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1 Introduction
Augmented Lagrangians and Lagrangians are constrained optimization tools
that very early have naturally been applied to contact problems with deformable
solids (see for example (Rockafellar 1974, 1976)). The augmented Lagrangian
has since quite widely become established for the approximation and resolution
of contact problems in small and large strains, mainly following the research of
(Curnier and Alart 1988 ; Alart and Curnier 1991 ; Simo and Laursen 1992).
The method by Nitsche (1971) was originally proposed to allow a Dirichlet-
type boundary condition to be weakly taken into account, precisely avoiding
the use of Lagrange multipliers. Only recently has it been extended to contact
conditions with or without friction in (Chouly and Hild 2013a ; Annavarapu
et al. 2014 ; Chouly 2014 ; Chouly et al. 2015). The close connection between
Nitsche and Lagrangian methods is however quite clear and it is the objective
of this chapter to shed some light on this relationship. This is achieved namely
by looking into the mechanisms underlying these methods, and also by way of
presenting some recent developments within the framework of small and large
elastic strains.

Section 2 first presents the continuous problem of frictional contact between
two elastic solids, within the framework of small strains. Section 3 is dedi-
cated to finite element approximation within the framework of small strains,
where mathematical analysis of numerical methods is possible. Section 4 fi-
nally presents the extension of the methods described in previous sections to
the regime of large elastic transformations, as well as numerical results related
to this context.
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2 Small-strains frictional contact
between two elastic bodies

The problem of frictional contact between two elastic solids is first described in
Section 2.1, then in Section 2.2, this problem is reformulated as a quasi vari-
ational inequality. Then, Section 2.3 introduces the weak multiplier form and
Section 2.4, the proximal augmented Lagrangian formulation; these reformula-
tions are the basis of the numerical approximations presented in Sections 3 and
4.

2.1 Contact between two elastic bodies
We consider two elastic solids whose respective reference configurations are de-
noted by Ω1 and Ω2 corresponding to two domains of Rd (d = 2 or 3) of regular
boundaries (piecewise of class C 1), as shown in Figure 1. At the boundaries
∂Ω1 and ∂Ω2 of Ω1 and Ω2 we can identify: the boundaries Γ1

D and Γ2
D (with

non-empty interiors) on which the elastic bodies are clamped, the boundaries
Γ1
N and Γ2

N with an imposed force density and Γ1
C and Γ2

C which are the poten-
tial contact boundaries, slave and master, respectively. We assume that these
boundaries form a partition without boundaries overlapping of ∂Ω1 and ∂Ω2.

The two elastic bodies are subjected to force densities (volumic forces if
d = 3) denoted f1 and f2 and on Γ1

N and Γ2
N to force densities (surface forces if

d = 3) denoted ℓ1 and ℓ2. The focus is now on expressing the contact condition
with Coulomb friction. To this end, we consider the slave surface Γ1

C . For a
point x ∈ Γ1

C , the point y ∈ Γ2
C that potentially comes into contact therewith

must be determined. This is called contact pairing. In the contact condition
small-strain approximation, this correspondence is determined on the reference
configuration and is not questioned during deformation. In general, a projection
is used, but it is not the only possible choice. Let this correspondence:

Π : Γ1
C → Γ2

C

x 7→ y = Π(x)
.

Ω1

Ω2

Γ1
C

Γ2
C

n1
n

Γ2
D

Γ2
N

Γ1
N

y = Π(x)

x

Γ1
D

.

Figure 1: Two bodies with their respective potential contact boundaries
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There are then two outward vectors of interest at point x (see Figure 1): the
outward unit normal vector of Ω1, which we will denote by n1 and the outward
unit vector in the direction of y = Π(x), which we will denote by n and which
can be defined by:

n =


y − x

|y − x|
if (y − x) · n1 > 0

n1 if (y − x) · n1 = 0

− y − x

|y − x|
if (y − x) · n1 < 0

since the last two cases (that is, for (y − x) · n1 ≤ 0) are expected, either when
contact is established in the reference configuration, or if both domains are
overlapping, which is a priori not prohibited. There is no reason that these
two vectors n1 and n should be equal, in general, except by using the "ray
tracing" strategy exposed in 4.1. The vector n is usually called the contact
normal. To express the contact condition, one should determine what is the
normal component of the stress. Let u1 : Ω1 → Rd be the displacement of the
first body and σ(u1) its Cauchy stress tensor. So, we will denote

σn = (σ(u1)n1) · n, σt = (I − n⊗ n)(σ(u1)n1)

the normal and tangential component decomposition of the stress on the slave
contact boundary. We will also denote:

g0 = (y − x) · n

the initial gap between the two potential contact surfaces as well as:[[
u
]]
= (u1 − u2 ◦Π),

[[
un

]]
= (u1 − u2 ◦Π) · n

the jumps of the displacements and of the normal displacements. Therefrom,
the non-interpenetration condition, or Signorini condition, can be written on
Γ1
C as the following complementarity relation:[[

un

]]
≤ g0, σn ≤ 0, (

[[
un

]]
− g0)σn = 0 (1)

To write the friction condition, a coefficient of friction is of course needed,
which will be denoted by F ≥ 0 and rigorously a notion of sliding velocity.
Here, in a supposedly quasi-static evolution, we will not use a sliding velocity
but a tangential displacement increment that we will denote by dt. (Duvaut and
Lions 1972 ; Kikuchi and Oden 1988) use the expression dt(u1, u2) = (I − n ⊗
n)
[[
u
]]
, which leads to a problem, although artificial, which exhibits the same

characteristics as that obtained for an expression of dt that would derive from
a time discretization that can be written as:

dt(u1, u2) = (I − n⊗ n)(
[[
u
]]
−
[[
u0
]]
)
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where
[[
u0
]]

is the displacement jump at the previous time step. The friction
condition is then written as:

|σt| ≤ −Fσn, if dt ̸= 0 then σt = Fσn
dt
|dt|

(2)

The second Newton law, or action-reaction principle, imposes that:

σ(u1)n1 = σ(u2 ◦Π)n2 ◦ΠJΠ (3)

where n2 is the outward unit normal to Γ2
C at point y = Π(x) and JΠ is the

Jacobian of the transformation Π between the two surfaces Γ1
C and Γ2

C .
The description of the linarized elasticity law is carried out by the interme-

diate of the small strain tensor ε(u) = (∇u+∇uT )/2. The Cauchy stress tensor
is then connected to the strain tensor by the 4th-order elasticity tensor A with
the usual symmetry and coerciveness properties. This relationship is written
as σ(u) = Aε(u). The displacements u1, u2 of the two elastic bodies are then
subjected to the following equations on Ωi, i = 1, 2 in addition to the contact
and friction equations (1), (2) and (3):

−divσ(ui) = f i in Ωi

σ(ui) = Aε(ui) in Ωi

ui = 0 on Γi
D

σ(ui)ni = ℓi on Γi
N

(4)

2.2 The classical weak inequality form
The weak formulation in the form of inequality that can be found in (Duvaut
and Lions 1972 ; Kikuchi and Oden 1988) for example, can be constructed by
introducing the following spaces:

V = H1(Ω1;Rd)×H1(Ω2;Rd)

V0 = {v = (v1, v2) ∈ V : v1 = 0 on Γ1
D and v2 = 0 on Γ2

D}
and the set of admissible displacements:

K =
{
v = (v1, v2) ∈ V0 :

[[
vn
]]
− g0 ∈ K0

}
K0 = {v ∈ L2(Γ1

C) : v ≤ 0}

The spaces of normal and tangential traces on Γ1
C are also introduced as:

XN =
{
w ∈ L2(Γ1

C ;R) : ∃v ∈ H1(Ω1;Rd), v=0 on Γ1
D, w=v Γ1

C
· n
}

XT =
{
w ∈ L2(Γ1

C ;Rd−1) : ∃v ∈ H1(Ω1;Rd), v=0 on Γ1
D, w=(I−n⊗n)v Γ1

C

}
as well as their respective topological duals X ′

N et X ′
T . Let (f1, f2) be in

L2(Ω1;Rd)× L2(Ω2;Rd), (ℓ1, ℓ2) in L2(Γ1
N ;Rd)× L2(Γ2

N ;Rd), the following bi-
linear et linear forms on V are defined:

a(u, v) =
∑
i=1,2

∫
Ωi

σ(ui) : ε(vi) dΩ

L(v) =
∑
i=1,2

∫
Ωi

f i · vi dΩ+
∑
i=1,2

∫
Γi
N

ℓi · vi dΓ
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as well as the functional corresponding to the virtual work of the frictional force:
j(s, v) = ⟨s, |dt(v)|⟩X′

N ,XN

where s = −Fσn(u) is the friction threshold. The notation ⟨·, ·⟩X′
N ,XN

denotes
the product of duality between the spaces X ′

N and XN . When s is regular, this

product is reduced to the integral
∫
Γ1
C

s|dt(v)|dΓ. Therefore, the classical weak

form associated with (1)–(2)–(3)–(4) is written as:{
Find u ∈ K such that :
a(u, v − u)− j(Fσn(u), v) + j(Fσn(u), u) ≥ L(v − u), ∀v ∈ K

(5)

When there is no friction (F = 0), the weak problem (5) is a variational
inequality of the first kind. Then, the Stampacchia theorem allows us to con-
clude that it admits a unique solution, which moreover is the only minimizer of
the functional J (u) = 1

2a(u, u)− L(u) on the convex set K. In the presence of
friction, results of existence could be shown, for example in (Eck et al. 2005),
given that the coefficient of friction F is small. A recent result in (Ballard and
Iurlano 2023), claims that existence holds for any friction coefficient. Regarding
the uniqueness of the solution, counterexamples were presented for large friction
coefficients in (Hild 2003, 2004) and a criterion for characterizing the uniqueness
of the solution was presented in (Renard 2006). The uniqueness of the solution
for a sufficiently small coefficient is still an open problem.

It should be noted that when the friction threshold s ∈ X ′
N is known (this is

then referred to as Tresca friction), the weak problem, which is then a variational
inequality of the second kind, is equivalent to the minimization of the non-
regular functional Js(u) = J (u) + j(s, u) on the convex K. The existence and
uniqueness of the solution are also guaranteed, since the functional j(·, ·) has
the property of being convex and lower semi-continuous compared to its second
argument (see for example (Glowinski 1984 ; Kikuchi and Oden 1988)).

2.3 The principle of duality and the weak form with mul-
tipliers

The use of Lagrange multipliers leads to transforming a constrained minimiza-
tion problem into a problem with simple constraints on multipliers. In this case,
it also allows the non-regular nature of the norm involved in the expression of
the functional j(·, ·) to be taken into consideration. Given that Coulomb friction
does not naturally derive from a potential, we look into this matter with the
problem involving Tresca friction. By using IK0(·) the characteristic function for
the set K0, a convex function equal to 0 in K0 and +∞ elsewhere, the solution
to the Tresca problem minimizes on V0 the functional:

J̃s(u) = J (u) + j(s, u) + IK0
(
[[
un

]]
− g0)

The principle of dualization consists in introducing an auxiliary variable,
here µ = (µn, µt) ∈ XN ×XT , and set:

W(u, µ) = J (u) + ⟨s, |dt(u)− µt|⟩X′
N ,XN

+ IK0
(
[[
un

]]
− g0 − µn) (6)

5



so that W(u, 0) = J̃s(u) and that W(u, ·) be convex. Therefore, the solution to
the Tresca problem is the minimizer of W(u, 0) on V0 and applying the Fenchel-
Legendre conjugate to the functional W(u, ·) (see for instance, (Rockafellar and
Wets 1998)), this will be the saddle point of the Lagrangian:

L (u, λ) = − sup
µ

(∫
Γ1
C

λ · µdΓ−W (u, µ)

)
.

In practice, the computation of this conjugate yields the sets:

ΛN = {λn ∈ X ′
N : ⟨λn, vn⟩X′

N ,XN
≥ 0, ∀vn ∈ XN , vn ≤ 0}

ΛT (s) = {λt ∈ X ′
T : −⟨λt, vt⟩X′

T ,XT
− ⟨s, |vt|⟩X′

N ,XN
≤ 0, ∀vt ∈ XT }

which are respectively the sets of admissible normal and tangential stresses.
This leads to obtaining the Lagrangian expression:

L (u, λ) = J (u)− ⟨λn,
[[
un

]]
− g0⟩X′

N ,XN

−⟨λt, dt(u)⟩X′
T ,XT

− IΛN
(λn)− IΛT (s)(λt)

which is a Lagrangian with constraints on the multiplier that are represented by
the presence of characteristic functions IΛN

(λn) and IΛT (s)(λt). This Lagrangian
has then simply to be differentiated to obtain the optimality system. Bearing
in mind the fact that the subdifferential of the characteristic function of a set is
its normal cone (we still refer to (Rockafellar and Wets 1998)), the formulation
of the Tresca friction problem can be derived as follows (see also (Laborde and
Renard 2008)):

Find u ∈ V0, λn ∈ ΛN and λt ∈ ΛT (s) such that:

a(u, v) = L(v) + ⟨λn,
[[
vn
]]
⟩
X′

N ,XN
+ ⟨λt,

[[
vt
]]
⟩
X′

T ,XT
, ∀v ∈ V0

⟨λn − µn,
[[
un

]]
− g0⟩ ≤ 0, ∀µn ∈ ΛN

⟨λt − µt, dt(u)⟩ ≤ 0, ∀µt ∈ ΛT (s).

(7)

A weak form of the problem with Coulomb friction can be then easily ob-
tained by replacing ΛT (s) by ΛT (−Fσn(u)).

2.4 Proximal augmented Lagrangian: principle and use
A drawback of the simple Lagrangian presented in Section 1.2.3 is that remov-
ing constraints and non-regular terms on u induces some constraints on the
Lagrange multipliers. An augmented Lagrangian makes it possible to obtain an
optimality system without constraints. To this end, the formula in (6) has to
be modified keeping in mind that any convex quantity can be added to the vari-
able µ provided that the latter cancels out for µ = 0. The proximal augmented
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Lagrangian (see (Rockafellar and Wets 1998)) consists in introducing a norm of
the additional variable µ, that is, in this case:

Wγ(u, µ) = W(u, µ) +
γ

2

∫
Γ1
C

|µ|2dΓ

where γ > 0 is the augmentation parameter. It should be noted that by using
a norm in L2(Γ1

C), only the cases where the multiplier is in this space are taken
into consideration. This will be assumed hereafter, and will make it possible
to replace duality products by integrals. Using again the Fenchel-Legendre
conjugate with respect to the variable µ, the augmented Lagrangian is obtained:

Lγ(u, λ) = − sup
µ

(∫
Γ1
C

λ · µdΓ−Wγ(u, µ)

)

which gives after computation:

Lγ(u, λ) = J (u)−
∫
Γ1
C

λn(
[[
un

]]
− g0)dΓ−

∫
Γ1
C

λt · dt(u)dΓ

−
∫
Γ1
C

1

2γ

[
λn − γ(

[[
un

]]
− g0) + (λn − γ(

[[
un

]]
− g0))−

]2
dΓ

+

∫
Γ1
C

γ

2
(
[[
un

]]
− g0)

2dΓ

−
∫
Γ1
C

1

2γ

∣∣λt − γdt(u)− PB(s)(λt − γdt(u))
∣∣2 dΓ

+

∫
Γ1
C

γ

2
|dt(u)|2dΓ

(8)

where (x)− = (|x| − x)/2 designates the negative part of x and PB(s) is the
projection onto the ball of center 0 and radius s. The optimality system of this
augmented Lagrangian is the weak form of the following Tresca friction contact
problem:

Find u ∈ V0, λ ∈ L2(Γ1
C ;Rd) such that for any v ∈ V0

and any µ ∈ L2(Γ1
C ;Rd) one has:

a(u, v) = L(v)−
∫
Γ1
C

(λn − γ(
[[
un

]]
− g0))−

[[
vn
]]
dΓ

+

∫
Γ1
C

PB(s)(λt − γdt(u))
[[
vt
]]
dΓ

− 1

γ

∫
Γ1
C

[
λn + (λn − γ(

[[
un

]]
− g0))−

]
µndΓ

− 1

γ

∫
Γ1
C

[
λt − PB(s)(λt − γdt(u))

]
· µt dΓ.

(9)

A weak form of the Coulomb friction problem can then be obtained by
replacing the threshold s by the friction threshold from Coulomb’s law, that is,
either with −Fλn, or with F (λn − γ(

[[
un

]]
− g0))−.
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The mechanism by which the augmented Lagrangian provides an optimality
condition that is not a constrained condition is related to the Moreau-Yosida
regularization. So to quickly introduce the principle, we examine the optimality
condition on the multiplier λ which is obtained by canceling out

∂λLγ(u, λ) = ∂λ(W∗µ
γ (u, λ))

where W∗µ
γ (u, λ) is the Fenchel-Legendre conjugate of Wγ(u, µ) with respect to

the variable µ in L2(Γ1
C). Now, for φ : X → R a convex functional on a Hilbert

space X, from the definitions of the conjugate and the subderivative, it follows
that: x ∈ ∂φ(u) ⇔ −u ∈ ∂φ∗(x). Here, for X = L2(Γ1

C), this gives:

0 ∈ ∂λLγ(u, λ) ⇔ −λ ∈ ∂µWγ(u, 0) ⇔ 0 ∈ (∂µW(u, ·) + γI)−1(−λ)

where I is the identity. The term (∂µW(u, ·)+γI)−1 is called the Moreau-Yosida
resolvent of ∂µW(u, ·). If ∂µW(u, ·) is indeed maximal monotone, that is, if
W(u, µ) is indeed semi-continuous convex with respect to µ, then the resolvent
will be single valued and a contraction for all γ > 0 (see (Brézis 1973)). This
implies at least a Lipschitz-continuous regularity to the optimality condition on
the multiplier.

As an example, consider the normal part Wn(u, µn) = IK0
(
[[
un

]]
− g0+µn).

The subderivative of a characteristic function IC of a convex subset C of a
Hilbert space X is ∂IC = NC where NC , the normal cone to C is defined by:

NC(x) =

{
{w ∈ X : ⟨w, v − x⟩ ≤ 0 ∀v ∈ C} if x ∈ C
∅ otherwise

and in particular satisfies NC(x) = {0} for x in the interior of C. This set
is nontrivial only for x ∈ ∂C. It thus follows here that ∂µn

Wn(u, µn) =
NK0

(
[[
un

]]
− g0 + µn), and for the standard Lagrangian, we then have:

0 ∈ (∂µWn(u, ·))−1(−λn) ⇔ g0 −
[[
un

]]
∈ NΛN

(λn)

because it can be easily verified that N−1
K0

= NΛN
(the two sets K0 and ΛN

being two mutually polar cones). The condition g0−
[[
un

]]
∈ NΛN

(λn) is indeed
the one represented in the second line of the optimality system of the simple
Lagrangian (7) and it can be seen that this condition remains constrained be-
cause subjected to a normal cone. Conversely, for the augmented Lagrangian,

we take Wn
γ (u, µn) = Wn(u, µn) +

γ

2

∫
Γ1
C

|µn|2dΓ, and it follows that:

0 ∈ (NK0
(
[[
un

]]
− g0 + ·) + γI)−1(−λn).

As the resolvent of a normal cone can be written as a projection (see (Rockafellar
and Wets 1998)), it yields here:

(NK0
(
[[
un

]]
− g0 + ·) + γI)−1(−λn) =

1

γ
(λn + (λn − γ(

[[
un

]]
− g0))−)
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and the normal part of the second equation in (9), whose regularity is Lipschitz,
finally can be found. In Section 3, it will also be shown how to more directly
make use of the relation λn+(λn−γ(

[[
un

]]
−g0))− = 0, which is a reformulation

of the contact conditions (1), weakly imposed in (9), in order to obtain a Nitsche-
type formulation.

3 Finite element approximation in small defor-
mations

To achieve a finite element approximation of the contact problem of two elastic
bodies, consider two meshes T 1

h and T 2
h , regular in the sense of Ciarlet (1991),

for the two domains Ω1 and Ω2. These meshes are made of geometric elements
of desired shapes and sizes, such that:

Ωi =
⋃

T∈T i
h

T.

For the sake of simplicity, it is therefore considered that the domains Ω1 and
Ω2 are exactly covered, which might not be the case when these domains present
curved boundaries that are impossible to cover with the geometric elements
under consideration. Moreover, it is also assumed that the meshes comply with
the partition of the boundaries into Γi

D, Γi
N and Γi

C .
By V h

0 , one will denote the subspace of V0 of piecewise regular functions
(usually polynomial) on the two meshes T 1

h and T 2
h . For instance, if the choice

is a P1 Lagrange element, the meshes will consist of triangles in dimension
d = 2 and tetrahedra in dimension d = 3 and the unknowns will be continuous
piecewise affine functions.

There are many different ways for approaching the frictional contact prob-
lem. An important feature from the practical point of view is whether we are
considering matching (or compatible) meshes or not. The meshes will be said to
be coinciding (or compatible) if for any finite element node on the slave bound-
ary ai ∈ Γ1

C then Π(ai) is also a finite element node of the mesh T 2
h . In the latter

case, more direct approximations can be considered, see for example (Wriggers
2002).

It should also be noted that the application of the techniques presented
here for the account of the contact condition is not restricted to finite element
approximations only, despite that this choice remains one of the most widespread
in structural mechanics. They can actually be combined with any other type of
discretization based on the weak formulation of the problem (Galerkin methods)
and which then allows for an integral formulation of the contact condition. It
is particularly possible to use recent NURBS-based (Non Uniform Rational B-
Splines) isogeometric-type discretizations, which make it easier to link with
computer-aided design (see for example (Temizer et al. 2011, 2012 ; De Lorenzis
et al. 2012 ; Kim and Youn 2012 ; Seitz et al. 2016 ; Hu et al. 2018 ; Antolin et al.
2019)) or even polytopal methods, which allow meshes consisting of polygons or
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polyhedra (see for example (Wriggers et al. 2016 ; Cascavita et al. 2020 ; Chouly
et al. 2020)).

This section first presents a state of the art in 3.1 with regard to the re-
sults of existence-uniqueness of discrete solutions and their convergence, and
the multiplier methods seen in 2.3 are revisited. Then, 3.2 presents a stabi-
lized method that allows more flexibility in choosing the finite element spaces
for the displacement fields and the multiplier. From this stabilized method, a
primal (without multiplier) and consistent method can be derived, the so called
Nitsche’s method, which is covered in 3.3. The existing relationship between
this method and the augmented Lagrangian presented in 2.4 is detailed in 3.4,
then the penalty method is finally found in 3.5 as an approximation of Nitsche’s
method.

3.1 State of the art, methods with multipliers
First, it should be understood that each continuous weak formulation, such as
those described in Section 2 or as penalized or regularized formulations, has its
finite element discretized analogue. The state of the art regarding these discrete
versions is described below:

1. for frictionless contact, the existence and uniqueness of solutions are guar-
anteed for any type of "reasonable" discretization. The convergence of
discrete solutions with an optimal rate remained an open problem since
the 1970s and was only established recently, first for the Nitsche method
in 2013 (Chouly and Hild 2013a) then for the weak inequality in 2015
(Drouet and Hild 2015) (the latter result could then be applied to other
discretizations). The analyses published earlier were in fact suboptimal or
otherwise involved additional artificial hypotheses concerning the behav-
ior of the solution on the contact boundary (see in particular (Wohlmuth
2011 ; Drouet and Hild 2015 ; Chouly et al. 2017, 2023) for a detailed
review of the results related to this matter);

2. for Tresca friction, the existence and uniqueness of solutions is also ensured
for any type of "reasonable" discretization. As for the convergence of
discrete solutions, it is generally established with suboptimal convergence
rates, without knowing whether this suboptimality is due to analysis defect
or not, see (Wohlmuth 2011 ; Chouly and Hild 2013a ; Chouly 2014 ;
Chouly et al. 2017, 2023) for a detailed state of the art. In dimension
two, there is an optimal result established in (Wohlmuth 2011) but which
involves a technical assumption on the behavior of the solution in the
contact and friction zone. In dimension three, there is no optimal result for
most methods to our knowledge. However, the recent introduction of the
Nitsche method (see Section 3.3) has made it possible to produce discrete
solutions that optimally converge towards the solution of the continuous
problem, both in dimensions two and three (see (Chouly 2014)). Later on
an optimal result has been obtained for the penalty formulation in (Chouly
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et al. 2023), for low order Lagrange finite elements, and in dimension two
and three, that combines both the techniques of (Drouet and Hild 2015)
and of (Chouly and Hild 2013b);

3. with regard to Coulomb friction, independently of the discretization cho-
sen (weak inequality, multiplier-based method, Nitsche method, etc.) it
can generally be shown with fixed-point arguments that the discrete prob-
lem admits (at least) one solution, regardless of the value of the coefficient
of friction F . In addition, it can be shown that the solution is unique if
the coefficient of friction is less than Ch1/2, where C > 0 is a constant
depending on the geometry but not on the mesh used. It is still unclear
whether the term in Ch1/2 corresponds either to real cases (with multi-
ple solutions that appear when the mesh is refined) or if it is simply a
defect of mathematical analysis. Studies concerning the non-uniqueness
of discrete solutions were conducted and simple explicit examples of non-
uniqueness obtained (see for example (Hild 2002) for examples of multiple
solutions with a coefficient of friction greater than one). In addition, ex-
amples of non-uniqueness were obtained numerically (since finite element
solutions cannot be explained by hand) in (Hassani et al. 2003) for given
and arbitrarily small friction coefficients. The more sensitive issue of find-
ing a discrete (explicit or not) example with which multiple solutions are
obtained for any arbitrarily small coefficient of friction remains open.

To date, the additional results (compared to the above) have mainly been
obtained for multiplier methods which have been the subject of most publica-
tions in recent decades. These methods consist of a discretization of (7) which,
in the case of Coulomb friction, is written as

Find uh ∈ V h
0 , λh

n ∈ Λh
N and λh

t ∈ Λh
T (−Fλh

N ) such that:

a(uh, vh) = L(vh) +

∫
Γ1
C

λh
n

[[
vhn
]]
+ λh

t ·
[[
vht
]]
dΓ, ∀vh ∈ V h

0∫
Γ1
C

(λh
n − µh

n)(
[[
uh
n

]]
− gh0 )dΓ ≤ 0, ∀µh

n ∈ Λh
N∫

Γ1
C

(λh
t − µh

t ) · dt(uh)dΓ ≤ 0, ∀µh
t ∈ Λh

T (−Fλh
N )

(10)

where V h
0 ,Λh

N ,Λh
T are discrete versions of V0,ΛN ,ΛT (several choices are possi-

ble). Historically, the first convergence results were obtained for the formulation
type (10) (with displacements approximated with a P1-Lagrange and piece-
wise constant multipliers) in (Haslinger 1983). In this reference, convergence
is proved under the assumption of the existence of a solution to the contin-
uous problem (that is, if the coefficient of friction is sufficiently small) and
the author establishes the existence of a subsequence of discrete solutions con-
verging towards a solution to the continuous problem. Using piecewise linear
continuous displacements and multipliers, the reference (Hild and Renard 2007)
obtains the convergence of solutions with a velocity in Ch1/2 under the assump-
tions ensuring the existence of a unique solution established in (Renard 2006).
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The authors further assume that the solution of the continuous problem is in
H3/2+ε(Ω) (ε > 0) (see also (Chouly et al. 2023) for a similar result, but with a
method that involves different discrete convex sets). All previous results were
obtained in space dimension two and some extend to dimension three. In addi-
tion, almost of all these results were obtained for compatible meshes, and it is
reasonable to consider generalizing them to non-compatible meshes. Within this
context, there are two effective approaches that have already proven successful
for frictionless problems with non-compatible meshes: the first approach is the
standard "mortar" approach in which the displacements (in each solid) are con-
tinuous and piecewise Pk (k = 1.2 in practice) and the multipliers are chosen in
the trace space of one of the two meshes and thereby are continuous and piece-
wise Pk just as displacements (see (Ben Belgacem et al. 1999 ; Hild 2000)). The
second, more recent approach, called LAC (Local Average Contact) differs from
the first only in the multipliers that are chosen piecewise P0 (independently of
the degree k chosen for displacements) on macro-meshes (see (Drouet and Hild
2017 ; Abbas et al. 2018)). Displacement-multiplier pairs satisfy an independent
inf-sup condition of h for both mortar and LAC approaches.

3.2 Absence of inf-sup condition and stabilized methods
An important aspect in the formulation (10) is the need to have an inf-sup
condition between the displacement space and the multiplier space in order for
the problem to be well posed (at least in the frictionless case). If this condition
is not available (not satisfied or too difficult to demonstrate), it is possible to
add a term to the previous formulation and this is then referred to as a stabilized
multiplier method. For the frictional problem, such a method is written as:

Find uh ∈ V h
0 , λh

n ∈ Λh
N and λh

t ∈ Λh
T (−Fλh

N ) such that:

a(uh, vh)−
∫
Γ1
C

1

γ
(σ(uh)n) · (σ(vh)n)dΓ

= L(vh) +

∫
Γ1
C

λh
n

([[
vhn
]]
− 1

γ
σn(v

h)

)
dΓ

+

∫
Γ1
C

λh
t ·
([[

vht
]]
− 1

γ
σt(v

h)

)
dΓ, ∀vh ∈ V h

0∫
Γ1
C

(λh
n − µh

n)(
[[
uh
n

]]
− gh0 )dΓ

+

∫
Γ1
C

1

γ
(λh

n − µh
n)(λ

h
n − σn(u

h))dΓ ≤ 0, ∀µh
n ∈ Λh

N∫
Γ1
C

(λh
t − µh

t ) · dt(uh)dΓ

+

∫
Γ1
C

1

γ
(λh

t − µh
t ) · (λh

t − σt(u
h))dΓ ≤ 0, ∀µh

t ∈ Λh
T (−Fλh

N )

(11)

where γ = γ0/hT is the stabilization parameter in which γ0 > 0 is chosen large
enough and hT denotes the diameter of the element T . This is the stabilization
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originally proposed by Barbosa and Hughes (1992b) for variational inequalities,
and adapted to the contact framework in (Hild and Renard 2010). Although
numerical analysis was only carried out for frictionless contact and with compat-
ible meshes (see (Hild and Renard 2010)), it is reasonable to assume that all the
results obtained in unstabilized cases with an inf-sup condition can be redemon-
strated for stabilized problems. Recently in (Beaude et al. 2023) (suboptimal)
error estimates have been derived for Tresca friction, but that are robust with
respect to the value of the stabilization parameter for infsup compatible pairs.
Still in the case of infsup compatible pairs, (Beaude et al. 2023) establish the
convergence to the mixed formulation when the stabilization parameter is large.
Extension for Coulomb friction have also been studied in (Beaude et al. 2023 ;
Lleras 2009).

3.3 Nitsche’s method seen as a limit stabilized method
model

In (Stenberg 1995) (see also (Juntunen 2015 ; Chouly 2023)), for Dirichlet
boundary conditions, one can find an explanation of the relationship between
the stabilized method of Barbosa and Hughes (1992a) and that previously pro-
posed by Nitsche (1971), which can be found from that of Barbosa and Hughes
through the local elimination of the multiplier. A similar approach can be fol-
lowed within the framework of contact and the Nitsche method can be obtained
from the previous stabilized formulation. The last two equalities in (11) can
indeed be expressed as follows:

∫
Γ1
C

(λh
n − µh

n)(λ
h
n − σn(u

h) + γ(
[[
uh
n

]]
− gh0 ))dΓ ≤ 0, ∀µh

n ∈ Λh
N∫

Γ1
C

(λh
t − µh

t ) · (λh
t − σt(u

h) + γdt(u
h))dΓ ≤ 0, ∀µh

t ∈ Λh
T (−Fλh

N )

or equivalently using projection operators in terms of L2(Γ1
C):{

λh
n = ProjΛh

N

(
σn(u

h)− γ(
[[
uh
n

]]
− gh0 )

)
λh
t = ProjΛh

T (−Fλh
N )

(
σt(u

h)− γdt(u
h)
)

Since the formulation in (11) does not require an inf-sup condition and is well
posed irrespective of the choice of the multiplier space (at least for frictionless
contact), it can be considered that the discrete space of the multipliers should
"tend" to the continuous, that is, Λh

N → ΛN and Λh
T (−Fλh

N ) → ΛT (−FλN ),
which is equivalent to looking for a first multiplier λh

n ≤ 0 and a second multiplier
λh
t ∈ B(−Fλh

n). It is therefore formally obtained that:{
λh
n = −

(
σn(u

h)− γ(
[[
uh
n

]]
− gh0 )

)
−

λh
t = PB(−Fλh

n)

(
σt(u

h)− γdt(u
h)
) (12)
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One should note that the formal expressions of (12) are the discrete coun-
terparts of the relations:

σn(u) = −
(
σn(u)− γ(

[[
un

]]
− g0)

)
−

σt(u) = PB(−Fσn(u)) (σt(u)− γdt(u))
(13)

which are strictly equivalent to the contact (1) and friction (2) conditions refor-
mulated as equations (see a formal proof in (Chouly 2014 ; Chouly et al. 2023),
for example). These reformulations of contact and friction conditions can be
directly obtained by deriving the proximal augmented Lagrangian associated
with the contact problem, as discussed in Section 2.4. Moreover, it should be
noted that the discrete character of multipliers in (12) no longer results from
belonging to a finite-dimensional space but from the fact that they can be ex-
pressed according to discrete unknowns uh. The two expressions of (12) are
then replaced in the first equation of [11] to obtain Nitsche’s formulation. By
setting the approximate friction threshold as:

s(uh) = F (σn(u
h)− γ(

[[
uh
n

]]
− gh0 ))−

one gets:

Find uh ∈ V h
0 such that for all vh ∈ V h

0 one has:

a(uh, vh)−
∫
Γ1
C

1

γ
(σ(uh)n) · (σ(vh)n)dΓ

= L(vh)

+

∫
Γ1
C

1

γ

(
σn(u

h)− γ(
[[
uh
n

]]
− gh0 )

)
−

(
σn(v

h)− γ
[[
vhn
]])

dΓ

−
∫
Γ1
C

1

γ
PB(s(uh))

(
σt(u

h)− γdt(u
h)
)
·
(
σt(v

h)− γ
[[
vht
]])

dΓ

(14)

The formulation in [14] admits a solution if γ0 is large enough. In addi-
tion, this solution is unique if F 2γ0h

−1 is sufficiently small (see (Chouly et al.
2019a, 2019b)). An alternative formulation, called mean-Nitsche, can be ob-
tained using static condensation and elimination of the multiplier, when spaces
of piecewise constant multipliers are considered (Beaude et al. 2023). This for-
mulation is primal, but involves local projection operators of the contact and
friction condition on each contact edge or face.

Further analysis in the frictionless case (see (Chouly et al. 2015)), or with
Tresca friction (see (Chouly 2014)), made it possible to generalize the Nitsche
method by introducing an additional parameter denoted by θ ∈ R as Formula-
tion [14] corresponds to θ = 1. This generalization has resulted in distinguishing
three cases of interest: when θ = 1 which corresponds on the one hand to the
natural case resulting from the stabilized method and which, by its symmetry
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properties, derives from the energy function:

JN(u
h) = J (uh)−

∫
Γ1
C

1

2γ
σn(u

h)2 dΓ

+

∫
Γ1
C

1

2γ
(σn(u

h)− γ(
[[
uh
n

]]
− gh0 ))

2
− dΓ

(15)

(see (Chouly et al. 2017) for proof and extension to Tresca friction). The sec-
ond case of interest corresponds to θ = 0 which leads to a particularly simple
formulation, close to an augmented Lagrangian formulation (see Section 3.4) or
also to a penalized formulation (see Section 3.5). As for the third case obtained
for θ = −1, the condition on γ0 (quite large) vanishes (see (Chouly et al. 2015)),
and the method obtained is more robust (the reader can also refer to (Burman
et al. 2017) for a "penalty free" variant inspired by the method proposed in
(Burman 2012) for the Dirichlet condition). When Coulomb friction is added,
the analyses become more complicated: these generalized formulations are be-
ing studied in (Chouly et al. 2022) (see (Chouly et al. 2019) for a summary of
the results) and are written as:

Find uh ∈ V h
0 such that vh ∈ V h

0 one has:

a(uh, vh)−
∫
Γ1
C

θ

γ
(σ(uh)n) · (σ(vh)n)dΓ

= L(vh)

+

∫
Γ1
C

1

γ

(
σn(u

h)− γ(
[[
uh
n

]]
− gh0 )

)
−

(
θσn(v

h)− γ
[[
vhn
]])

dΓ

−
∫
Γ1
C

1

γ
PB(s(uh))

(
σt(u

h)− γdt(u
h)
)
·
(
θσt(v

h)− γ
[[
vht
]])

dΓ

(16)

Finally, it should be noted that Nitsche’s method, similarly to Barbosa and
Hughes’ stabilization, only makes sense for the discretized problem and does not
admit a counterpart at the continuous level, other than purely formal, unlike
most other methods (multipliers, augmented Lagrangian, penalty) that can be
written for the continuous problem (see Section 2). On the other hand, it is
a consistent method, which does not induce an additional approximation of
contact and friction conditions, and it is also a primal method, where the only
unknown is the discrete displacement field.
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3.4 Relationship between Nitsche and proximal augmented
Lagrangian

For problems, where θ = 0, Nitsche’s method [16] can be rewritten more simply
as: 

Find uh ∈ V h
0 such that:

a(uh, vh) = L(vh)−
∫
Γ1
C

(
σn(u

h)− γ(
[[
uh
n

]]
− gh0 )

)
−

[[
vhn
]]
dΓ

+

∫
Γ1
C

PB(s(uh))

(
σt(u

h)− γdt(u
h)
)
·
[[
vht
]]
dΓ

Through the introduction of multipliers, as new unknowns, instead of normal
and tangential stresses, and by weakly placing contact and friction conditions
(13) on these multipliers, we obtain from the previous formulation:

Find (uh, λh
n, λ

h
t ) ∈ V h

0 ×Xh
N ×Xh

T

such that for (vh, µh
n, µ

h
t ) ∈ V h

0 ×Xh
N ×Xh

T we have:

a(uh, vh) = L(vh)−
∫
Γ1
C

(λh
n − γ(

[[
uh
n

]]
− gh0 ))−

[[
vhn
]]
dΓ

+

∫
Γ1
C

PB(s(uh))(λ
h
t − γdt(u

h)) ·
[[
vht
]]
dΓ

− 1

γ

∫
Γ1
C

(λh
n + (λh

n − γ(
[[
uh
n

]]
− gh0 ))−)µ

h
n

+(λh
t − PB(s(uh))(λ

h
t − γdt(u

h))) · µh
t dΓ = 0

(17)

Here, unlike the previous formulations, the discrete spaces for multipliers,
Xh

N , respectively Xh
T , are vector subspaces (without inequality constrains) of

XN , respectively XT . We then find the discrete version of the proximal aug-
mented Lagrangian Formulation (9) presented in Section 2.4. The use of aug-
mented Lagrangian as an approximation technique has been revisited recently
(Burman et al. 2019 ; Burman and Hansbo 2017 ; Burman et al. 2023), by estab-
lishing the close relationship with the Nitsche method (see also (Chouly et al.
2017, 2023)). For frictionless contact, in particular, in (Burman et al. 2019),
the identification of the close connection with the Nitsche method resulted in
establishing an optimal convergence result for formulations such as (17).
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3.5 The connection between Nitsche and penalty
Still for θ = 0, Nitsche’s method [16] can also be written as:

Find uh ∈ V h
0 such that for any vh ∈ V h

0 one has:

a(uh, vh) = L(vh)−
∫
Γ1
C

γ

(
1

γ
σn(u

h)− (
[[
uh
n

]]
− gh0 )

)
−

[[
vhn
]]
dΓ

+

∫
Γ1
C

γ PB( 1
γ s(uh))

(
1

γ
σt(u

h)− dt(u
h)

)
·
[[
vht
]]
dΓ

(18)

Assuming that γ is large enough, the terms in 1/γ are neglected in the
previous formulation (18), which gives the following penalized model:

Find uh ∈ V h
0 such that ∀ vh ∈ V h

0

a(uh, vh) = L(vh)−
∫
Γ1
C

γ
([[

uh
n

]]
− gh0

)
+

[[
vhn
]]
dΓ

−
∫
Γ1
C

γ PB(F(
[[
uh
n
]]−gh

0 )+)
(
dt(u

h)
)
·
[[
vht
]]
dΓ

where (x)+ = (|x| + x)/2 is the positive part of x. It can be verified that this
formulation is not fully consistent. This penalized formulation admits a con-
tinuous counterpart (see for example (Kikuchi and Oden 1988)) which can be
interpreted as a regularization of the contact and friction conditions, whose ap-
proximation is more accurate for large γ. This formulation allows in particular
an interpenetration proportional to the contact pressure and inversely propor-
tional to the value of γ (see among others the numerical examples presented in
(Wohlmuth 2011)). The numerical analysis of this formulation has apparently
not been carried out in cases with Coulomb friction. For frictionless problems or
involving Tresca friction, the initial analyses of (Kikuchi and Oden 1988) were
improved in (Chouly and Hild 2013b) and more recently in (Chouly et al. 2023 ;
Dione 2020).

4 Large strain finite element approximation
We now consider how the augmented Lagrangian and Nitsche methods can be
extended within the framework of large elastic strains, and also examine the
challenges that this implies. Consider the Lagrangian description, with mate-
rials supposed to follow a hyperelastic law (the extension to other constitutive
laws can be taken into account as for example in (Seitz 2019 ; Seitz et al. 2019)
for plasticity and thermoelasticity). We will denote by Ω1 and Ω2 the reference
configurations of the two elastic solids and ui : Ωi → Rd, i = 1, 2 their dis-
placements. To differentiate between deformed and reference configurations, we
adopt the notation conventions shown in Figure 2. Let:

φi : Ωi −→ Rd

X 7−→ x = X + ui(X)
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the transformation associated with the elastic solid of index i. We denote also
Γ1
D and Γ2

D, the respective boundaries where a clamped condition is prescribed,
as well as Γ1

N and Γ2
N the free boundaries.

The mapping:
Π : Γ1

C −→ Γ2
C

X 7−→ Y = Π(X)

which connects the points on the slave surface Γ1
C to their contact candidate on

the master surface Γ2
C is obviously no longer a given problem as in the case of

small strains, but a mapping that depends on the two displacements u1 and u2.
We give in Section 4.1 two conventional strategies for defining Π.

.

Ω1

Ω2

X

Y

N2
N1

Γ1
C

Γ2
C

Ω1,t

Ω2,t

x
y

n2

n1

Γ1,t
C

Γ2,t
C

x = ϕ1(X) = X + u1(X)

y = ϕ2(Y ) = Y + u2(Y )

.

Figure 2: Large-strain Lagrangian description

For each solid i, the strains are described by the Cauchy-Green tensor Ci =
(F i)TF i where F i = ∇φi = I +∇

X
ui is the strain gradient, and J i = det(F i)

the associated Jacobian. The Green-Lagrange strain tensor Ei = (Ci − I)/2
will also be used. The Cauchy stress tensor is always denoted by σi, and σ̂i =
J iσ(F i)−T , Si = J i(F i)−1σ(F i)−T will be the first and second Piola-Kirchhoff
stress tensor, respectively. For a hyperelastic law, there exists a potential W i

which depends on the strain through Ei or Ci (see for example (Gurtin 1981 ;
Ogden 1984 ; Ciarlet 1988)), such as:

Si =
∂W i

∂E
(Ei) = 2

∂W i

∂C
(Ci)

To focus on the description of the contact and friction terms, in the following
the potential energy of the system J (u) will be adjusted, and is written for
example, in the presence of gravitational forces:

J (u) =

2∑
i=1

(∫
Ωi

W i(Ei) dX −
∫
Ωi

ρi0 g · ui dX

)
where ρi0 is the density in the reference configuration of the body i and g is the
gravitational acceleration vector. Depending on the models, this potential en-
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ergy may contain other terms, such as terms representing the potential energies
of forces at the boundaries Γ1

N and Γ2
N .

The directional derivative of a quantity A with respect to a displacement
u = (u1, u2) and in the direction δu = (δu2, δu2) will be denoted by:

DA(u)[δu]

where even DA[δu] if there is no ambiguity about the argument of the quantity
A. This directional derivative is defined by:

DA(u)[δu] = lim
ε→0

A(u1 + ε δu1, u2 + ε δu2)−A(u1, u2)

ε

when this limit exists.
We will first see how can be defined the gap function in Section 4.1, then

explain the formulation of the contact conditions in Section 4.2. We will then
show in Section 4.3 and 4.4 how the augmented Lagrangian and Nitsche methods
seen previously can be adapted to the framework of large strains. We will
conclude with practical considerations in Section 4.5 about the choice of the
numerical parameter γ that can be seen in the different methods, and then by
presenting some numerical examples in Section 4.6.

4.1 About contact pairing and gap function
The function Π associates a point X on the slave surface with a point Y on the
master surface, facing each other. This association can be achieved in different
ways. The most conventional strategy consists in using the orthogonal projec-
tion of x = φ(X) onto the deformed master surface as illustrated in Figure 3a
(see for example (Laursen 2002)).

.

x

n2

Γ2,t
C

Γ1,t
C

y

.

.

y

n1

Γ2,t
C

x Γ1,t
C

.

a) Projection strategy b) Raytracing strategy

Figure 3: Illustration of projection and raytracing strategies

An alternative strategy, called raytracing, corresponding to the description of
Figure 3b, consists in defining y as the closest intersection between the master
surface and the straight line passing through the point x and carried by the
normal n1 (see for example (Poulios and Renard 2015)). The gap functions that
correspond to these two policies are then defined by:

g = n1 · (y − x) for raytracing
and g = n2 · (x− y) for projection
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This also gives:

y = x+ g n1 for raytracing (19)
and y = x− g n2 for projection (20)

It is useful for what follows to get the directional derivative of the gap. First
of all, we get (see (Poulios and Renard 2015)):

Dy[δu] = δu2(Y ) + F 2 DY [δu]. (21)

Since DY [δu] is tangent to Γ2
C , the vector F 2 DY [δu] is tangent to Γ2,t

C and
thus:

n2 · F 2 DY [δu] = 0. (22)

Using (19) and (20), it can also be rewritten that:

Dy[δu] = δu1(X) +Dg[δu] n1 + g Dn1[δu] for raytracing (23)

Dy[δu] = δu1(X)−Dg[δu] n2 − g Dn2[δu] for projection (24)

and by combining the expressions (21)–(22)–(23)–(24), the following derivatives
of the gap can be obtained:

Dg[δu] = − n2

n1 · n2 ·
(
δu1(X)− δu2(Y ) + g Dn1[δu]

)
for raytracing (25)

Dg[δu] = n2 ·
(
δu1(X)− δu2(Y )

)
for projection. (26)

Computing the derivative of the normal n1 does not raise any particular
problem and gives:

Dn1[δu] = −(I − n1 ⊗ n1)(F 1)−T (∇δu1(X))T n1.

On the other hand, the derivative of the normal n2 is much more complex
because it depends on the variation of the point y. The computation of the
derivative DY [δu] for the projection gives according to Dn2[δu]:

DY [δu] = (F 2)−1
(
I − n2 ⊗ n2

) (
δu1(X)− δu2(Y )− gDn2[δu]

)
whereas for raytracing, with the use of the expression of Dn1[δu], it follows that:

DY [δu] =

(F 2)−1
(
I − n1⊗n2

n1·n2

) (
δu1(X)− δu2(Y )− g (F 1)−T (∇δu1(X))T n1

)
.
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Figure 4: Example of discontinuity of the normal n2 with respect to x: a)
when crossing an element boundary whether for projection or raytracing, b)
in the presence of concave boundaries for projection (in this case, even y is
discontinuous), c) when raytracing fails (in this case, y becomes undefined)

It can thus be seen that for the projection, it will be necessary to have
an expression of the derivative of the normal n2 with respect to displacement,
which, on the one hand, is very complex because these derivatives depend in
particular on the curvature of the master surface (see the expressions in (Laursen
2002) for example). On the other hand, it is challenging since the normal
n2 is not continuous with respect to displacement in a number of situations
and particularly in the projection case. Non-continuity examples can be seen
described in Figure 4. These discontinuities create issues when attempting to
make a Newton method converge. One can avoid problem a) of Figure 4 by using
finite elements C 1 which ensure the continuity of the normal when crossing the
boundary between the elements as in (Padmanabhan and Laursen 2001) with
Hermite elements, or as in (Krstulović-Opara et al. 2002 ; Stadler et al. 2003 ;
Lengiewicz et al. 2011) with splines, Bézier curves or NURBS, respectively.
However, the difficulty remains when modeling angular surfaces. Problem b)
is more difficult to avoid and can cause Newton’s method to oscillate between
two possible positions y. Strategies are then sometimes employed to avoid these
oscillations (see for example (Alart 1997)). When using the raytracing strategy,
priority is given to the use of the normal n1, which generally does not raise any
discontinuity problem. A example of discontinuity of point y with raytracing is
however depicted in illustration c) of Figure 4.

4.2 Formulation of contact and friction conditions
The non-interpenetration condition is simply expressed as g(u) ≥ 0. The fric-
tional contact condition can either be described with the Cauchy stress or in
Piola stress. We choose here a constrained Piola description. The Piola contact
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stress is therefore decomposed at point X (slave boundary) into normal and
tangential part as follows:

σ̂1(u1)N1 = (σ̂1(u1)N1 · n)︸ ︷︷ ︸
= σ̂n(u)

n+ (I − n⊗ n) σ̂1(u1)N1︸ ︷︷ ︸
= σ̂t(u)

where n is either n1 for raytracing or −n2 for the projection such that:

y = x+ gn. (27)

It should be noted that when the contact is effective (σ̂n < 0), the outward
unit normal vectors n1 and n2 are opposite. The quantity σ̂n represents the
contact pressure (represented in the reference configuration) in X, and must be
nonpositive. Contact conditions can be written as:

g(u) ≥ 0 (28a)
σ̂n(u) ≤ 0 on Γ1

C (28b)
σ̂n(u)g(u) = 0. (28c)

For any γ > 0, these contact conditions (28)–(28a)–(28b) can be rewritten
using the following reformulation that is derived from the proximal augmented
Lagrangian (see Section 2.4, and see also (13) in Section 3.3):

σ̂n(u) = −(σ̂n(u) + γg(u))−

With friction, normal and tangential stresses are coupled to the relative
sliding velocity. Relative velocity can be simply defined as:

vr(X) = φ̇1(X)− φ̇2(Y )

but this relative velocity does not satisfy the principle of objectivity when the
gap is non-zero (see (Curnier et al. 1995)). As in (Curnier et al. 1995), we can
then use the definition:

vr(X) = φ̇1(X)− φ̇2(Y ) + g ṅ

which is an objective quantity and which coincides with the sliding velocity
when contact is established. This, of course, indicates that we are dealing with
a evolution problem. It is possible to revert to a problem without time derivative
by achieving a temporal discretization, we will then set:

vr(X) =
1

∆t
(φ1(X)− φ2(Y ))− 1

∆t
(φ1

0(X)− φ2
0(Y ))

with simple relative velocity and:

vr(X) =
1

∆t
(φ1(X)− φ2(Y ) + g n )− 1

∆t
(φ1

0(X)− φ2
0(Y ) + g n0 )

= − 1

∆t
(φ1

0(X)− φ2
0(Y ) + g n0 )
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for objective relative velocity, where the formula in (27) was used to obtain the
second line. The notations φ1

0, φ
2
0 and n0 respectively denote the deformed and

the normal to the previous time step (always depending on the chosen strategy),
and ∆t is the time step associated with discretization.

Despite that this relative velocity is a priori tangential when the contact is
persistent in the continuous problem, this will not exactly be the case in the
approximate problem, and it might seems more intuitive to define the tangential
displacement increment by dt = ∆t(I − n ⊗ n)vr. For more simplicity, we will
hereafter choose:

dt = ∆t vr

The Coulomb friction conditions are then written as (F still denotes the
coefficient of friction):

∥σ̂t(u)∥ ≤ −F σ̂n(u) if dt = 0

σ̂t(u) = F σ̂n(u)
dt
∥dt∥

otherwise.
(29)

Using expressions derived from the augmented Lagrangian (see also (13)),
the Coulomb friction condition can be reformulated based on the projection
PB(τ). Still for γ > 0, the friction condition is then equivalent to the non-
regular equation:

σ̂t(u) = PB(−F σ̂n(u))(σ̂t(u)− γdt)

4.3 Augmented Lagrangian and penalization
We present here the augmented Lagrangian technique for the contact problem in
large transformations previously described. An initial formulation thereof will
be first given. It will then be seen that a simpler formulation can be reached
if we accept to lose symmetry. The associated finite element formulation will
then be described, as well as the Uzawa algorithm for the effective resolution
of the problem obtained. Finally, it will be seen how it is possible to find the
penalized formulation from the Uzawa algorithm.

4.3.1 Augmented Lagrangian and weak form of the friction problem

It is less direct to obtain a large-strain augmented Lagrangian type formulation
for the frictional problem than in the framework of small strains. It is possible
to give an analogue of the proximal augmented Lagrangian (8) for large strains
that would be for a given frictional threshold problem s:

Lγ(u, λn, λt) = J (u)

+

∫
Γ1
C

1

2γ

(
(λn + γg(u))2− − λ2

n

)
dΓ−

∫
Γ1
C

λt · dt(u)dΓ

−
∫
Γ1
C

1

2γ

∣∣λt − γdt(u)− PB(s)(λt − γdt(u))
∣∣2 dΓ +

∫
Γ1
C

γ

2
|dt(u)|2dΓ
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Here, compared to (8), the property x(x)− = (x)2− was used to simplify the
expression associated with the normal stress. Large-strain Tresca friction may
seem even more artificial than in small strains since not only is friction allowed
when there is no contact but the relative velocity between two potentially very
distant points cannot be interpreted as a sliding velocity and highly depends on
the chosen contact pairing strategy. If we write the optimality system of this
Lagrangian, it follows that:

DJ (u)[δu]−
∫
Γ1
C

(λn + γg(u))−Dg(u)[δu] dΓ

−
∫
Γ1
C

PB(s)(λt − γdt(u)) · Ddt(u)[δu] dΓ

= 0, ∀ δu, (δu = 0 on Γ1
D ∪ Γ2

D)

−
∫
Γ1
C

1

γ

(
λ+ (λn + γg)−n− PB(s)(λt − γdt(u))

)
· δλ dΓ

= 0, ∀ δλ

(30)

with λ = λnn+λt. If the second equation of (30) is indeed a weak equivalent of
the contact (28) and friction (29) conditions, the interpretation of λn and λt as
a constraint is ensured only if the terms Dg(u)[δu] and Ddt(u)[δu] are expressed
in terms of relative displacement. This is the case for Dg(u)[δu] when using the
projection (see Formula (26)) but additional terms are already present when
using raytracing (see Formula (25)). Regarding the derivative Ddt(u)[δu], it is
written as:

Ddt(u)[δu] = δu1(X)− δu2(Y ) + (F 2
0 − F 2)DY [δu]

with simple relative velocity and:

Ddt(u)[δu] = F 2
0DY [δu]−Dg[δu]n0

with objective relative velocity. In both cases, the computation involves DY [δu],
which supposes the computation of the second derivative of Y to obtain the
tangent problem, as part of Newton’s method solution.

4.3.2 Simplified weak form and non-preservation of symmetry

To simplify the expression of (30) one be replace Dg(u)[δu] with −n · (δu1(X)−
δu1(Y )) and Ddt(u)[δu] with (δu1(X)−δu2(Y )). This changes the interpretation
of the multiplier λ, but not the fact that a unilateral friction contact condition
is correctly imposed. To take into account Coulomb friction, we replace the
threshold s either by −Fλn, or by F (λn + γg)−. The second expression is
preferred for example in (Curnier and Alart 1988) and its main advantage is
that its sign is always positive irrespective of the value of λn during solver
iterations. If this second expression is adopted, the weak form of the Coulomb
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friction problem is written as:

DJ (u)[δu] +

∫
Γ1
C

(
(λn + γg(u))−n

−PB(F(λn+γg(u))−)(λt − γdt(u)
)
· (δu1(X)− δu2(Y ))dΓ

= 0, ∀ δu, (δu = 0 on Γ1
D ∪ Γ2

D)

−
∫
Γ1
C

1

γ

(
λ+ (λn + γg(u))−n

−PB(F(λn+γg(u))−)(λt − γdt(u))
)
· δλ dΓ = 0, ∀ δλ

(31)

However, the modification carried out makes that the tangent problem loses
symmetry, even when the coefficient of friction F is zero.

The conservation of symmetry can be a challenge to use potentially more
efficient linear solvers. In our case, the dilemma is between using Formulation
(30) (previously adapted to Coulomb friction) and using the simplified formu-
lation in (31). The formulation in (31), in addition to its simplicity, has the
advantage of providing a simple interpretation of multipliers in terms of contact
force density and its redifferentiation is also simpler for obtaining the tangent
problem. Nonetheless, its disadvantage resides in the loss of symmetry of the
tangent problem. This is not a disadvantage if the loss of symmetry has already
been identified, for example due to intrinsically non-symmetric constitutive laws
(non-associated plasticity for example), but it can be a disadvantage if it is the
only cause of non-symmetry and that symmetric linear solvers are to be used.

In the latter case, the use of Formulation (30) may seem more appealing.
However, as mentioned in Section 4.1, in addition to its additional complexity,
the derivative of the normal n2 and the second derivative of Y are also extremely
difficult to obtain, because it depends on the curvature of the master surface,
and often impossible to compute because of the discontinuities in n2 and Y . This
is the reason why many implementations that use the projection strategy adopt
simplified versions of the tangent problem that do not involve the curvature of
the master surface (see for example (Konyukhov and Schweizerhof 2012)), at
the cost of possibly losing the second-order convergence of the Newton method.

Moreover, because of the unassociated nature of Coulomb’s law of friction,
the global tangent system will be nonsymmetric. Relatively to the Uzawa
algorithm (see Section 4.3.4), strategies have been developed, for example in
(Laursen and Simo 1993 ; Konyukhov and Schweizerhof 2012), to recover the
symmetry of the tangent problem in displacement. These strategies mainly
consist of taking the non-symmetrical parts to the previous iteration of Uzawa’s
algorithm.

The method chosen in this chapter is to use the simplified formulation of
[1.31], even if it implies losing the symmetry of the tangent problem. This choice,
which can also be found in (Puso and Laursen 2004 ; Popp et al. 2013 ; Poulios
and Renard 2015), is driven by the concern to provide a weak formulation as
regular as possible in relation to the displacement. Actually, the non-continuity
cases of the normal n2 and the position Y are potentially problematic when
using the Newton method.
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4.3.3 Finite element approximation

In order to write the finite element approximation of Problem (31), we consider
V h
0 and Xh as two finite element spaces; the first space V h

0 is intended to
approximate the displacement (as in the previous sections, the index 0 means
that the clamped conditions are integrated therein) and the second Xh the
multiplier. The latter is therefore restricted to the slave boundary Γ1

C . As in
small strains, the relative choice of these two spaces is subject to whether an inf-
sup condition is satisfied (see Section 3.1) in order to guarantee the uniqueness
of the multiplier and not to over-constrain the problem. After finite element
discretization, the problem (31) is written as:

Find uh = (u1,h, u2,h) ∈ V h
0 and λh ∈ Xh

such that ∀ δuh ∈ V h
0 and ∀ δλh ∈ Xh

DJ (uh)[δuh]

+

∫
Γ1
C

(λh
n + γg(uh))−n · (δu1,h(X)− δu2,h(Y )) dΓ

−
∫
Γ1
C

PB(F(λh
n+γg(uh))−)(λ

h
t − γdt(u

h))

·(δu1,h(X)− δu2,h(Y )) dΓ = 0

−
∫
Γ1
C

1

γ

(
λh + (λh

n + γg(uh))−n

PB(F(λh
n+γg(uh))−)(λ

h
t − γdt(u

h))
)
· δλh dΓ = 0

(32)

The numerical resolution of this highly nonlinear discrete problem is usually
done using a generalized Newton method (Curnier and Alart 1988 ; Renard 2013)
(also called non-regular Newton’s method (Christensen 2002)). This requires
calculating the tangent problem associated with the previous problem.

The tangent problem for solving by a Newton method is obtained by red-
ifferentiating (32) with respect to displacement and multiplier. This results in
a rather complex tangent system due to the large number of terms, including
when using the simplifications introduced above. A computer implementation
can quickly prove difficult to be realized, the slightest omission or error can
degrade the convergence speed of Newton’s method. An alternative to direct
implementation in a compiled language is to use automation strategies such as
those found in the AceGen (Lengiewicz et al. 2011) or GetFEM (Renard and
Poulios 2020) software program for example, which makes it possible to auto-
matically derive the tangent problem and obtain an efficient computation from
a description of the weak form (32).

4.3.4 Numerical resolution using Uzawa’s algorithm

For solving Problem (32) by a Newton method, a simultaneous displacement
and Lagrange multiplier solution has to be performed. An alternative widely
employed in structural mechanics softwares is based on Uzawa’s algorithm (see
for example (Simo and Laursen 1992), in this context). We refer to (Bertsekas
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1982 ; Kunisch and Stadler 2005 ; Laborde and Renard 2008) for the principle
of the Uzawa algorithm for a Lagrangian or an augmented Lagrangian. In this
case, the algorithm can be written as:

0) choose an initial value λh
0 for the multiplier and a forward step r > 0;

1) solve the first equation of (32) in displacement, for the multiplier set to
the value λh,k. Let uh,k be the solution obtained;

2) calculate λh,k+1 based on the following updates:

λh,k+1
n = λh,k

n +
r

γ

(
−(λh,k

n + γg(uh,k))− − λh,k
n

)
(33)

λh,k+1
t =λh,k

t +
r

γ

(
PB(F(λh,k

n + γg(uh,k))−)(λ
h,k
t − γdt(u

h,k))−λh,k
t

)
(34)

3) loop in step 1 by incrementing k until a convergence criterion is satisfied.

Algorithm 1.1. The Uzawa algorithm

Since step 1 of the algorithm consists of solving a nonlinear problem, it is
usually performed using a Newton method. Step 2 corresponds to a fixed-step
gradient method r > 0 on the multiplier λh. For the continuous problem, not
approximated by finite elements, the update given by Equations (33) and (34)
gives a fixed point in L2(Γ1

C) which in (Stadler 2004 ; Kunisch and Stadler
2005) was shown to be always convergent for the Tresca friction problem (in
small strains), when r = γ. In practice, this choice is the one that is always
made. Moreover, the fixed point admits a contraction constant that is all the
smaller as r = γ is chosen large (and therefore converges all the faster). On
the other hand, it is a 1st-order convergence to be compared with the 2nd-order
convergence of Newton’s method.

With regard to the finite element problem, Equations (33) and (34) are
obviously not satisfactory as such because the result of the right-hand side
calculation are not necessarily in the finite element space Xh. A first solution
is to project them again, which yields (for r = γ): find λh,k+1 ∈ Xh such that
for all δλh ∈ Xh we have:∫

Γ1
C

(
λh,k+1 + (λh,k

n + γg(uh,k)−n

−PB(F(λh,k
n +γg(uh,k))−)(λ

h,k
t − γdt(u

h,k))
)
· δλh dΓ = 0

This is equivalent to considering the second equation of Problem (32) by
taking all the terms at iteration k except the first λh, taken at iteration k + 1.
The price to pay is an inversion of an additional linear system reduced to the
slave contact boundary. The cost of this resolution, however, is mostly negligible
compared to the Newton method when solving the first equation.
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The additional cost of this resolution is avoided in many references by updat-
ing the degrees of freedom of the multiplier (see for example (Simo and Laursen
1992)). Denoting by λh,k+1

i the contact constraint at the finite element node
ai ∈ Γ1

C and λh,k+1
t,i , λh,k+1

n,i the normal and tangential parts, this update is
written as:

λh,k+1
n,i = −(λh,k

n,i + γg(uh,k(ai)))−

λh,k+1
t,i = PB(F(λh,k

n,i+γg(uh,k(ai)))−)(λ
h,k
t,i − γdt(u

h,k(ai))).

This usually represent an additional approximation and means that the con-
tact and friction condition is locally imposed on the finite element node of the
multiplier. The use of bi-orthogonal bases in (Popp et al. 2012, 2013) makes it
possible to perform this operation without additional approximation.

4.3.5 Connection to penalty approximation

In addition to its good convergence properties, one of the reasons for using
the Uzawa algorithm for augmented Lagrangian resides in its proximity to the
problem with penalization. Indeed, if we take λh,0 = 0, the first iteration of the
Uzawa algorithm consists in finding uh = (u1,h, u2,h) as a solution of:

DJ (uh)[δuh] +

∫
Γ1
C

(γg(uh))−n · (δu1,h(X)− δu2,h(Y )) dΓ

+

∫
Γ1
C

PB(F(γg(uh))−)(γdt(u
h)) · (δu1,h(X)− δu2,h(Y )) dΓ

= 0, ∀ δuh ∈ V h
0

(35)

which is precisely a problem with penalized contact and friction conditions; γ
is now the penalty parameter (see Section 3.5). Therefore, it is possible to
solve the problem with penalization (35), then to perform, on a poorly satisfied
contact condition or friction condition criterion one or more iterations of the
Uzawa algorithm to obtain a better solution.

4.4 Nitsche’s method
We saw in Section 3.3 that the Nitsche method could be interpreted as a sta-
bilized Lagrangian method in which a multiplier condensation operation was
performed. Although the stabilized Lagrangian method makes it possible to
perform this condensation quite simply, in special cases of multiplier spaces (see
(Chouly 2023 ; Gustafsson et al. 2017, 2019)), it should be noted that such
strategies also exist on the augmented Lagrangian for constant multipliers or
bi-orthogonal bases in (Popp et al. 2012, 2013 ; Seitz 2019), the condensation
being however limited to the tangent problem.

The Nitsche method will be first presented, deriving it from an energy func-
tional to find its symmetric variant θ = 1. We will then see that in the context
of contact between several elastic solids (or self-contact), it is possible to write
an unbiased variant of this method.
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4.4.1 Differentiation from a potential

For the frictionless problem, it is possible to obtain a Nitsche method starting
from the potential (15) obtained in small strains (see (Chouly et al. 2017 ; Mlika
et al. 2017)) which is transposed here to the framework of large strains:

JN(u
h) = J (uh)−

∫
Γ1
C

1

2γ
σ̂n(u)

2 dΓ +

∫
Γ1
C

1

2γ
(σ̂n(u) + γg(u))2− dΓ

where γ > 0 is again the Nitsche parameter. The optimality system of this
potential is written as:

DJ (uh)[δuh]

−
∫
Γ1
C

1

γ
σ̂n(u

h)Dσ̂n(u
h)[δuh] dΓ

−
∫
Γ1
C

1

γ
(σ̂n(u

h) + γg(uh))−D(σ̂n(u
h) + γg(uh))[δuh] dΓ = 0,

∀ δuh ∈ V h
0

The term Dσ̂n[δu] appears here in which can be seen the derivative of the
normal:

Dσ̂n[δu] = D((σ̂N) · n)[δu] = (Dσ̂[δu]N) · n+ (σ̂N) · Dn[δu]

This term may obviously seem problematic since it involves the tangent rigidity
Dσ̂[δu] in the weak form, which implies, rather unusually, the computation of the
derivative of this tangent rigidity to get the expression of the tangent problem.

Still for the frictionless problem, the different variants of the Nitsche method
are then obtained quite naturally for θ ∈ R:

DJ (uh)[δuh]

−
∫
Γ1
C

θ

γ
σ̂n(u

h)Dσ̂n(u
h)[δuh] dΓ

−
∫
Γ1
C

1

γ
(σ̂n(u

h) + γg(uh))−D(θσ̂n(u
h) + γg(uh))[δuh] dΓ = 0,

∀ δuh ∈ V h
0

In this context, the variant θ = 0 seems especially interesting because it
makes the term Dσ̂[δu] vanish, of course always at the cost of a non-symmetric
tangent problem.

To obtain the Nitsche method in problems with Coulomb friction, it seems
preferable to start from the simplified augmented Lagrangian Formulation (32).
Actually, replacing the multiplier λ by σ̂N directly yields the variant θ = 0,
then by generalizing for any θ ∈ R, leads then to obtaining (see also (Mlika
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et al. 2017)):
DJ (uh)[δuh]−

∫
Γ1
c

θ

γ
(σ̂hN) · (Dσ̂h[δuh]N) dΓ

−
∫
Γ1
c

1

γ

(
(σ̂h

n + γgh)−n− PB(F(σ̂h
n+γgh)−)(σ̂

h
t − γdht )

)
·
(
θDσ̂h[δuh]N − γ(δu1,h(X)− δu2,h(Y ))

)
dΓ = 0, ∀ δuh ∈ V h

0

As in the case of the augmented Lagrangian, this formulation avoids normal
differentiation terms but at the cost of losing the symmetry of the tangent
problem, even when there is no friction (F = 0).

It should also be noted that other variants of the Nitsche method can be
obtained through slightly different principles. It can be seen for example in
(Burman et al. 2017) in small strains, and also within the framework of large
strains in (Seitz 2019 ; Seitz et al. 2019), where a family is introduced with an
additional parameter covering the method presented here.

4.4.2 Unbiased variant

An approximation method is said to be unbiased if no difference is made between
master surface and slave surface (see for example (Sauer and De Lorenzis 2015)).
In this case, we denote by ΓC = Γ1

C ∪Γ2
C the total potential contact surface. We

will always denote by X the current point of ΓC and Y ∈ ΓC the point found
by way of the projection strategy or raytracing, which is obviously no longer
necessarily on the master surface Γ2

C . It is then easy to see that an unbiased
formulation is simply obtained by adding factors 1/2 and extending the integrals
over any ΓC (see (Mlika et al. 2017)):

DJ (uh)[δuh]− 1

2

∫
ΓC

θ

γ
(σ̂hN) · (Dσ̂h[δuh]N) dΓ

−1

2

∫
ΓC

1

γ

(
(σ̂h

n + γgh)−n− PB(F(σ̂h
n+γgh)−)(σ̂

h
t − γdht )

)
·
(
θDσ̂h[δuh]N − γ(δu1,h(X)− δu2,h(Y ))

)
dΓ = 0, ∀ δuh ∈ V h

0

The advantage of this formulation, in addition to providing additional sym-
metry, lies mainly when searching for self-contact. The lack of separation in the
contact surface into master part and slave part implies that no a priori at the
actual point where the contact will occur is necessary. There is of course an
additional cost related to the need to integrate over the entire contact surface.

4.5 About the value of the parameter γ

The parameter γ which appears as a penalization parameter in the penalized
formulation in (35), as an augmentation parameter in the augmented Lagrangian
formulation of (32) and as a Nitsche parameter in the formulation in (35) plays
nonetheless a rather similar role in all three approaches. Although the numerical
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solution is relatively unaffected by the value of the parameter γ in the augmented
Lagrangian and Nitsche formulations, a minimum value must be respected with
regard to the Nitsche method to preserve the problem coercivity. For the penalty
method, this will mean that a good compromise will have to be found between
a large value of γ that will ensure a good approximation of the contact and
friction conditions and a moderate value that does not affect the convergence
of the Newton method. Despite that the concerns are different in the three
approaches, the optimal values of the parameter γ are yet similar. Actually, a
priori error analyses within the framework of small strains, both for the Nitsche
method (Chouly et al. 2015) and for the first-order convergence of the penalty
method (Chouly and Hild 2013b), bring forward a dependency on γ = γ0/h
where h is the mesh size. In addition, the study by (Renard 2013) and the
dimension analysis carried out in (Poulios and Renard 2015) in the context of
the augmented Lagrangian lead to the conclusion that γ0 has the dimension of
an elastic modulus. It is therefore quite natural to choose for γ:

γ = K/h where K =
1

3

E

1− 2ν
= λ+

2

3
µ

denotes the bulk modulus, which is equal to Young’s modulus E when the Poisson
coefficient ν is equal to 1/3 (λ and µ denote here the Lamé coefficients).

Naturally, and mainly for the Nitsche method for large strains, this value
may not be sufficient to ensure coercivity. Indeed, when the deformation is very
important, the value of γ0 should rather be connected to the maximum value of
the tangent moduli of elasticity. One way to proceed consists then, as proposed
in (Seitz et al. 2019), in adapting the value of γ0 to the maximum eigenvalues
of the elementary tangent stiffness matrices.

4.6 Numerical tests
We reproduce here numerical tests that were performed using GetFEM, a public
domain software library (Renard and Poulios 2020) both in (Poulios and Renard
2015) following an augmented Lagrangian strategy and in (Mlika et al. 2017)
with the unbiased Nitsche method previously presented. These results obtained
with both methods are very similar. They are further corroborated by (Seitz
2019) where a similar study is presented.

The concern for the numerical integration on the contact boundary can be in-
cluded in the practical aspects for the implementation of these methods, whether
for the augmented Lagrangian or the Nitsche method. This is common to all
mortar-type methods, where an integration of quantities between two incom-
patible meshes (those of the slave surface and the master surface) is necessary.
Given that integrals involve piecewise polynomials, optimal integration a priori
requires sub-slicing the interface that complies with both meshes. When per-
formed, this is usually achieved by sub-slicing the faces of the elements of the
slave surface in accordance with a projection of the elements of the master sur-
face in a deformed configuration as in (Puso and Laursen 2004). This sub-slicing
is not only quite complex but must a priori be performed at each iteration of
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the Newton method. In addition, when curved elements (isoparametric or iso-
geometric) are employed, or simply for elements with a degree greater than one,
the intersections of the element faces become excessively complex and then need
to be simplified.

In a linear case with transmission conditions, a comparison is achieved in
(Lacour et al. 1997). It also proposed non-symmetric integration method, which
was then adapted in (Mlika 2018) for the Nitsche method. Although it is clear
that the sub-sub-slicing of slave faces for integration provides additional accu-
racy, it is not clear whether the gain obtained is large enough to justify a step
that remains computationally expansive. Therefore, in (Farah et al. 2015), a
comparison is made between an integration without slicing, with full slicing and
with partial slicing. The partial slicing strategy consists of slicing only those
elements that satisfy a discontinuity of the master surface. In the tests per-
formed, partial slicing offers approximately the same accuracy as total slicing.
In (Mlika 2018), tests were carried out with total slicing and no slicing at all. In
most of these tests performed with linear elements, total slicing does not lead
to substantial gain in accuracy. However, a greater gain is reported for the use
of quadratic elements. The tests presented in the following were carried out
without slicing.

4.6.1 Elastic half-ring

This test was introduced in (Fischer and Wriggers 2005). An elastic ring com-
posed of two layers of neo-hookean hyperelastic materials has the following strain
energy:

W (C) =
µ

2
(i1(C)− 3) +

λ

4
(i3(C)− 1)− (

µ

2
− λ

4
) ln(i3(C))

where λ, µ are the Lamé coefficients of the material, C = FTF is still the
Cauchy-Green tensor, and i1(C) = trace (C) and i3(C) = det (C) are the first
and third invariants of C. The outer ring has a Young’s modulus of 103 MPa
and the inner ring of 105 MPa. The Poisson coefficient is 0.3 for both materials.
This significant difference in stiffness creates difficulties for the penalty method
(see (Fischer and Wriggers 2005)). This half ring is pushed against an elastic
block with a Young modulus of 300 MPa and a Poisson coefficient of 0.3. The
dimensions are shown on the drawing at the top of Figure 5 which also specifies
the geometry of the bodies in contact. The ends of the half ring are fixed and
moved vertically 70 mm downwards in 140 steps of 0.5 mm each.

Figure 5 shows four strain states at different loading steps. Graphs a) cor-
respond to frictionless contact while graphs b) correspond to Coulomb friction
contact and F = 0.5. The graphs presented correspond to the use of the variant
θ = 0 of the unbiased Nitsche method for a Nitsche parameter γ = γ0/h with
h the mesh size, γ0 equal to the Young modulus of the material (103 MPa for
the half ring and 300 MPa for the block) and the use of the raytracing pairing
strategy. In order to be able to compare the results obtained to those of the
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existing literature, the vertical displacement of the midpoint of the ring is plot-
ted on Figure 6 in both cases, with or without friction. The results obtained
with Nitsche are in very good agreement with those produced in (Poulios and
Renard 2015) with an augmented Lagrangian formulation.

a) b)
Figure 5: Deformation of the elastic half-ring coming into contact without (a)
and with friction for F=0.5 (b) for quadratic quadrilateral finite elements, at
loading steps corresponding to 25, 45, 60 and 70 mm of penetration
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Figure 6: Vertical displacement of the half-ring midpoint for different mesh sizes

Figure 7: Geometry and mesh of hollow tubes in their undeformed configurations
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Figure 8: Von-Mises strain and stress of the two crossed tubes. Frictionless
example for a penetration of 20 mm, 30 mm and 40 mm respectively

4.6.2 Crossing hollow tubes with self-contact

In this example, we study the contact between two crossing hollow tubes leaning
on each other. The tubes are 100 mm long, with an outer diameter of 24 mm and
wall thickness of 0.8 mm. The material is considered to be neo-hookean with a
Young modulus E1 = 105 MPa for the bottom tube and E2 = 104 MPa for the
top tube. The Poisson coefficient is 0.3 for both tubes. Quadratic hexahedral
elements are used with two elements in the thickness.

The meshes that were used are visible in Figure 7 in which are represented
in green the parts where the computation actually takes place; the symmetry
of the problem is used to reduce the computation area. The ends of the tubes

35



are subject to imposed displacement conditions, zero for the bottom tube and
downward for the top tube with a total imposed displacement of 40 mm divided
into 80 equal loading steps. This brings the two tubes into contact and induces
strains large enough to observe self-contact inside the top tube, as shown in
Figure 8. The variant θ = 0 of the unbiased Nitsche method is used with all the
inner and outer surfaces of the tubes as contact surface. The Nitsche parameter
employed is still γ = γ0/h with γ0 the Young modulus of the solid on which we
integrate and h the mesh size.

In Figure 8, it can be seen that the self-contact condition is correctly taken
into account despite the very large deformations that are involved. Here too,
the results are in very good agreement with those obtained for the augmented
Lagrangian on the same test case in (Poulios and Renard 2015).
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