are not adjacent, then there are two shortest paths w 2 v 3 u 3 and w 2 v 4 u 3 from w 2 to u 3 . Otherwise, d H ′ (w 2 , v 3 ) = d H ′ (w 2 , u 3 ), and hence the edge u 3 v 3 cannot be monitored by M , a contradiction.

Therefore, g(n, k) ≤ e(H) = ( n 2 ) - ( nr 2 ) = ( n 2 ) - ( n-k 2 )
for 4 ≤ k ≤ n -2 and n ≥ 6. In addition, by Lemma 2.2, we have f (n, 1) = n -1 and

f (n, 2) = n for n ≥ 2, n + 1 ≤ f (n, 3) ≤ 2n -2 for n ≥ 6 and f (n, n -1) = ( n 2 )
for n ≥ 4.

Lemma 2.3. Let n, k be two positive integers with

n ≥ 2. Then (1) g(n, 1) = n -1; (2) n ≤ g(n, 2) ≤ 2n -4 for n ≥ 5; (3) n + 1 ≤ g(n, 3) ≤ 3n -6 for n ≥ 6; (4) g(n, n -1) = ( n 2 
) .

Proof. By Theorems 1.1 and 2.2, we have g(n, 1) = n -1 and g(n, n -1) =

( n 2 )
, and so (1) and (4) hold. By Corollary 2.5, dem(G) ≤ 2, for a connected graph G with e(G) ≤ n, and hence g(n, 2) ≥ n. Moreover, let R be a connected graph with order n such that the base graph of R is a cycle. Then g(n, 2) = n for the graph R, and hence the lower bound is sharp. To show g(n, 2) ≤ 2n -4, where n ≥ 5, let G 1 be the graph obtained from t (t ≥ 1) triangles with unique common edge uv, suspending a new triangle on an endpoint v of uv, where w 1 , w 2 , . . . , w t are the vertices except u, v in the t triangles and x, y are the vertices except v in the new triangle.

Obviously, we have dem(G 1 ) = 2. Let G ′ 1 be the graph obtained from G 1 by adding an edge e which is not in E(G 1 ). Now we give the following claim.

Claim 2. dem(G ′

1 ) ≥ 3.

Proof. Let the vertex set X be a DEM set of G ′ 1 with |X| = 2. If the edge e = w i w j , where 1 ≤ i, j ≤ t and i ̸ = j, then the graph induced by the vertex set {u, v, w i , w j } is a complete graph K 4 , and hence from Lemma 2.1, dem(G ′ 1 ) ≥ 3, a contradiction. If the edge e = uy or yw s , 1 ≤ s ≤ t, then the edges in {uw i | 1 ≤ i ≤ t} ∪ {xy} only can be monitored by its endpoints. If X ⊆ {w i | 1 ≤ i ≤ t}, then the edge uv cannot be monitored by X, and hence u ∈ X. Similarly, if X = {x, y}, then the edges in {uw i | 1 ≤ i ≤ t} cannot be monitored, and hence x or y ∈ X, and so vy cannot be monitored if x ∈ X; vw s cannot be monitored if y ∈ X, a contradiction. Therefore, we have g(n, 2) ≤ 2n -4 for the graph G 1 with |V (G 1 )| = n and e(G 1 ) = 2t + 4, where n ≥ 5, and hence (2) holds. Moreover, g(n, 2) = 2n -4 for graph G 1 , and hence the upper bound is sharp.

For a connected graph G with e(G) ≤ n + 1, it follows from Corollary 2.5 that dem(G) ≤ 3, and hence g(n, 3) ≥ n + 1. Moreover, for a connected graph H of order n, where the base graph of H is a grid G 2,3 , we have g(n, 3) = n + 1, and hence the lower bound is sharp.

We now show the upper bound of (3). Let G 2 be the graph obtained from a complete bipartite graph K 3,n-3 , where n ≥ 6, by adding all edges in

{v i v j | 1 ≤ i ̸ = j ≤ 3}. Note that V (K 3,n-3 ) = A ∪ B, A = {v i | 1 ≤ i ≤ 3} and B = {u i | 1 ≤ i ≤ n -3}
, where A and B are the vertex sets of the two parts in K 3,n-3 . By Theorem 1.2, we have dem(G 2 ) = 3. Let G ′ 2 be the graph obtained from G 2 by adding one edge between the vertices in {u i | 1 ≤ i ≤ n -3}. Now we give the following claim.

Claim 3. dem(G ′

2 ) ≥ 4.

Proof. Assume, to the contrary, that dem(G ′ 2 ) ≤ 3. Arbitrarily choose a vertex set U in G ′ 2 as a DEM set with |U | = 3. If |U ∩A| = 3, then for any edge u j u k of the added edges, 1

≤ j ̸ = k ≤ n-3, we can get that d G ′ 2 (v i , u j ) = d G ′ 2 (v i , u k )
, and hence the edge u j u k cannot be monitored by U . If |U ∩ A| = 2, then let U ∩ A = {v 1 , v 2 } and U ∩ B = {u 1 }, without loss of generality. From Definition 1 and Lemma 1.1, the edge v 3 u 2 cannot be monitored by U . If |U ∩ A| ≤ 1, then there exist two vertices in A but U , says v 1 and v 2 . Obviously, the edge v 1 v 2 cannot be monitored by U , a contradiction.

Therefore, we have g(n, 3) ≤ e(G ′

2 ) ≤ 3n -6, and hence (3) holds.

Theorem 2.6. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For a graph G, if fes(G) = t (t ≥ 3), then dem(G) ≤ 2t -2.

We first give the corollary of Theorem 2.6 as follows. To show the upper bound, for a connected graph H 1 with order n and e(H 1 ) = (k +1)(n-1)-1, it follows from Theorem 2.1 that dem(H 1 ) ≥ (k+1)(n-1)-1 n-1 ≥ k. However, for any connected graph H 2 with order n, if e(H 1 ) ≥ (k + 1)(n -1), then dem(H 2 ) ≥ k + 1, and hence g(n, k) ≤ (k +1)(n-1)-1 for 4 ≤ k ≤ ⌊(n-1)/2⌋. Now we give the upper bound for ⌈n/2⌉ ≤ k ≤ n-2. Let H 3 be the connected graph obtained from K n 1 ,n 2 ,...,nr by adding the all edges formed by every pair of vertices in V i for each 1 ≤ i ≤ r-1. Note that V i is the vertex set of part i in a complete multipartite graph K n 1 ,n 2 ,...,nr , and

|V i | = n i , 1 ≤ i ≤ r. Let r-1 ∑ i=1 n i = k, where ⌈n/2⌉ ≤ k ≤ n -2, and the vertex set U = V 1 ∪ V 2 ∪ • • • ∪ V r-1 . Then, we have EM (U ) = E(H 3 ). Since EM (U ) represents
the union of edge sets monitored by each vertex of U , it follows that dem(H

3 ) ≤ r-1 ∑ i=1 n i = k. But
adding one edge formed by every pair of vertices in V r , we can obtain a new graph H ′ 3 such that dem(H ′ 3 ) ≥ k + 1, and hence g(n, k) ≤ e(H 3 ) =

( n 2 ) - ( nr 2 ) = ( n 2 ) - ( n-k 2 )
, which implies that the upper bound is sharp.

In addition, by Lemma 2.3, we have g(n, 1) = n -1 and g(n, n -1) = ( n 2

)
for n ≥ 2, n ≤ g(n, 2) ≤ 2n -4 for n ≥ 5 and n + 1 ≤ g(n, 3) ≤ 3n -6 for n ≥ 6.

Results for radix n-triangular mesh networks

For an integer t (1 ≤ t ≤ n -1) and any two edges ((x 1 , y 1 ), (x 2 , y 2 )) * and ((x 3 , y 3 ), (x 4 , y 4 )) * of the radix n-triangular mesh networks T n , we call ((x 1 , y 1 ), (x 2 , y 2 )) * and ((x 3 , y 3 ), (x 4 , y 4 )) * the linear edges if the two edges satisfied one of the following cases [START_REF] Balogh | An analogue of the Erdős-Gallai theorem for random graphs[END_REF] 

x i = x j = t -1 (i, j = 1, 2, 3, 4); (2) y i = y j = t -1 (i, j = 1, 2, 3, 4); (3) x i + y i = x j + y j = t (i, j = 1, 2, 3, 4).
Otherwise, the nonlinear edges. Let M i t be the edge set satisfying the case (i) for each 1 ≤ t ≤ n -1 and V i t be the endpoint set of all edges in the edge set M i t , where 1 ≤ i ≤ 3. Note that

|M 1 t | = n -t, |M 2 t | = n -t, |M 3 t | = t, |V 1 t | = n -t + 1, |V 2 t | = n -t + 1 and |V 3 t | = t + 1. Theorem 3.1. For any vertex v = (x, y) ∈ V (T n ), EM (v) = M 1 x+1 ∪ M 2 y+1 ∪ M 3 x+y .
Proof. For any uw ∈ M 

(T n ) -M 1 x+1 ∪ M 2 y+1 ∪ M 3 x+y . Therefore, EM (v) = M 1 x+1 ∪ M 2 y+1 ∪ M 3 x+y . Since |M 1 x+1 | = n -(x + 1), |M 2 y+1 | = n -(y + 1) and |M 3 x+y | = x + y for any vertex v = (x, y) ∈ V (T n ), it follows that |EM (v)| = 2(n -1)
, and hence the following corollary holds.

Corollary 3.2. Let T n be a radix n-triangular mesh network. Then we have |EM

(v)| = 2(n -1) for any vertex v ∈ V (T n ).
Proposition 3.1. [START_REF] Yang | On the distance-edge-monitoring numbers of graphs[END_REF] Let G be a connected graph and

M 1 , M 2 ⊆ V (G). For any e ∈ E(G), if M 1 ⊆ M 2 , then P (M 1 , e) ⊆ P (M 2 , e). Proposition 3.2. For v ∈ M ⊆ V (T n ) and e ∈ E(T n ), we have |P (M \ v, e)| ≤ |P (M, e)|. Moreover, if v ∈ M ⊆ V i t and e ∈ M i t , then P (M \ v, e) ⊂ P (M, e); if e ∈ M i t , then P (M, e) = P (M ∩ V i t , e), where 1 ≤ i ≤ 3.
Proof. By Proposition 3.1, we have P (M \ v, e) ⊆ P (M, e), and hence

|P (M \ v, e)| ≤ |P (M, e)|. For 1 ≤ i ≤ 3, let v ∈ V i t and e = uw ∈ M i t .
Without loss of generality, we assume d Tn (v, w) < d Tn (v, u), then there exists the unique shortest path P vu from v to u such that uw ∈ E(P vu ), and hence d Tn (v, w) ̸ = d Tn-e (v, w) and so the vertex pair (v, w) ∈ P (M, e) and (v, w) / ∈ P (M \ v, e). Therefore, P (M \ v, e) ⊂ P (M, e).

For any v ∈ V (T n ) \ V i t and e ∈ M i t , then there exists a shortest path P vy from v to y such that E(P vy ) ∩ M i t = ∅ for any y ∈ V (T n ), and hence d Tn (v, y) = d Tn-e (v, y), and so P ({v}, e) = ∅. Therefore, P (M, e) = P (M \ v, e), and so 

P (M, e) = P (M \ (V (T n ) \ V i t ), e) = P (M ∩ V i t , e).
M i t such that e ∈ M i t . Let M ⊆ V (T n ) \ V i t .
Since there exists a shortest path P xy from x to y such that E(P xy ) ∩ M i t = ∅ for any x ∈ M and y ∈ V (T n ), it follows that d Tn (x, y) = d Tn-e (x, y), and hence |P (M, e)| = 0, and so the lower bound is sharp.

For any edge e = uv ∈ E(T n ), there exists a M i t such that e ∈ M i t . For any M ⊆ V (T n ), from Proposition 3.2, we have P (M, e) = P (M ∩ V i t , e), and hence

|P (M, e)| = |P (M ∩ V i t , e)| ≤ |P (V i t , e)|.
Let X ⊆ V i t be the vertex set such that d Tn (u, x) < d Tn (v, x) for any x ∈ X, and Y ⊆ V i t be the vertex set such that d Tn (u, x) > d Tn (v, x) for any y ∈ Y . Then, X ∪ Y = V i t . Since d Tn (x, y) ̸ = d Tn-e (x, y), it follows that (x, y), (y, x) ∈ P (V i t , e), and hence

|P (V i t , e)| = 2|X| • |Y |. Since |V 1 t | = n -t + 1, |V 2 t | = n -t + 1 and |V 3 t | = t + 1, it follows that |V i t | ≤ n, where 1 ≤ i ≤ 3, and hence |P (V i t , e)| = 2|X||Y | ≤ 2⌊n/2⌋⌈n/2⌉.
Proof. For n = 3, we choose the vertex set M = {(0, 1), (1, 0), (1, 1)} in T 3 . By Theorem 3.1, we have EM ((0, 1)) = {((0, 0)(0, 1)) * , ((0, 2)(0, 1)) * , ((1, 0)(0, 1)) * },

EM ((1, 0)) = {((0, 0)(1, 0)) * , ((2, 0)(1, 0)) * , ((1, 0)(1, 1)) * }, EM ((1, 1)) = {((0, 1)(1, 1)) * , ((2, 0)(1, 1)) * , ((0, 2)(1, 1)) * }.
Since EM ((0, 1)) ∪ EM ((1, 0)) ∪ EM ((1, 1)) = E(T 3 ), it follows that dem(T 3 ) ≤ 3. To show dem(T 3 ) ≥ 3, let the vertex set Q ⊆ V (T 3 ) with |Q| = 2 be a DEM set of T 3 . For any vertex v ∈ V (T 3 ), from Theorem 3.2, |EM (v)| = 2(n -1) = 4, and hence | ∪ x∈Q EM (x)| ≤ 8 < e(T 3 ) = 9, and so Q is not a DEM set of T 3 . Therefore, dem(T 3 ) ≥ 3, and so dem(T 3 ) = 3.

For n > 3, let

M 1 = {(0, v) | 1 ≤ v ≤ n-1 2 }, M 2 = {(u, 0) | n-1 2 ≤ u ≤ n -2} and M 3 = {(u, v) | 1 ≤ u ≤ n-3 2 , n+1 2 ≤ v ≤ n -2, u + v = n -1}. Choose the vertex set M = M 1 ∪ M 2 ∪ M 3 with |M | = (3n -5)/2 in T n . For each vertex (0, v) ∈ M 1 , by Lemma 3.1, we have EM ((0, v)) = {((0, i)(0, i+1)) * | 0 ≤ i ≤ n-2}∪{((j, v)(j +1, v)) * | 0 ≤ j ≤ n-2-v}∪{((j, i)(j +1, i-1)) * | 0 ≤ j ≤ v -1, j + i = v}.
Similarly, we have EM ((u, 0)) = {((i, 0

)(i + 1, 0)) * | 0 ≤ i ≤ n -2} ∪ {((u, j)(u, j + 1)) * | 0 ≤ j ≤ n -2 -u} ∪ {((j, i)(j + 1, i -1)) * | 0 ≤ j ≤ u -1, j + i = u} for each (u, 0) of M 2 , and EM ((u, v)) = {((i, v)(i + 1, v)) * | 0 ≤ i ≤ n -2 -v} ∪ {((u, j)(u, j + 1)) * | 0 ≤ j ≤ n -2 -u} ∪ {((i, j)(i + 1, j -1)) * | 0 ≤ i ≤ u + v -1, k + j = u + v} for each (u, v) of M 3 . Since (∪ (0,v)∈M 1 EM ((0, v))) ∪ (∪ (u,0)∈M 2 EM ((u, 0))) ∪ (∪ (u,v)∈M 3 EM ((u, v))), it follows that dem(T n ) ≤ |M | = (3n -5)/2 for n > 3.
To show dem(T n ) ≥ (3n-5)/2 for n > 3, let the vertex set Q ⊆ V (T n ) with |Q| = (3n-5)/2-1 be a DEM set of T n . Choose the edge set

I = (∪ n-2 i=(n+1)/2 M 1 i+1 ) ∪ (∪ n-2 j=(n+1)/2 M 2 j+1 ) ∪ (∪ (n-1)/2 k=1 M 3 k ) and the vertex set R = (∪ n-2 i=(n+1)/2 V 1 i+1 )∪(∪ n-2 j=(n+1)/2 V 2 j+1 )∪(∪ (n-1)/2 k=1 V 3 k ).
For any edge e ∈ M j i ⊆ I, where 1 ≤ i ≤ n -1 and 1 ≤ j ≤ 3, from Proposition 3.2, we have P (M, e) = P (M ∩ V j i , e) for any M ⊆ V (T n ), and hence P (u, e) = ∅ for any u ∈ V (T n )\V j i , and so e can only be monitored by some vertex v in V j i ⊆ R. Thus, Q∩V j i ̸ = ∅, for any V j i ⊆ R, and so |Q∩R| ≥ (3n-5)/2-2. In fact, there exist three edge sets M 1 (n+1)/2 , M 2 (n+1)/2 and M 3 (n-1)/2 such that (M 1 (n+1)/2 ∪M 2 (n+1)/2 ∪M 3 (n-1)/2 )∩I = ∅. Similarly, from Proposition 3.2, the edge e ∈ M j (n+1)/2 can only be monitored by some vertex v ∈ V j (n+1)/2 , where 1 ≤ j ≤ 2, and the edge e ∈ M 3 (n-1)/2 can only be monitored by some vertex

v ∈ V 3 (n-1)/2 . Since V 1 (n+1)/2 ∩ V 2 (n+1)/2 ̸ = ∅, V 1 (n+1)/2 ∩ V 3 (n-1)/2 ̸ = ∅ and V 2 (n+1)/2 ∩ V 3 (n-1)/2 ̸ = ∅, it follows that |Q ∩ (V (T n ) \ R)| ≥ 2,
and hence |Q| ≥ (3n -5)/2, which contradicts the fact that |Q| = (3n -5)/2 -1. Therefore, dem(T n ) = (3n -5)/2.

Results for hexagonal networks

Now, we construct a coordinate system for HX(n). Let a, b, c, d, f, g be the corner vertices of HX(n); see Figure 3. In this scheme, the three axes, X, Y and Z parallel to three edge directions and at mutual angle of 120 degrees between any two of them are introduced, where the directions from a to d, b to f and c to g are the directions of X, Y and Z, respectively. We call lines parallel to the coordinate axes as X-lines, Y -lines and Z-lines. Further, we use X i -line to denote a line of X-lines with the distance of i from the X-axis for 1 -n ≤ i ≤ n -1. Note that X 0 -line is the X-axis, X k -line lies in upper side of X-axis, and X -k -line lies in under side of X-axis, where 1 ≤ k ≤ n -1. Let X i , X i be the edge set and the vertex set of X i -line, respectively; similarly, we define Y i , Y i , Z i and Z i , where 1 -n ≤ i ≤ n -1.

For each vertex v of HX(n), we can always use x i y j z k to express v, where X i ∩ Y j ∩ Z k = {x i y j z k }, where 1-n ≤ i, j, k ≤ n-1. Note that k = j-i for any vertex x i y j z k . For u, v ∈ V (HX(n)), if uv is an edge of HX(n), then we use (u, v) * to represent it. For example, the corner vertex d can be represented as x 0 y 1-n z 1-n , and the edges associated with d can be written as (x 0 y

1-n z 1-n , x 0 y 2-n z 2-n ) * , (x 0 y 1-n z 1-n , x -1 y 1-n z 2-n ) * and (x 0 y 1-n z 1-n , x 1 y 2-n z 1-n ) *
. These definitions will help us to prove the following results.

Lemma 4.1. For a vertex

v = x i y j z k of HX(n), we have EM (v) = X i ∪ Y j ∪ Z k , where 1 -n ≤ i, j, k ≤ n -1. Proof. For any uw ∈ X i ∪ Y j ∪ Z k with d HX(n) (v, u) > d HX(n) (v,
w), since there exists only one shortest path P vu from v to u in the graph HX(n), where (v, u), and hence uw ∈ EM (v), and so 

E(P vu ) ⊆ X i ∪ Y j ∪ Z k , it follows that d HX(n) (v, u) ̸ = d HX(n)-uw
X i ∪ Y j ∪ Z k ⊆ EM (v). For any edge uw ∈ E(HX(n)) -X i ∪ Y j ∪ Z k , it
(n)) -X i ∪ Y j ∪ Z k ) = ∅. Therefore, we have EM (v) = X i ∪ Y j ∪ Z k , where v = x i y j z k and 1 -n ≤ i, j, k ≤ n -1.
(n) (v, w) < d HX(n) (v, u). Since v ∈ M ⊆ X t and e = uw ∈ X t , where 1 -n ≤ t ≤ n -1,
it follows that there exists the unique shortest path P vu from v to u such that uw ∈ E(P vu ), and hence d HX(n) (v, w) ̸ = d HX(n)-e (v, w), and so the vertex pair (v, w) ∈ P (M, e) and (v, w) / ∈ P (M \ v, e). Therefore, P (M \ v, e) ⊂ P (M, e). For e ∈ X t and v ∈ M \ X t , there exists a shortest path P vy from v to y such that E(P vy )∩X t = ∅ for any y ∈ V (HX(n)), and hence d HX(n) (v, y) = d HX(n)-e (v, y), and so P ({v}, e) = ∅. Therefore, P (M, e) = P (M \ v, e), and so P (M, e) = P (M \ (V (HX(n)) \ X t ), e) = P (M ∩ X t , e). Proof. By Definition 1, we have |P (M, e)| ≥ 0. For any edge e ∈ E(HX(n)), there exists a X t such that e ∈ X t , where 1

-n ≤ t ≤ n -1. Let M ⊆ V (HX(n)) \ X t .
Since there exists a shortest path P xy from x to y such that E(P xy ) ∩ X t = ∅ for any x ∈ M and y ∈ V (HX(n)), it follows that d HX(n) (x, y) = d HX(n)-e (x, y), and hence |P (M, e)| = 0, and so the lower bound is sharp.

For any edge e = uv ∈ E(HX(n)), there exists a X t such that e ∈ X t , where 1 -n ≤ t ≤ n -1. For any M ⊆ V (HX(n)), from Proposition 4.1, we have P (M, e) = P (M ∩ X t , e), and hence To show the sharpness of the bounds of Theorem 4.2, we give the following example. 

|P (M, e)| = |P (M ∩ X t , e)| ≤ |P ( X t , e)|. Let A ⊆ X t be the vertex set such that d HX(n) (u, x) < d HX(n) (v,
E 1 = ∪ v∈M 1 EM (v) = X 0 ∪ (∪ n-1 i=1 Y i ) ∪ (∪ n-1 i=1 Z i ), E 2 = ∪ v∈M 2 EM (v) = (∪ n-1 i=1 X i ) ∪ Y 0 ∪ (∪ n-1 i=1 Z -i ), E 3 = ∪ v∈M 3 EM (v) = (∪ n-1 i=1 X -i ) ∪ (∪ n-1 i=1 Y -i ) ∪ Z 0 .
Since E 1 ∪ E 2 ∪ E 3 = E(HX(n)), it follows that dem(HX(n)) ≤ |M | = 3n -3.

We now prove the lower bound. Let Q ⊆ V (HX(n)) be a DEM set of HX(n) with |Q| = 2n-2. By Proposition 4.1, we have P (M, e) = P (M ∩ X t , e) for any M ⊆ V (HX(n)) and e ∈ X t , and hence P ({u}, e) = ∅ for any u ∈ V (HX(n)) \ X t , and so X t can only be monitored by the vertices in X t for each t (1 -n ≤ t ≤ n -1). Therefore, |Q| ≥ 2n -1, which contradicts the fact that |Q| = 2n -2,

Concluding remark

In this paper, we studied some extremal problems for DEM numbers. For Problems 1 and 2, it is natural to improve and get some better bounds for 3 ≤ k ≤ n -2.

For further future work, it would be interesting to study DEM sets in further standard graph classes, including pyramids, Sierpińki-type graphs, circulant graphs, graph products, or line graphs. In addition, it would be of interest to characterize the graphs with dem(G) = n -2, as well as clarifying further the relation of the parameter dem(G) to other standard graph parameters, such as arboricity, vertex cover number and feedback edge set number.
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 23221 Let G be a connected graph with |V (G)| = n and e(G) ≥ n. Then we have dem(G) ≥ Proposition Let K n be a complete graph and e ∈ E(K n ). Then dem(K n -e) = n -2.

  Definition 1 and Lemma 1.1, the edge v 1 u t+1 cannot be monitored by M , and hence dem(G) ≥ r-1 ∑ i=1 n i , and so dem(G) = r-1 ∑ i=1 n i .

Claim 1 .

 1 and hence EM (Q) = E(H). Since EM (Q) represents the union of edge sets monitored by each vertex of Q, it follows from Proposition 2.2 that dem(H) ≤ r-1 ∑ i=1 n i = k. But adding all possible edges formed by every two pairs of vertices in V r , we can obtain a new graph H ′ and the following claim holds. dem(H ′ ) ≥ k + 1.
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 33 For a radix n-triangular mesh network T n (n ≥ 2), let M ⊆ V (T n ) and e ∈ E(T n ). Then we have 0 ≤ |P (M, e)| ≤ 2⌊n/2⌋⌈n/2⌉. Proof. By Definition 1, we have |P (M, e)| ≥ 0. For any edge e = uv ∈ E(T n ), there exists a

  follows from Definition 1 and Lemma 1.1 that the edge uw / ∈ EM (v), and hence EM (v) ∩ (E(HX
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 41 Let M ⊆ V (HX(n)). For v ∈ M and e ∈ E(HX(n)), we have |P (M \ v, e)| ≤ |P (M, e)|. Moreover, if v ∈ M ⊆ X t and e ∈ X t , then P (M \ v, e) ⊂ P (M, e); if e ∈ X t , then P (M, e) = P (M ∩ X t , e), where 1 -n ≤ t ≤ n -1. (The cases of Y t and Z t are symmetric.) Proof. By Proposition 3.1, we have P (M \ v, e) ⊆ P (M, e), and hence |P (M \ v, e)| ≤ |P (M, e)|. Without loss of generality, let d HX
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 41 For a hexagonal network HX(n), let M ⊆ V (HX(n)) and e ∈ E(HX(n)). Then we have 0 ≤ |P (M, e)| ≤ 2n(n -1).
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 342 x) for any x ∈ A, and B ⊆ X t be the vertex set such that d Tn (u, x) > d Tn (v, x) for any y ∈ B. Then, A ∪ B = X t . Since d HX(n) (x, y) ̸ = d HX(n)-e (x, y), it follows that (x, y), (y, x) ∈ P ( X t , e), and hence|P ( X t , e)| = 2|A| • |B|. Since | X t | = 2n -1 -|t|, it follows that | X t | ≤ 2n -1, and hence |P ( X t , e)| = 2|A| • |B| ≤ 2n(n -1). Choose the edge e = (x 0 y 1 z 1 , x 0 y 0 z 0 ) * and the vertex set M = {x 0 y i z i | 1 -n ≤ i ≤ n -1}. By Proposition 4.1, we have P (M, e) = {(x 0 y i z i , x 0 y j z j ) | 1 -n ≤ i ≤ 0, 1 ≤ j ≤ n -1} ∪ {(x 0 y i z i , x 0 y j z j ) | 1 ≤ i ≤ n -1, 1 -n ≤ j ≤ 0}, then |P (M, e)| = 2n(n -1), and hence the upper bound is sharp. For a hexagonal network HX(n), we have4(n -1) ≤ |EM (v)| ≤ 6(n -1) for any vertex v ∈ V (HX(n)). Proof. Let v = x i y j z k , where 1-n ≤ i, j, k ≤ n-1. By Lemma 4.1, we have EM (v) = X i ∪Y j ∪Z k . Since X i ∩Y j = ∅, X i ∩Z k = ∅ and Y j ∩Z k = ∅, it follows that |EM (v)| = |X i |+|Y j |+|Z k |. Clearly, |X i |, |Y j |, |Z k | ≤ 2(n -1), and hence we have |EM (v)| ≤ 6(n -1). Now we proof the lower bound. Since k = j -i for any vertex v = x i y j z k , it follows from Lemma 4.1 that EM(v) = X i ∪ Y j ∪ Z j-i . Then |EM (v)| = |X i |+|Y j |+|Z j-i | = (2(n-1)-|i|)+(2(n-1)-|j|)+(2(n-1)-|j -i|), and hence |EM (v)| = 6(n -1) -(|i| + |j| + |j -i|), where 1 -n ≤ i, j ≤ n -1. Since |i| + |j| + |j -i| ≤ 2(n -1) it follows that |EM (v)| ≥ 4(n -1).
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 49 For the vertex u = x 0 y n-1 z n-1 , fromLemma 4.1, EM (u) = X 0 ∪ Y n-1 ∪ Z n-1 , then |EM (u)| = 2(n -1) + (n -1) + (n -1) = 4(n -1). For the vertex o of HX(n), it follows from Lemma 4.1 that EM (o) = EM (x 0 y 0 z 0 ) = X 0 ∪ Y 0 ∪ Z 0 . Clearly, |X 0 | = |Y 0 | = |Z 0 | = 2(n -1), then |EM (o)| = 6(n -1). Therefore, the bounds are sharp.Proof of Theorem 1.To show the upper bound, letM 1 = {x 0 y i z i | 1 ≤ i ≤ n -1}, M 2 = {x i y 0 z -i | 1 ≤ i ≤ n-1}, M 3 = {x -i y -i z 0 | 1 ≤ i ≤ n-1}. Choose the vertex set M = M 1 ∪M 2 ∪M 3 with |M | = 3n-3 in HX(n). From Lemma 4.1, we let

  Now we construct a connected graph F whose the base graph is grid G 2,4 , then e(F ) = n + 2. By Theorem 1.3, dem(F ) = 4, and hence the lower bound is sharp.

Proof of Theorem 1.5: For any connected graph G with order n ≥ 6 and e(G) ≤ n+1, it follows from Corollary 2.5 that dem(G) ≤ 3, and hence f (n, 4) ≥ n + 2, and so

f (n, k) ≥ f (n, 4) ≥ n + 2 for 4 ≤ k ≤ n -2.

  ⌊(k + 2)/2⌋. Then e(G) = n + ⌊k/2⌋, where k ≥ 4. From Theorem 2.6, we have dem(G) ≤ k. Let G ′ be the connected graph obtained from G by deleting some edges. Therefore, e(G ′ ) = n + ⌊k ′ /2⌋ ≤ n + ⌊k/2⌋ = e(G), where k ′ ≤ k, and hence dem(G ′ ) ≤ k. We now give the lower bound. Let G be a connected graph with order n ≥ 9. For 4 ≤ k ≤ n -2, it follows from Corollary 2.7 that g(n, k) ≥ n + ⌊k/2⌋ ≥ n + 2. Moreover, let H be a connected graph with order n, where the base graph of H is a grid G 2,4 . Then, g(n, k) = n + 2 for the graph H, and hence the lower bound is sharp.

	Proof of Theorem 1.6:

Corollary 2.7. For a connected graph G with order n, if e(G)

≤ n+⌊k/2⌋, k ≥ 4, then dem(G) ≤ k.

Proof. For a connected graph G with order n, if fes(G) = t, then e(G) = n + t -1. Let t =

  1 x+1 with d Tn (v, u) > d Tn (v, w), since there exists only one shortest path P vu from v to u in the graph T n , where E(P vu ) ⊆ M 1 x+1 , it follows that d Tn (v, u) ̸ = d Tn-uw (v, u), and hence uw ∈ EM (v), and so all edges in M 1 x+1 can be monitored by v. Similarly, the all edges in M 2 y+1 and M 3 x+y can be monitored by v. For any edge uw ∈ E(T n )-M 1 x+1 ∪M 2 y+1 ∪M 3 x+y , it follows from Definition 1 and Lemma 1.1 that the vertex v cannot monitor the edge uw, and hence v cannot monitor all edges in E
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The following example shows the upper bound in Theorem 3.3 is sharp.

Example 2. For the odd n ≥ 3, let e 1 = ((0, n-1

2 ), (0, n+1 2 )) * and M = {(0, i) | 0 ≤ i ≤ n -1}. By Theorem 3.1, we have P (M, e 1 ) = {((0, i), (0, j)), ((0, j), (0

2 . For the even n ≥ 2, let e 2 = ((0, n-2 2 ), (0, n 2 )) * . By Theorem 3.1, we have P (M, e 2 ) = {((0, i), (0, j)), ((0, j), (0, i)

2 , which implies that the upper bound is sharp.

We are now in a position to give the proof of Theorem 1.7 by the following two propositions.

Proposition 3.3. Let T n be a radix n-triangular mesh network, where n is even. Then, we have

Similarly, we have EM ((u, 0)) = {((i, 0

For any edge e ∈ M j i ⊆ I, where 1 ≤ i ≤ n -1 and 1 ≤ j ≤ 3, from Proposition 3.2, we have P (M, e) = P (M ∩ V j i , e) for any M ⊆ V (T n ), and hence P ({u}, e) = ∅ for any u ∈ V (T n ) \ V j i , and so e can only be monitored by some vertex v in V j i ⊆ R. Thus, Q ∩ V j i ̸ = ∅, for any V j i ⊆ R, and so |Q| ≥ (3n -6)/2, which contradicts the fact that |Q| = (3n -6)/2 -1. Therefore, we have dem(T n ) ≥ (3n -6)/2, and hence dem(T n ) = (3n -6)/2.