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Foucaud et al. [Discrete Appl. Math. 319 (2022), 424438] recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) ̸ = d G-e (x, y). For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. The distance-edge-monitoring number of a graph G, denoted by dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. In this paper, we continue the study of distance-edge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds are characterized. We also characterize the graphs with dem(G) = 3. In addition, we give some properties of the graph G with dem(G) = n -2.

Introduction

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] recently introduced a new concept of network monitoring using distance probes, called distance-edge-monitoring. Networks are naturally modeled by finite undirected monitored by x. Definition 3. A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. Equivalently, ∪ x∈M EM (x) = E(G).

One may wonder about the existence of such an edge detection set M . The answer is affirmative. If we take M = V (G), then

E(G) ⊆ ∪ x∈V (G) ∪ y∈N (x) {xy} ⊆ ∪ x∈V (G) EM (x).
Therefore, we consider the smallest cardinality of M and give the following parameter. Definition 4. The distance-edge-monitoring number dem(G) of a graph G is defined as the smallest size of a distance-edge-monitoring set of G, that is

dem(G) = min { |M | ∪ x∈M EM (x) = E(G), M ⊆ V (G)
} .

The vertices of M represent distance probes in a network modeled by G, distance-edgemonitoring sets are very effective in network fault tolerance testing. For example, a distanceedge-monitoring set can detect a failing edge, and it can correctly locate the failing edge by distance from x to y, because the distance from x to y will increases when the edge e fails. Concepts related to distance-edge-monitoring sets have been considered e.g. in [START_REF] Bampas | Network verification via routing table queries[END_REF][START_REF] Baste | On the parameterized complexity of the edge monitoring problem[END_REF][START_REF] Beerliova | Network discovery and verification[END_REF][START_REF] Bejerano | Robust monitoring of link delays and faults in IP networks[END_REF][START_REF] Harary | On the metric dimension of a graph[END_REF][START_REF] Kelenc | Mixed metric dimension of graphs[END_REF][START_REF] Kelenc | Uniquely identifying the edges of a graph: The edge metric dimension[END_REF][START_REF] Manuel | Strong edge geodetic problem in networks[END_REF][START_REF] Oellermann | The strong metric dimension of graphs and digraphs[END_REF][START_REF] Sebő | On metric generators of graphs[END_REF][START_REF] Slater | Leaves of trees[END_REF]. A detailed discussion of these concepts can be found in [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF].

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] introduced and initiated the study of distance-edge-monitoring sets. They obtained the bounds of dem(G), where G is a connected graph.

Theorem 1.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with at least one edge. Then

1 ≤ dem(G) ≤ n -1.
Furthermore, dem(G) = 1 if and only if G is a tree and dem(G) = n -1 if and only if G is a complete graph of order n.

They also characterized the connected graphs G with dem(G) = 2. Theorem 1.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with at least one cycle, and let G b be the base graph of G. Then, dem(G) = 2 if and only if there are two vertices u, v in G b such that all of the following conditions hold in G b .

(1) For any i, j ∈ {0, 1, 2, . . .}, B i,j (u, v) is an independent set.

(2) For any i, j ∈ {0, 1, 2, . . .}, every vertex x in B i,j (u, v) has at most one neighbor in each of the four sets B i-1,j (u, v)∪B i-1,j-1 (u, v), B i-1,j (u, v)∪B i-1,j+1 (u, v), B i,j-1 (u, v)∪ B i-1,j-1 (u, v) and B i,j-1 (u, v) ∪ B i+1,j-1 (u, v).

(3) For any i, j ∈ {1, 2, . . .}, there is no 4-vertex path zxyz ′ with z ∈ B i-1,a (u, v), z ′ ∈ B a ′ ,j (u, v), x ∈ B i,j (u, v), y ∈ B i-1,j+1 (u, v), a ∈ {j -1, j + 1}, a ′ ∈ {i -2, i}.

(4) For any i, j ∈ {1, 2, . . .}, x ∈ B i,j (u, v) has neighbors in at most two sets among

B i-1,j+1 (u, v), B i-1,j-1 (u, v), B i+1,j-1 (u, v).
They derived the exact value of distance-edge-monitoring number for grids, hypercubes, and complete bipartite graphs, and studied the relation between dem(G) and other standard graph parameters. They showed that dem(G) is lower-bounded by the arboricity of the graph, and upper-bounded by its vertex cover number. It is also upper-bounded by twice its feedback edge set number. They obtained that dem(G) = dem(G b ), where G b is the base graph of G. Then, they showed that determining dem(G) for an input graph G is an NP-complete problem, even for apex graphs. There exists a polynomial-time logarithmic-factor approximation algorithm, however it is NP-hard to compute an asymptotically better approximation, even for bipartite graphs of small diameter and for bipartite subcubic graphs. For such instances, the problem is also unlikely to be fixed parameter tractable when parameterized by the solution size.

In this paper, we continue the study of distance-edge-monitoring sets. We give the strict upper and lower bounds of P (M, e) and EM (x), respectively. In particular, we also characterize the graphs with dem(G) = 3.

Results for P (M, e)

For the parameter P (M, e), we have the following monotonicity property. Proposition 2.1. Let G be a connected graph and M 1 , M 2 ⊆ V (G). For any e ∈ E(G), if M 1 ⊆ M 2 , then P (M 1 , e) ⊆ P (M 2 , e).

Proof. For any (x, y) ∈ P (M 1 , e) with x ∈ M 1 and y ∈ V (G), we have d G (x, y) ̸ = d G-e (x, y). Since M 1 ⊆ M 2 , it follows that x ∈ M 2 . Since d G (x, y) ̸ = d G-e (x, y), it follows that (x, y) ∈ P (M 2 , e), and hence P (M 1 , e) ⊆ P (M 2 , e). Proposition 2.2. Let G be a connected graph and M 1 , M 2 ⊆ V (G). For any e ∈ E(G), we have

P (M 1 , e)∩P (M 2 , e) = P (M 1 ∩M 2 , e). In addition, if M 1 ∩M 2 = ∅, then P (M 1 , e)∩P (M 2 , e) = ∅.
Proof. Assume that M 1 ∩ M 2 = M . From Proposition 2.1, we have P (M, e) ⊆ P (M 1 , e) and P (M, e) ⊆ P (M 2 , e), and hence P (M, e) ⊆ P (M 1 , e) ∩ P (M 2 , e). Suppose that P (M 1 , e) ∩ P (M 2 , e) ̸ ⊆ P (M, e), then there exists a vertex pair (x, y) such that (x, y) ∈ P (M 1 , e)∩P (M 2 , e) and (x, y) / ∈ P (M, e), and hence x ∈ M 1 ∩ M 2 and x / ∈ M , which contradicts to M 1 ∩ M 2 = M . Therefore, P (M 1 , e) ∩ P (M 2 , e) ⊆ P (M, e), and so P (M 1 , e) ∩ P (M 2 , e) = P (M, e). In addition, if M 1 ∩ M 2 = ∅, then P (M, e) = ∅, and hence P (M 1 , e) ∩ P (M 2 , e) = ∅.

From Proposition 2.2, if P (M 1 , e)∩P (M 2 , e) = ∅, then P (M 1 , e)∩P (M 2 , e) = P (M 1 ∩M 2 , e), and hence P (M 1 ∩ M 2 , e) = ∅. In fact, given a complete graph K n with vertices set

V (K n ) = {v i |1 ≤ i ≤ n}, take M 1 = M 2 = V (K n )\{v 1 , v 2 } and e = v 1 v 2 , we have P (M 1 , e)∩P (M 2 , e) = ∅ but M 1 ∩ M 2 ̸ = ∅.

Upper and lower bounds

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] gave the following observation. Observation 2.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let M be a distance-edge-monitoring set of a graph G. Then, for any two distinct edges e 1 , e 2 ∈ E(G), we have P (M, e 1 ) ̸ = P (M, e 2 ).

For any graph G of order n, if |M | = 1, then we have the following proposition. Proposition 2.3. Let G be a graph of order n, e ∈ E(G) and v ∈ V (G) . Then

0 ≤ |P ({v}, e)| ≤ n -1.
Moreover, the bounds are sharp.

Proof. For any edge

e ∈ E(G), P ({v}, e) = {(v, y) | y ∈ V (G), d G (x, y) ̸ = d G-e (x, y)} ⊆ {(v, y) | y ∈ V (G)\{v}}, and hence |P (M, e)| ≤ n-1. It is clear that |P (M, e)| ≥ 0. Therefore, 0 ≤ |P (M, e)| ≤ n -1.
Then, we prove that the bounds are sharp. For the lower bound, let G be a complete graph with (i Since e is cut edge, it follows that d G (x, y) ̸ = d G-e (x, y) for any x ∈ V (G 1 ) and y ∈ V (G 2 ), and hence

V (G) = {v i | 1 ≤ i ≤ n} and E(G) = {v i v j | 1 ≤ i, j ≤ n} and e = v 2 v 3 . Since d G (v 1 , v i ) = 1 and d G-e (v 1 , v i ) = 1 for 2 ≤ i ≤ n, it follows that P ({v 1 }, e) = ∅
(n -1) in G, it follows that |P (M, e)| ≤ |P (V (G), e)| ≤ n(n -1). If G = K 2 , then |P (V (G), e)| = n(n -1), which means that the upper bound is sharp. Let G be a complete graph with V (G) = {v i | 1 ≤ i ≤ n} and E(G) = {v i v j | 1 ≤ i, j ≤ n} and e = v 2 v 3 . Since d G (v 1 , v i ) = 1 and d G-e (v 1 , v i ) = 1 for 2 ≤ i ≤ n, it follows that P ({v 1 }, e) = ∅
) M = ∅; (ii) For any x ∈ M , we have d G (x, u) = d G (x, v), or d G (x, u) = d G (x, v)+1 and d G-uv (x, u) = d G (x, u), or d G (x, v) = d G (x, u) + 1 and d G-uv (x, v) = d G (x, v). Proof. Suppose that |P (M, uv)| = 0. Note that P (M, uv) = {(x, y) | d G (x, y) ̸ = d G-uv (x, y), x ∈ M, y ∈ V (G)} = ∅. If M = ∅, then (i) is true. If M ̸ = ∅, then d G (x, y) = d G-uv (x, y) for any x ∈ M and y ∈ V (G). Therefore, d G (x, u) = d G-uv (x, u) and d G (x, v) = d G-uv (x, v) for any x ∈ M . Note that |d G (x, v) -d G (x, u)| ≤ 1. If |d G (x, v) -d G (x, u)| = 0, then d G (x, v) = d G (x, u), and hence (ii) is true. If |d G (x, v) -d G (x, u)| = 1, then d G (x, v) = d G (x, u) + 1 or d G (x, u) = d G (x, v) + 1, and hence (ii) is true. Conversely, if (i) holds, then |P (M, uv)| = 0. If (ii) holds, then d G (x, u) = d G (x, v), or d G (x, u) = d G (x, v) + 1 and d G-uv (x, u) = d G (x, u), or d G (x, v) = d G (x, u) + 1 and d G-uv (x, v) = d G (x, v) for any x ∈ M . Suppose that d G (x, u) = d G (x, v),
| = d G (x, v) + 1 + d G (u, y). Since d G-uv (x, u) = d G (x,
(x, v) = d G (x, u) + 1 and d G-uv (x, v) = d G (x, v).
P (V (G), e) = {(x, y), (y, x)|x ∈ V (G 1 ) and y ∈ V (G 2 )}. Therefore, |P (V (G), e)| = 2|V (G 1 )||V (G 2 )| = 2n 1 n 2 = 2n 1 (n -n 1 ). Since 2(n -1) ≤ 2n 1 (n -n 1 ) ≤ 2⌊n/2⌋⌈n/2⌉, it follows that 2(n -1) ≤ |P (V (G), e)| ≤ 2⌊n/2⌋⌈n/2⌉.
Then, we prove that the bounds are sharp. For the upper bound, let G be a double star S(⌊n/2⌋-1, ⌈n/2⌉-1), where For the lower bound, let

V (G) = {u i | 1 ≤ i ≤ ⌊n/2⌋-1}∪{v i | 1 ≤ i ≤ ⌈n/2⌉-1}∪{u, v} and E(G) = {uu i | 1 ≤ i ≤ ⌊n/2⌋ -1} ∪ {vv i | 1 ≤ i ≤ ⌈n/2⌉ -1} ∪ {uv}. Since uv ∈ E(G) is a cut edge, it follows that d G (x, y) ̸ = d G-e (x, y) for any x ∈ {u i | 1 ≤ i ≤ ⌊n/2⌋ -1} ∪ {u} and y ∈ {v i | 1 ≤ i ≤ ⌈n/2⌉ -1} ∪ {v}
G = K 1,n-1 , where V (G) = {v i | 1 ≤ i ≤ n} and E(G) = {v 1 v i | 2 ≤ i ≤ n}. Since d G (x, y) = d G-v 1 v 2 (x, y) for any x, y ∈ V (G) \ {v 2 }, it follows that (x, y) / ∈ P (V (G), v 1 v 2 ). Since d G (v 2 , y) ̸ = d G-v 1 v 2 (v 2 , y) for y ∈ V (G) \ {v 2 }, it follows that (v 2 , y), (y, v 2 ) ∈ P (V (G), v 1 v 2 ) for y ∈ V (G) \ {v 2 }, and hence |P (V (G), v 1 v 2 ) = |2(n -1). Proposition 2.7. Let G be a connected graph with a cut edge v 1 v 2 ∈ E(G). Let G 1 and G 2 be the connected components of G-v 1 v 2 , where V (G-v 1 v 2 ) = V (G 1 )∪V (G 2 ), V (G 1 )∩V (G 2 ) = ∅ and v i ∈ V (G i ) for i ∈ {1, 2}. Then |P (V (G), v 1 v 2 )| = 2⌊n/2⌋⌈n/2⌉ if and only if ||V (G 1 )| - |V (G 2 )|| ≤ 1. Proof. Suppose that |P (V (G), v 1 v 2 )| = 2⌊n/2⌋⌈n/2⌉. Claim 1. If x, y ∈ V (G i ), then (x, y) / ∈ P (V (G), v 1 v 2 )
, where i ∈ {1, 2}.

Proof. Without loss of generality, let x, y ∈ V (G 1 ). Since v 1 v 2 is a cut edge, it follows that there exists no path P xy from x to y such that v 1 v 2 ∈ E(P xy ) and hence

d G (x, y) = d G-v 1 v 2 (x, y). Therefore, (x, y) / ∈ P (V (G), v 1 v 2 ).
By Claim 1, we only consider that

x ∈ V (G i ) and y ∈ V (G) -V (G i ) for i ∈ {1, 2}. Since v 1 v 2 is a cut edge, it follows that d G (x, y) ̸ = d G-v 1 v 2 (x, y), and hence (x, y) ∈ P (V (G), v 1 v 2 ), and so |P (V (G), v 1 v 2 )| = 2|V (G 1 )||V (G 2 )| = 2|V (G 1 )|(n -|V (G 1 )|). Since |P (V (G), v 1 v 2 )| = 2⌊n/2⌋⌈n/2⌉, it follows that ||V (G 1 )| -|V (G 2 )|| ≤ 1. Conversely, since |P (V (G), v 1 v 2 )| = 2|V (G 1 )||V (G 2 )| = 2|V (G 1 )|(n-|V (G 1 )|) and ||V (G 1 )|- |V (G 2 )|| ≤ 1, it follows that |V (G 1 )| = ⌊n/2⌋ and |V (G 2 )| = ⌈n/2⌉, or |V (G 1 )| = ⌈n/2⌉ and |V (G 2 )| = ⌊n/2⌋, and hence |P (V (G), v 1 v 2 )| = 2⌊n/2⌋⌈n/2⌉, as desired.
Then, we determine the value of |P (M, e)| in a complete graph K n , where

M ⊆ V (K n ), e ∈ E(K n ). Proposition 2.8. Let K n be a complete graph. For M ⊆ V (K n ) and uv ∈ E(K n ), we have |P (M, uv)| =          2 if u, v ∈ M, 0, if u, v / ∈ M 1 otherwise.
Proof. Firstly, we prove the following Fact 1.

Fact 1. For M ⊆ V (K n ) and uv ∈ E(K n ), we have P (M, uv) =              {(u, v), (v, u)} if u, v ∈ M, {(u, v)} if u ∈ M and v / ∈ M, {(v, u)} if v ∈ M and u / ∈ M, ∅ if u, v / ∈ M. Proof. Since K n is a complete graph, it follows that d G (x, y) = d G-uv (x, y) = 1 for any vertices pair x, y ∈ V (K n ) with xy ̸ = uv. Suppose that u, v ∈ M . Since d G (u, v) = 1 and d G-uv (u, v) = 2, it follows that (u, v), (v, u) ∈ P (M, uv). For u 1 ∈ M and v 1 ∈ V (G), where u 1 , v 1 / ∈ {u, v}, since d G (u 1 , v 1 ) = d G-uv (u 1 , v 1 ) = 1, it follows that (u 1 , v 1 ) / ∈ P (M, uv), and hence P (M, uv) = {(u, v), (v, u)}. Suppose that u ∈ M and v / ∈ M . Since d G (u, v) = 1 and d G-uv (u, v) = 2, it follows that (u, v) ∈ P (M, uv). For u 1 ∈ M and v 1 ∈ V (G), where u 1 ̸ = u and v 1 ̸ = v, since d G (u 1 , v 1 ) = d G-uv (u 1 , v 1 ) = 1, it follows that (u 1 , v 1 ) / ∈ P (M, uv), and hence P (M, uv) = {(u, v)}. Similarly, if v ∈ M and u / ∈ M , then P (M, uv) = {(v, u)}. Suppose that u, v / ∈ M . For any u 1 ∈ M and v 1 ∈ V (G), since d G (u 1 , v 1 ) = d G-uv (u 1 , v 1 ) = 1, it follows that (u 1 , v 1 ) /
∈ P (M, uv), and hence P (M, uv) = ∅.

From Fact 1, we have

|P (M, uv)| =          2 if u, v ∈ M, 0, if u, v / ∈ M 1 otherwise.
3 Results for EM (x)

Foucaud et al. in [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] showed that the cut edge can be monitored by any vertex of graph G, see Theorem 3.1. Theorem 3.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph and let e be a cut edge of G. For any vertex x of G, we have e ∈ EM (x).

For any vertex v of a tree T , we have EM (v) ⊆ E(T ). Since any edge e ∈ E(T ) is a cut edge of T , it follows from Theorem 3.1 that e ∈ EM (v) for any vertex v ∈ V (T ), and hence E(T ) ⊆ EM (v). Therefore, the following corollary holds.

Corollary 3.2. For any vertex v of a tree T , we have EM (v) = E(T ).

Given a vertex x of a graph G and an integer i, let N i (x) denote the set of vertices at distance i of x in G. Lemma 3.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with a vertex x of G. The following two conditions are equivalent.

(i) EM (x) is the set of edges incident with x.

(ii) For every vertex y of G with y ∈ V (G) \ ({x} ∪ N 1 (x)), there exist two shortest paths from x to y sharing at most one edge (the one incident with x).

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] gave the following results. Lemma 3.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with a vertex x of G. For any y ∈ N (x), we have xy ∈ EM (x). Lemma 3.3. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For a vertex x of a graph G, the set of edges EM (x) induces a forest.

We now give the upper and lower bounds of EM (v), where v ∈ V (G).

Proposition 3.1. Let G be a connected graph with |V

(G)| ≥ 2. For any v ∈ V (G), we have δ(G) ≤ |EM (v)| ≤ |V (G)| -1.
Moreover, the bounds are sharp.

Proof. For any vertex v ∈ V (G), from Lemma 3.3, the edges of EM (v) induces a forest F in G, and hence

|EM (v)| = |E(F )| ≤ |E(T )| = |V (G)| -1,
where T is a spanning tree of G. For any x ∈ V (G) and y ∈ N (x), from Lemma 3.2, we have xy ∈ EM (x) and hence

|EM (x)| ≥ |N G (x)| = d G (x) ≥ δ(G).
Then, we prove that the bounds are sharp. For the upper bound, let G be a tree. From Corollary 3.2,

|EM (v)| = |E(G)| = |V (G)| -1 for any v ∈ V (G).
For the lower bound, let G be a regular graph such that there exist two shortest paths from u to x sharing at most one edge, where

u ∈ V (G) -N G [x]. For example, let the graph G be a complete bipartite graph K s,s , where s ≥ 1, then |EM (v)| = δ(G).
Is there a way to quickly determine whether e ∈ EM (v) or e / ∈ EM (v)? Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] gave the following characterization about edge uv in EM (x). Lemma 3.4. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let x be a vertex of a connected graph G. Then, uv ∈ EM (x) if and only if u ∈ N i (x) and v is the only neighbor of u in N i-1 (x) for some integer i.

The following results are immediate from Lemma 3.4.

Corollary 3.3. Let G be a connected graph with x ∈ V (G). Then uv /

∈ EM (x), if one of the following conditions holds.

(

) d G (x, u) = d G (x, v). 1 
(2) There exists an integer k and a vertex

u ′ ∈ N G (v) such that u, u ′ ∈ N k-1 (x) and v ∈ N k (x). Proof. Suppose that d G (x, u) = d G (x, v). If d G (x, u) ̸ = d G-uv (x, u), then d G (x, u) = d G (x, v)+1 or d G (x, v) = d G (x, u) + 1, a contradiction. Therefore, d G (x, u) = d G-uv (x, u). Similarly, d G (x, v) = d G-uv (x, v), and hence uv / ∈ EM (x), (1) holds. Since u ′ , u ∈ N k-1 (x) and v ∈ N k (x)
, it follows from Lemma 3.4 that uv / ∈ EM (x), as desired.

Theorem 3.4. For any integer k with 1 ≤ k ≤ n -1, there exists a graph of order n and a

vertex v ∈ V (G) such that |EM (v)| = k. Proof. Let H be a graph with vertex set V (H) = F 1 ∪ F 2 ∪ {v} and edge set E(H) such that N G (v) = F 1 and |E H [u, F 1 ]| ≥ 2 for any u ∈ F 2 , where F 1 ∩ F 2 = ∅, v / ∈ F 1 ∪ F 2 , |F 1 | = k and |F 2 | = n -k -1. v u 1 u 2 w 1 w 2 w 3 w n-3 w n-4 D v u 1 u 2 w 1 w 2 w 3 w n-3 w n-4 D Figure 1: The illustrations of A 2 . From Lemma 3.2, we have N H (v) ⊆ EM (v). For any edge wu ∈ E H (F 1 ), since d H (v, u) = d H (v, w) = 1, it follows from Corollary 3.3 (1) that wu / ∈ EM (v). For any edge wu ∈ E H [V (F 1 ), V (F 2 )], since |E H [u, V (F 1 )]| ≥ 2, it follows that there exists a vertex w ′ ∈ V (F 1 ) such that w ′ u ∈ E H [u, V (F 1 )], where w ′ ̸ = w. Since w, w ′ ∈ N 1 (v) and u ∈ N 2 (v), it follows from Corollary 3.3 (2) that wu / ∈ EM (v). For any edge wu ∈ E H (F 2 ), since d H (v, u) = d H (v, w) = 2, it follows from Corollary 3.3 (1) that wu / ∈ EM (v). Therefore, |EM (v)| = |N H (v)| = k. The graphs G with |EM (v)| = 1, 2 or n -1 for any v ∈ V (G) can be characterized. Theorem 3.5. For a nontrivial connected graph G, there exists a vertex v ∈ V (G) such that |EM (v)| = 1 if and only if G = K 2 . Proof. Since |EM (v)| = 1, it follows from Lemma 3.2 that d G (v) ≤ |EM (v)| = 1. Since G is nontrivial connected graph, it follows that d G (v) ≥ 1 and hence d G (v) = 1. Let u be the vertex such that vu ∈ E(G). Claim 2. d G (u) = 1.
Proof. Assume, to the contrary, that d G (u) ≥ 2. For any vertex y ∈ N G (u) -{v}, we have y ∈ N 2 (v), and hence d G (y, v) = 2. Since N 1 (v) = {u}, it follows from Lemma 3.4 that uy ∈ EM (v), and hence 

|EM (v)| ≥ 2, a contradiction. Therefore, d G (u) = 1. Since G is a connected graph , it follows from Claim 2 that G = K 2 . Conversely, let G = K 2 . For any v ∈ V (G), EM (v) = {uv}, and hence |EM (v)| = 1. Let A d be a graph with vertex set V (A d ) = {v} ∪ (∪ 1≤i≤d B i ) and edge set E(A d ) = {vu 1 , vu 2 }∪(∪ 1≤i≤d E A d (B i ) )∪(∪ 2≤i≤d E A d [v i , B i-1 ]) with |E A d [v i , B i-1 ]| ≥ 2 for any v i ∈ V (B i ), where d ≥ 1, |V (A d )| = n, B 1 = {u 1 , u 2 }, B i ∩ B j = ∅ for any 2 ≤ i ̸ = j ≤ d. Note that the eccentricity of v in A d is e A d (v) = d
v ∈ V (G) such that |EM (v)| = 2 if and only if G ∈ {A d | d ≥ 1}. Proof. Since there exists a vertex v ∈ V (G) such that |EM (v)| = 2, it follows from Lemma 3.2 that d G (v) ≤ 2. If d G (v) = 1, then let N G (v) = {u}. If d G (u) = 1, then |EM (v)| = 1 which contradicts to the fact that |EM (v)| = 2. If d G (u) > 2, then |EM (v)| > 2
G = P 3 ∈ {A d | d ≥ 1}. If d G (v) = 2, then let N G (v) = {u 1 , u 2 }, and hence vu 1 , vu 2 ∈ EM (v). Suppose that n = 3. If u 1 u 2 / ∈ E(G), then G = P 3 ∈ A 1 . If u 1 u 2 ∈ E(G), then the graph G is a 3-cycle C 3 , and hence d G (v, u 1 ) = d G (v, u 2 ). From Corollary 3.3, we have u 1 u 2 /
∈ EM (v), and hence

G = C 3 ∈ {A d | d ≥ 1}. Suppose that n ≥ 4. Since |EM (v)| = 2 and vu 1 , vu 2 ∈ EM (v), it follows that e / ∈ EM (v) for any e ∈ E(G) -{vu 1 , vu 2 }. Claim 3. For any y ∈ N i (v) and x ∈ N i-1 (v), where i ≥ 2, if yx ∈ E(G), then there exists a vertex x 1 ∈ N i-1 (v) with yx 1 ∈ E(G).
Proof. Assume, to the contrary, that there exists no

x 1 ∈ N i-1 such that yx 1 ∈ E(G). Then d G (v, y) = i and d G-yx (v, y) ≥ i + 1, and hence yx ∈ EM (v), and so |EM (v)| ≥ 3, a contra- diction. If e G (v) ≥ 2, then let e G (v) = d, and hence V (G) = ∪ 0≤i≤d N i (v), where N 0 (v) = {v} and N 1 (v) = {u 1 , u 2 }. By Claim 3, for any v i ∈ N i (v) and v i x ∈ E(G), where x ∈ N i-1 (v) and 2 ≤ i ≤ d, there exists a vertex x 1 ∈ N i-1 (v) and x 1 ̸ = x such that v i x 1 ∈ E(G), and hence |E G [v i , N i-1 (v)]| ≥ 2, and so |N i-1 (v)| ≥ 2.
For any xy ∈ E G (N i (v)), where 1 

≤ i ≤ d, since d G (v, x) = d G (v, y) = i,
E(G) = {vu 1 , vu 2 } ∪ (∪ 1≤i≤d E G (N i (v))) ∪ (∪ 2≤i≤d E G [v i , N i-1 (v)]) with |E G [v i , N i-1 (v)]| ≥ 2 for any v i ∈ N i (v) for 2 ≤ i ≤ d. Let N i (v) = B i , where 1 ≤ i ≤ d, then G = A d ∈ {A d | d ≥ 1}. Conversely, suppose that G = A d , where d ≥ 1. From Lemma 3.2, we have vu 1 , vu 2 ∈ EM (v). Since d G (v, v i ) = d G (v, w i ) = i for any v i w i ∈ E(B i ), where 1 ≤ i ≤ d, it follows from Corollary 3.3 that v i w i / ∈ EM (v). For any edge v i x ∈ E A d [v i , B i-1 ], where 2 ≤ i ≤ d, since |E A d [v i , B i-1 ]| ≥ 2, it follows that there exists a vertex y ∈ B i-1 such that y ∈ N i-1 (v) and v i y ∈ E(G). Since x, y ∈ N i-1 (v) and v i ∈ N i (v),
∈ N G (w) such that d G (w 1 , v) = d G (w 2 , v) = d G (w, v) -1. Proof. Suppose that |EM (v)| = n -1.
Since G is a connected graph of order n, it follows from Lemma 3.3 that the set of edges EM (v) induces a spanning tree T 1 of G.

Claim 1. For any vertex w ∈ V (G), there exists a vertex

w 0 ∈ N d G (v,w)-1 (v) with w 0 w ∈ EM (v).
Proof. Assume, to the contrary, that there is no w 0 ∈ N d G (v,w)-1 (v) with w 0 w ∈ EM (v). Since the set of edges EM (v) induces a spanning tree T 1 of G, it follows that there exists a vertex w 1 ∈ V (G) such that ww 1 ∈ EM (v), and hence there is a path

P vw 1 = vw s • • • w 2 w 1 from v to w 1 in T 1 and w 1 ∈ N d G (v,w) (v) ∪ N d G (v,w)+1 (v). If w 1 ∈ N d G (v,w) (v), then w, w 1 ∈ N d G (v,w) (v).
From Lemma 3.4, we have ww 1 / ∈ EM (v), a contradiction. Therefore,

w 1 ∈ N d G (v,w)+1 (v). Then w 2 ∈ N d G (v,w) (v) or w 2 ∈ N d G (v,w)+1 (v) or w 2 ∈ N d G (v,w)+2 (v). Suppose that w 2 ∈ N d G (v,w) (v) and w 2 ̸ = w. Since w 2 , w ∈ N d G (v,w) (v) and w 1 ∈ N d G (v,w)+1 (v), it follows from Lemma 3.4 that ww 1 / ∈ EM (v), a contradiction. Suppose that w 2 ∈ N d G (v,w)+1 (v). Since w 1 , w 2 ∈ N d G (v,w)+1 (v), it follows from Lemma 3.4 that w 1 w 2 / ∈ EM (v), a contradiction. If w 2 ∈ N d G (v,w)+2 (v), then we consider the edge w 3 w 2 ∈ E(P vw 1 ). Similarly, w 3 / ∈ N d G (v,w)+1 (v) ∪ N d G (v,w)+2 (v), and hence w 3 ∈ N d G (v,w)+3 (v). Continue the above process and then v ∈ N d G (v,w)+s+1 (v), which contradicts to the fact that v ∈ N 0 (v). If w 2 ∈ N d G (v,w) (v) and w 2 = w, then w 3 w ∈ E(P vw 1 ). Since there is no w 0 ∈ N d G (v,w)-1 (v) with w 0 w ∈ EM (v), it follows that w 3 / ∈ N d G (v,w)-1 (v) and w 3 ∈ N d G (v,w) (v) or w 3 ∈ N d G (v,w) (v)+ 1. Assume that w 3 ∈ N d G (v,w) (v). Since w 3 , w ∈ N d G (v,w) (v), it follows from Lemma 3.4 that ww 3 / ∈ EM (v), a contradiction. Assume that w 3 ∈ N d G (v,w)+1 (v)
. Similarly, we have v ∈ N d G (v,w)+s-1 (v), which contradicts to the fact that v ∈ N 0 (v).

Therefore, there exists a vertex

w i ∈ N d G (v,w)-1 (v) with w i w ∈ EM (v), as desired.
By Claim 1, there exists a vertex

w 0 ∈ N d G (v,w)-1 (v) with w 0 w ∈ EM (v) for any vertex w ∈ V (G). From Lemma 3.4, N d G (v,w)-1 (v) ∩ N G (w) = {w 0 },
and hence for any w ∈ V (G), there are no two vertices

w 1 , w 2 ∈ N G (w) such that d G (w 1 , v) = d G (w 2 , v) = d G (w, v) -1.
Conversely, since there are no

w 1 , w 2 ∈ N G (w) such that d G (w 1 , v) = d G (w 2 , v) = d G (w, v) - 1 for any w ∈ V (G) \ {v} and G is a connected graph, it follows that there is only one vertex w 0 ∈ N d G (v,w)-1 (v). From Lemma 3.4, we have w 0 w ∈ EM (v) for any w ∈ V (G) \ {v}, and hence |EM (v)| ≥ n -1. From Proposition 3.1, |EM (v)| ≤ n -1, and hence |EM (v)| = n -1, as desired.
The arboricity arb(G) of a graph G is the smallest number of sets into which E(G) can be partitioned and such that each set induces a forest. The clique number ω(G) of G is the order of a largest clique in G. Theorem 3.8. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For any graph G of order n and size m, we have dem(G) ≥ arb(G), and thus dem(G) ≥ m n-1 and dem(G) ≥ ω(G) 2 .

A vertex set M is called a vertex cover of G if every edge of G has one of its endpoints in M . The minimum cardinality of a vertex cover M in G is the vertex covering number of G, denoted by β(G). Theorem 3.9. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] In any graph G of order n, any vertex cover of G is a distance-edgemonitoring set, and thus dem(G) ≤ β(G).

The independent set U is a set of vertices in the graph G if no two vertices in U are adjacent. The largest cardinality of an independent set is the independence number of G, denoted by α(G).

The following well-known theorem was introduced by Gallai in 1959.

Theorem 3.10 (Gallai's Theorem). [START_REF] Chartrand | Graphs & digraphs[END_REF] For any graph G of order n, we have

β(G) + α(G) = n.
Corollary 3.11. For a graph G of order n, we have

dem(G) ≤ n -α(G).
Moreover, the bound is sharp.

Proof. From Theorems 3.9 and 3.10, we have dem(G) ≤ β(G) = n -α(G), as desired. If G is a complete graph K n or a complete bipartite graph K s,t , where s+t = n, then dem(G) = n-α(G), and hence the bound is sharp.

A set of edges in a graph G is independent if no two edges in the set are adjacent in G. The edges in an independent set of edges of G are called a matching in G. If F = {e 1 , e 2 , . . . , e k } is a matching in a graph G where e i = u i v i for 1 ≤ i ≤ k, then the edges of F match (or pair off) the vertices u 1 , u 2 , . . . , u k to the vertices v 1 , v 2 , . . . , v k . A matching of maximum size in G is a maximum matching in G. The edge independence number α ′ (G) of G is the number of edges in a maximum matching of G. In fact, α ′ (G) is sometimes referred to as the matching number of G. If F is a matching in a graph G, then every vertex of G is incident with at most one edge of M . A vertex that is incident with no edges of F is referred to as an F -unmatched vertex or simply an unmatched vertex if the matching F is clear. The more details about the matching see the paper [START_REF] Lovósz | Matching Theory[END_REF].

Lemma 3.5. If G is a connected graph of order n and G is C 4 -free, then dem(G) ≤ n -α ′ (G).
Furthermore, there exists a graph such that the upper bound is sharp.

Proof. Let F be a maximum matching of G. For the sake of description, assume that

F = {u i v i | 1 ≤ i ≤ k}, where k = α ′ (G). Note that |V (F )| = 2α ′ (G). Let M = {u i | 1 ≤ i ≤ k} ∪ (V (G)\V (F )
). We will prove that M is a distance-edge-monitoring set of G, and hence dem(G)

≤ |M | = n -α ′ (G).
From Lemma 3.2, the edge e with one endpoint in M is monitored by M . Then, we just need consider the edge v i v j , where

v i , v j ∈ V (G) \ M = {v 1 , . . . , v k }. For any edge v i v j ∈ E(G), we have d G (u i , v j ) ≤ 2, d G (u j , v i ) ≤ 2 and d G (u t , v t ) = 1 for t ∈ {i, j}. Suppose that d G (u i , v j ) = 2,
then there exists a path P 0 = u i v i v j from u i to v j . Since G is C 4 -free, it follows that there exists no another path from u i to v j with length 2, and hence d G-v i v j (u i , v j ) ̸ = 2, and so v i v j is monitored by

u i . If d G (u i , v j ) = 1, then u i v j ∈ E(G). Since d G (u i , v i ) = 1, it follows that G [{u i , v i , v j }] = K 3 . If d G (u j , v i ) = 1, then u j v j u i v i u j is a 4-cycle, which contradict the fact that G is a C 4 -free graph. Therefore, d G (u j , v i ) = 2,
and so there exists a path P 1 = u j v j v i from u j to v i . Since G is C 4 -free, it follows that there exists no another path from u i to v j with length 2, and hence d G-v i v j (u j , v i ) ̸ = 2, and so v i v j is monitored by u j . Thus, M is a distance-edge-monitoring set of G.

Let

G = K + 3 with V (G) = {v i | 1 ≤ i ≤ 4} and E(G) = {v i v i+1 | 1 ≤ i ≤ 2} ∪{v 3 v 1 , v 1 v 4 }. Then, dem(G) = 2 = n -α ′ (G), where n = 4 and α ′ (G) = 2, F = {v 1 v 4 , v 2 v 3 }
is the maximum matching of G. Therefore, the upper bound is reachable, as desired. 

G) = dem(G) + 2 dem(G) ≤ (n -α(G)) + 2 (n -α ′ (G)) ≤ n -α(G) + 2n -2α ′ (G) = 2n -α(G) + (n -2α ′ (G)) ≤ 2n -α(G) + α(G) = 2n, and hence dem(G) ≤ 2 3 n. Let G = K 3 , then dem(G) = 2 = 2
3 n, where n = 3, and hence the upper bound is reachable, as desired.

Let G and H be two graphs, the join graph G ∨ H is denoted by adding an edge between any vertex of G and any vertex of

H, that is V (G ∨ H) = V (G) ∪ V (H) and E(G ∨ H) = {uv|u ∈ V (G), v ∈ V (H)} ∪ E(G) ∪ E(H).
Theorem 3.13. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For any graph G, we have

β(G) ≤ dem(G ∨ K 1 ) ≤ β(G) + 1. Moreover, if rad(G) ≥ 4, then β(G) = dem(G ∨ K 1 ).
Similar to the proof of Theorem 3.13, we can obtain the following result.

Corollary 3.14. For any graph G and integer m, we have

β(G) ≤ dem(G ∨ mK 1 ) ≤ β(G) + m.
Moreover, the bounds are sharp.

Proof. From Theorem 3.9, dem(G ∨ mK 1 ) ≤ β(G ∨ mK 1 ) for any graph G and integer m. Since

β(G ∨ mK 1 ) ≤ β(G) + m, it follows that dem(G ∨ mK 1 ) ≤ β(G) + m.
It suffices to show that M ∩ V (G) is a cover set of G for any edge monitoring set M of G ∨ mK 1 . Without loss of generality, suppose that V (mK

1 ) = {w 1 , • • • , w m }. If there exists an edge uv ∈ E(G) with u, v / ∈ M , then uv is monitored by M ∩ V (G) in G ∨ mK 1 . For any vertex x ∈ M , we have d G (x, u) ∈ {1, 2} and d G (x, v) ∈ {1, 2}. Since uv ∈ EM (x), it follows from Corollary 3.3 that d G (x, v) ̸ = d G (x, u). Without loss of generality, let d G (x, v) = 1 and d G (x, u) = 2.
Then, xw i v is a shortest path from x to v, where w i ∈ V (mK 1 ). Since there exist vertices v, w i ∈ N G (u) such that v, w i ∈ N 1 (x) and u ∈ N 2 (x), it follows from Corollary 3.3 that uv / ∈ EM (x) for any x ∈ M , which contradicts the fact that M is an edge monitoring set of G ∨ mK 1 . Thus, u ∈ M or v ∈ M , and hence β(G) ≤ dem(G ∨ mK 1 ). By Theorem 3.13, if rad(G) ≥ 4 and m = 1, then

β(G) = dem(G ∨ K 1 ). If m = 1 and G = K n , then dem(K n ∨ K 1 ) = β(K n ) + 1,
and hence the bounds are sharp. Proposition 3.2. For any r-regular graph G of order n ≥ 5, we have

rn 2n -2 ≤ dem(G) ≤ n -1.
Moreover, the bounds are sharp.

Proof. For any r-regular graph graph G of order n, since |E(G)| = rn 2 , it follows from Theorem 3.8 that dem(G) ≥ m n-1 = rn 2n-2 . From Theorem 3.9, we have dem(G) ≤ n -1. From Theorem 1.1, if r = 1 and n = 2, then dem(K 2 ) = 1, and hence the lower bound and upper bound are tight.

Graphs with distance-edge-monitoring number three

For three vertices u, v, w of a graph G and non-negative integers i, j, k, let

B i,j,k be a vertex set such that d G (u, x) = i, d G (v, x) = j and d G (w, x) = j for any x ∈ B i,j,k . Lemma 4.1.
Let G be a graph with u, v, w ∈ V (G), and i, j, k be three non-negative integers such that

B i,j,k ̸ = ∅. If x ∈ B i,j,k , xy ∈ E(G) and T = {(i ′ , j ′ , k ′ ) | i ′ ∈ {i -1, i, i + 1}, j ′ ∈ {j -1, j, j + 1}, k ′ ∈ {k -1, k, k + 1}} , then y ∈ B i ′ ,j ′ ,k ′ , where (i ′ , j ′ , k ′ ) ∈ T . Proof. Since x ∈ B i,j,k and xy ∈ E(G), it follows that d G (x, u) = i, d G (x, v) = j and d G (x, w) = k. Then the following claim holds. Claim 1. d G (y, u) ∈ {i -1, i, i + 1}.
Proof. Assume, to the contrary, that G[B i,j,k ] is not an independent set, then there exists an edge xy ∈ G[B i,j,k ], and hence 

d G (x, u) = d G (y, u) = i, d G (x, v) = d G (y, v) = j and d G (x, w) = d G (y, w) = k.
(G) = EM (u) ∪ EM (v) ∪ EM (w).
From Claim 1, (1) holds. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k with xy, xy ′ ∈ E(G b ), assume that y ∈ B i ′ ,j ′ ,k ′ , where i ′ ∈ {i -1, i}, j ′ ∈ {j -1, j}, and k ′ ∈ {k -1, k}. Then the following claim holds.

Claim 2. y

′ ̸ ∈ B i ′ ,j ′ ,k ′ . Proof. Assume, to the contrary, that y ′ ∈ B i ′ ,j ′ ,k ′ . If (i ′ , j ′ , k ′ ) = (i -1, j, k), then d G (y, u) = d G (y ′ , u) = i -1, d G (y, v) = d G (x, v) = j and d G (y, w) = d G (x, w) = k. Since d G (x, u) = i, it follows from Lemma 3.4 that xy / ∈ EM (u). Since d G (y, v) = d G (x, v) = j and d G (y, w) = d G (x, w) = k, it follows from Corollary 3.3 that xy / ∈ EM (v) ∪ EM (w). Therefore, xy / ∈ EM (u)∪EM (v)∪EM (w), which contradicts the fact that E(G) = EM (u)∪EM (v)∪EM (w), and hence y ′ ̸ ∈ B i ′ ,j ′ ,k ′ . Similarly, if (i ′ , j ′ , k ′ ) = (i, j -1, k), (i, j, k -1), (i -1, j -1, k), (i -1, j, k -1), (i, j -1, k -1) or (i -1, j -1, k -1), then y ′ ̸ ∈ B i ′ ,j ′ ,k ′ .
From Claim 2, (2) holds. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any xy, xy ′ ∈ E(G b ), we suppose that y ∈ B i,j-1,k . Then the following claim holds.

Claim 3. y ′ / ∈ B i 2 ,j 2 ,k 2 for (i 2 , j 2 , k 2 ) ∈ {(i 2 , j -1, k 2 ) | i 2 ∈ {i-1, i, i+1}, k 2 ∈ {k-1, k, k+1}}.
Proof. Assume, to the contrary, that

y ′ ∈ B i 2 ,j 2 ,k 2 . Since x ∈ B i,j,k and y ∈ B i,j-1,k , it follows that d G (y, u) = d G (x, u) = i and d G (y, w) = d G (x, w) = k. From Corollary 3.3, xy / ∈ EM (u) ∪ EM (w). Since y ′ ∈ B i 2 ,j-1,k 2 and y ∈ B i,j-1,k , it follows that d G (y ′ , v) = d G (y, v) = j -1. From Lemma 3.4, xy / ∈ EM (v). Therefore, xy / ∈ EM (u) ∪ EM (v) ∪ EM (w), which contradicts the fact that E(G) = EM (u) ∪ EM (v) ∪ EM (w), and hence y ′ ̸ ∈ B i 2 ,j 2 ,k 2 .
By Claim 3, (3.1) holds. Similarly, we can prove that (3.2)-(3.5) all hold.

Claim 4. For any

i, j, k ∈ {0, 1, 2, . . . , diam(G)}, there is no 4-vertex path z 1 xyz 2 such that x ∈ B i,j,k , y ∈ B i-1,j+1,k+1 , z 1 ∈ B i-1,a,b , and z 2 ∈ B c,j,k , where a ∈ {j -1, j + 1}, b ∈ {k -1, k + 1}, c ∈ {i -2, i}.
Proof. Assume, to the contrary, that there is a 4-path such that

x ∈ B i,j,k , y ∈ B i-1,j+1,k+1 , z 1 ∈ B i-1,a,b , and z 2 ∈ B c,j,k , where a ∈ {j -1, j + 1}, b ∈ {k -1, k + 1}, c ∈ {i -2, i}. Then d G (y, u) = d G (z 1 , u) = i -1, d G (x, v) = d G (z 2 , v) = j and d G (x, w) = d G (z 2 , w) = k, and hence from Lemma 3.4, xy / ∈ EM (u) ∪ EM (v) ∪ EM (w), which contradicts the fact that E(G) = EM (u) ∪ EM (v) ∪ EM (w)
, and so there is no a 4-path such that x ∈ B i,j,k ,

y ∈ B i-1,j+1,k+1 , z 1 ∈ B i-1,a,b , and z 2 ∈ B c,j,k , where a ∈ {j -1, j + 1}, b ∈ {k -1, k + 1}, c ∈ {i -2, i}.
By Claim 4, (4.1) holds. Similarly, the cases (4.2) and (4.3) hold. Claim 5. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k , there exist no three neighbors y, y ′ , y ′′ of x such that y

∈ B i-1,j-1,k-1 , y ′ ∈ B i+1,j-1,k-1 and y ′′ ∈ ∪ j ′ ∈{j-1,j,j+1},k ′ ∈{k-1,k,k+1} B i-1,j ′ ,k ′ .
Proof. Assume, to the contrary, that there exist three neighbors y, y ′ , y ′′ of the vertex x such that y

∈ B i-1,j-1,k-1 , y ′ ∈ B i+1,j-1,k-1 , y ′′ ∈ ∪ j ′ ∈{j-1,j,j+1},k ′ ∈{k-1,k,k+1} B i-1,j ′ ,k ′ . Since y ∈ B i-1,j-1,k-1 and y ′ ∈ B i+1,j-1,k-1 , it follows that d G (y, v) = d G (y ′ , v) = j -1 and d G (y, w) = d G (y ′ , w) = k -1. Since d G (x, v) = j and d G (x, w) = k, it follows from Lemma 3.4 that xy / ∈ EM (v) ∪ EM (w). Since y ∈ B i-1,j-1,k-1 and y ′′ ∈ B i-1,j ′ ,k ′ , it follows that d G (y, u) = d G (y ′′ , u) = i -1,

and hence xy /

∈ EM (u), and so xy /

∈ EM (u) ∪ EM (v) ∪ EM (w), which contradicts the fact that E(G) = EM (u) ∪ EM (v) ∪ EM (w).
From Claim 5, (5) holds. Claim 6. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k , there is no 4-star K 1,4 with edge set

E(K 1,4 ) = {yx, z 1 x, z 2 x, z 3 x} such that y ∈ B i-1,j-1,k-1 , z 1 ∈B i-1,j-1,k+1 ∪ B i-1,j,k+1 ∪ B i-1,j+1,k-1 ∪ B i-1,j+1,k ∪ B i-1,j+1,k+1 , z 2 ∈B i-1,j-1,k+1 ∪ B i,j-1,k+1 ∪ B i+1,j-1,k-1 ∪ B i+1,j-1,k ∪ B i+1,j-1,k+1 , z 3 ∈B i-1,j+1,k-1 ∪ B i,j+1,k-1 ∪ B i+1,j-1,k-1 ∪ B i+1,j,k-1 ∪ B i+1,j+1,k-1 .
Proof. Assume, to the contrary, that there exists a 4-star K 1,4 with edge set

E(K 1,4 ) = {yx, z 1 x, z 2 x, z 3 x} satisfying the conditions of this claim. Then d G (y, u) = d G (z 1 , u) = i -1. Since d G (x, u) = i, it follows from Lemma 3.4 that xy / ∈ EM (u). Similarly, since d G (y, v) = d G (z 2 , v) = j -1 and d G (x, v) = j, it follows from Lemma 3.4 that xy / ∈ EM (v). Similar- ly, since d G (y, w) = d G (z 3 , w) = k -1 and d G (x, w) = k, it follows from Lemma 3.4 that xy / ∈ EM (w). Therefore, xy / ∈ EM (u) ∪ EM (v) ∪ EM (w), which contradicts the fact that E(G) = EM (u) ∪ EM (v) ∪ EM (w).
From Claim 6,[START_REF] Chartrand | Graphs & digraphs[END_REF] 

z 1 ∈B i-1,j-1,k-1 ∪ B i-1,j-1,k ∪ B i-1,j-1,k+1 ∪ B i-1,j,k-1 ∪ B i-1,j,k+1 ∪ B i-1,j+1,k-1 ∪ B i-1,j+1,k ∪ B i-1,j+1,k+1 , z 2 ∈B i-2,j,k-2 ∪ B i-2,j,k-1 ∪ B i-2,j,k ∪ B i-1,j,k-2 ∪ B i-1,j,k ∪ B i-1,j,k-1 ∪ B i,j,k-2 ∪ B i,j,k ∪ B i,j,k-1 z 3 ∈B i-1,j-1,k-1 ∪ B i-1,j+1,k-1 ∪ B i,j-1,k-1 ∪ B i,j,k-1 ∪ B i,j+1,k-1 ∪ B i+1,j-1,k-1 ∪ B i+1,j,k-1 ∪ B i+1,j+1,k-1 .
Proof. Assume, to the contrary, that there is P + 4 with vertex set {z 1 , z 2 , x, y, z 3 } and edge set {z 1 x, z 3 x, xy, yz 2 } satisfying the conditions of this claim. Since

d G (y, u) = d G (z 1 , u) = i -1, d G (x, v) = d G (z 2 , v) = j and d G (y, w) = d G (z 3 , w) = k -1, it follows from Lemma 3.4 that xy / ∈ EM (u) ∪ EM (v) ∪ EM (w), which contradicts the fact that E(G) = EM (u) ∪ EM (v) ∪ EM (w).
From Claim 7, (7.1) holds. Similarly, we can prove that (7.2) holds. Claim 8. There is no 3-star K 1,3 with vertex set {z 1 , z 2 , x, y} and edge set {xy, xz 1 , xz 2 } such that x ∈ B i,j,k , y ∈ B i,j-1,k-1 , and

z 1 ∈B i-1,j-1,k ∪ B i-1,j-1,k+1 ∪ B i,j-1,k ∪ B i,j-1,k+1 ∪ B i+1,j-1,k ∪ B i+1,j-1,k ∪ B i+1,j-1,k+1 , z 2 ∈B i-1,j-1,k-1 ∪ B i-1,j,k-1 ∪ B i-1,j+1,k-1 ∪ B i,j,k-1 ∪ B i,j,k-1 ∪ B i,j+1,k-1 ∪ B i+1,j,k-1 ∪ B i+1,j+1,k-1 .
Proof. Assume, to the contrary, that there is a K 1,3 such that V (K 1,3 ) = {z 1 , z 2 , x, y} and E(K 

∪ i ′ ∈{i-1,i,i+1},j ′ ∈{j-1,j,j+1},k ′ ∈{k-1,k,k+1} B i ′ ,j ′ ,k ′ .
Since (1) holds, it follows that y / ∈ B i,j,k , and hence we have the following cases. 

} such that x ∈ B i,j,k , y ∈ B i,j-1,k-1 , z 2 ∈ B a,j-1,c , z 3 ∈ B a ′ ,b ′ ,k-1 , where a, a ′ ∈ {i -1, i, i + 1}, c ∈ {k -1, k, k + 1}, b ′ ∈ {j -1, j, j + 1}. If y ∈ B i,j-1,k-1 , then for any z i ∈ N (x) (2 ≤ i ≤ 3
), it follows from the conditions (3) and (3.4), that

z 2 / ∈B i-1,j-1,k-1 ∪ B i,j-1,k-1 ∪ B i,j-1,k ∪ B i+1,j-1,k-1 , z 3 / ∈B i-1,j-1,k-1 ∪ B i,j-1,k-1 ∪ B i+1,j-1,k-1 ,
and hence

x ∈B i,j,k , y ∈ B i,j-1,k-1 , z 2 ∈B i-1,j-1,k ∪ B i-1,j-1,k+1 ∪ B i,j-1,k+1 ∪ B i,j,k-1 ∪ B i+1,j-1,k ∪ B i+1,j-1,k+1 , z 3 ∈B i-1,j,k-1 ∪ B i-1,j+1,k-1 ∪ B i,j+1,k-1 ∪ B i+1,j,k-1 ∪ B i+1,j+1,k-1 ,
which contradicts to the condition [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF].

Similarly, if x ∈ B i,j,k and y ∈ B i,j-1,k-1 , then xy can be monitored by {u, v, w}. By the same method, we can prove that the edges xy can be also monitored by {u, v, w}, where

y ∈ B i-1,j-1,k or y ∈ B i-1,j,k-1 or y ∈ B i,j+1,k+1 or y ∈ B i+1,j+1,k or y ∈ B i+1,j,k+1 . Case 5. y ∈ B i,j-1,k+1 or y ∈ B i-1,j,k+1 or y ∈ B i,j+1,k-1 or y ∈ B i+1,j-1,k or y ∈ B i+1,j,k-1 or y ∈ B i-1,j+1,k .
For x ∈ B i,j,k and y ∈ B i,j-1,k+1 , assume that xy / ∈ EM (u) ∪ EM (v) ∪ EM (w). Then there is a path P yw with length k + 1 from y to w such that xy / ∈ E(P yw ), and a path P xv with length j from x to v such that xy / ∈ E(P xv ). Let z 3 , z 2 be the neighbors of y, x on the P yw , P xv , respectively. Thus, there is a 4-path P 4 with V (P 4 ) = {z 2 , x, y, z 3 } and

E(P 4 ) = {z 2 x, xy, yz 3 } such that x ∈ B i,j,k , y ∈ B i,j-1,k+1 , z 2 ∈ B a,j-1,b , and z 3 ∈ B a ′ ,b ′ ,k , where a, a ′ ∈ {i -1, i, i + 1}, b ∈ {k -1, k, k + 1}, b ′ ∈ {j -2, j -1, j}.
From the conditions (2) and (3.5), we have y ∈ B i,j-1,k+1 and

z 3 / ∈ B i,j-1,k , z 2 / ∈ B i,j-1,k for any z i ∈ N (x), where 2 ≤ i ≤ 3, and hence x ∈ B i,j,k , y ∈ B i,j-1,k+1 , z 2 ∈B i-1,j-1,k-1 ∪ B i-1,j-1,k ∪ B i-1,j-1,k+1 ∪ B i,j-1,k-1 ∪ B i,j-1,k+1 ∪ B i+1,j-1,k-1 ∪ B i+1,j-1,k ∪ B i+1,j-1,k+1 , z 3 ∈B i-1,j-2,k ∪ B i-1,j-1,k ∪ B i-1,j,k ∪ B i,j-2,k ∪ B i,j,k ∪ B i+1,j-2,k ∪ B i+1,j-1,k ∪ B i+1,j,k .
which contradicts the condition (4.3). Therefore, the edge xy ∈ EM (u) ∪ EM (v) ∪ EM (w) for any x ∈ B i,j,k and y ∈ B i,j-1,k+1 . Similarly, the edge xy ∈ EM (u) ∪ EM (v) ∪ EM (w) for any

x ∈ B i,j,k and y ∈ B i-1,j,k+1 or y ∈ B i,j+1,k-1 or y ∈ B i+1,j-1,k or y ∈ B i+1,j,k-1 or y ∈ B i-1,j+1,k . Since ∪ i,j,k∈{0,1,2,...,diam(G)} B i,j,k (u, v, w) = V (G), it follows that xy ∈ EM (u) ∪ EM (v) ∪ EM (w)
for any xy ∈ E(G), and hence {u, v, w} is a distance-edge-monitoring set of the graph G, and so dem(G) = 3.

In the rest of this section, we discuss the relation between dem(G) = n -2 and diam(G). 

= v 0 and v = v d . Let M = M 1 ∪M 2 , where M 1 = V (G) -{v 0 , v 1 , . . . , v d } and M 2 = {v i | i ≡ 1 (mod 2)}. Since M is a vertex cover set, it follows from Theorem 3.9 that M is a distance-edge- monitoring set of the graph G with |M | = n -⌈(d + 1)/2⌉. Thus, dem(G) n -⌈(d + 1)/2⌉. If G ∈ {P 3 , K n }, then dem(G) = n -⌈(d + 1)/2⌉
, and hence the upper bound is sharp, as desired.

For any graph G with n vertices and dem(G) = n -2, the following corollary holds from Theorem 4.2. 

(G) = n -2. If G is a bipartite graph, then G = K 1,2 or G = K 2,2 . Otherwise, if G is a C 3 -free graph, then G is also a C 5 -free graph.
(G) = n -2, then G = K 2,2 . If n = 3 and dem(G) = n -2, then G = K 1,2 .
If G is not a bipartite graph and is C 3 -free graph, then we suppose that G contains a 5cycle. Let C

5 = v 1 v 2 . . . v 5 v 1 be a subgraph of G and M 1 = V (G) -{v 2 , v 3 , v 5 }. For any edge uv ∈ E(G), if {u, v} ∩ M 1 ̸ = ∅, then it follows from Lemma 3.2 that uv ∈ ∪ x∈M 1 EM (x). If {u, v} ∩ M 1 = ∅, then uv = v 2 v 3 . If v 2 v 3 ∈ EM (v 1 ), then E(G) = ∪ x∈M 1 EM (x), and hence dem(G) ≤ n-3, which contradicts to the fact that dem(G) = n-2. Therefore, v 2 v 3 / ∈ EM (v 1 ). Since d G (v 1 , v 3 ) = 2 and v 2 v 3 / ∈ EM (v 1 ), it follows that d G-v 2 v 3 (v 1 , v 3 ) = 2
, and hence there exists an another path v 1 u 1 v 3 from v 1 to v 3 with length 2, and so there exists a cycle v

1 u 1 v 3 v 2 v 1 in G with length 4. Let M 2 = M 1 \ {u 1 } ∪ {v 2 }. If v 3 u 1 ∈ EM (v 4 ), then E(G) = ∪ x∈M 2 EM (x),
and hence dem(G) ≤ n -3, which contradicts to the fact that dem(G) = n -2. Therefore,

v 3 u 1 / ∈ EM (v 4 ). Since d G (v 4 , u 1 ) = 2 and v 3 u 1 / ∈ EM (v 4 ), it follows that d G-v 3 u 1 (v 4 , u 1 ) = 2 
, and hence there exists an another path v 4 u 2 u 1 from v 4 to u 1 with length 2, and so there exists a cycle v 4 u 2 u 1 v 3 v 4 in G with length 4. Let M 3 = M 2 \ {u 2 } ∪ {u 1 }. Since u 2 , v 3 , v 5 ∈ N G (v 4 ), it follows that M 3 is a distance-edge-monitoring set of G, which contradicts to the fact that dem(G) = n -2. Thus, G is a C 5 -free graph, as desired.

The vertices u and v in a connected graph G are twins if u and v have the same neighbors in V (G) -{u, v}. If u and v are adjacent, they are referred to as true twins; while if u and v are nonadjacent, they are false twins. If u and v are true twins and v and w are true twins, then so too are u and w and hence two vertices being true twins produces an equivalence relation on V (G). If the resulting true twin equivalence classes are U 1 , U 2 , . . . , U ℓ , then every distance-edge-monitoring set of G must contain at least |U i | -1 vertices from U i for each i with 1 i ℓ. Thus we have the following observation. ∈ ∪ w∈M EM (w), which contradicts to the fact that M 1 is a distance-edge-monitoring set of G. Therefore, dem(G) = n -2, as desired.

Let G 1 = C 4 ∨ K n-4 , where V (G 1 ) = {v i | 1 ≤ i ≤ 4} ∪ {u i | 5 ≤ i ≤ n} and E(G) = {v i v i+1 | 1 ≤ i ≤ 3} ∪ {v 4 v 1 } ∪ {u i u j | 5 ≤ i, j ≤ n} ∪ {v i u j | 1 ≤ i ≤ 4, 5 ≤ j ≤ n}. Let Y = {v 1 , v 2 } ∪ {u i | 5 ≤ i ≤ n}, then G 1 [Y ]
is a clique of order n -2. Since G 1 is not a complete graph, it follows from Theorem 1.1 that dem(G) ≤ n -2.

Let M be a distance-edge-monitoring set with |M | = dem(G 1 ). If |M ∩ {u i | 5 ≤ i ≤ n}| ≤ n -6, then there exists a edge u s u t ∈ E(G) such that u s , u t / ∈ M , where 5 ≤ s, t ≤ n. Since d G (w, u s ) = d G (w, u t ) = 1 for any w ∈ M , it follows that u s u t / ∈ ∪ x∈M EM (x), which contradicts to the fact that M is a distance-edge-monitoring set of G 1 . Similarly, if there exists a vertex v i / ∈ M and a vertex u j / ∈ M , where 1 ≤ i ≤ 4 and 5 ≤ j ≤ n, then v i u j / ∈ ∪ x∈M EM (x), which contradicts to the fact that M is a distance-edge-monitoring set of 

G 1 . Since d G 1 (v i , u k ) = d G 1 (v j , u k ) =

Conclusion

In this paper, we study the distance-edge-monitoring set-a new graph parameter recently introduced by Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF], which is useful in the area of network monitoring. In particular, we gave some upper and lower bounds for the parameters P (M, e), EM (x), dem(G), respectively. The extremal graphs attaining the bounds were characterized. We also characterized the graphs with dem(G) = 3.

For the future work, it would be interesting to study distance-edge monitoring numbers for some graph classes, including pyramids, Sierpińki-type graphs, circulant graphs, graph products, or line graphs. In addition, it is also interesting to characterize the graphs with dem(G) = n -2, as well as clarifying further the relation between the parameter dem(G) and other standard graph parameters, such as arboricity, vertex cover number and feedback edge set number.

Proposition 2 . 4 .

 24 , and hence |P ({v 1 }, e)| = 0. For the upper bound, let G be a graph with a pendant vertex v ∈ V (G) and uv ∈ E(G), where |V (G)| = n. For any w ∈ V (G) \ v, the path from v to w must pass through the vertex u. Since uv is a pendant edge, it follows that d G (v, w) < d G-uv (v, w) = ∞, and hence (v, w) ∈ P ({v}, uv) for any w ∈ V (G) \ v, and so |P ({v}, uv)| = n -1. For any vertex set M ⊆ V (G), we can derive the following upper and lower bounds. Let G be a connected graph of order n. For a vertex set M ⊆ V (G) and an edge e of a graph G, we have 0 ≤ |P (M, e)| ≤ n(n -1). Moreover, the bounds are sharp. Proof. Clearly, |P (M, e)| ≥ 0. From Proposition 2.1, we have P (M, e) ⊆ P (V (G), e). Since the number of ordered vertex pairs is n

Proposition 2 . 5 .

 25 , and hence |P ({v 1 }, e)| = 0, which means that the lower bound is sharp. Let G be a graph with uv ∈ E(G) and M ⊆ V (G). Then |P (M, uv)| = 0 if and only if one of the following conditions holds.

Proposition 2 . 6 .

 26 Similarly, (x, y) / ∈ P (M, uv) for any x ∈ M and y ∈ V (G). Therefore, P (M, e) = ∅, and hence |P (M, e)| = 0. The double star S(n, m) with integers m ≥ n ≥ 0 is the graph obtained from the union of two stars K 1,n and K 1,m by adding the edge e between their centers. Let G be a connected graph of order n with a cut edge e. Then 2(n -1) ≤ |P (V (G), e)| ≤ 2⌊n/2⌋⌈n/2⌉. Moreover, the bounds are sharp. Proof. Let G 1 , G 2 be the two components of G \ e, where |V (G 1 )| = n 1 and |V (G 2 )| = n 2 .

  , and hence |P (M, e)| = 2⌊n/2⌋⌈n/2⌉.

  and there are at least two edges from v i to B i-1 for each vertex v i ∈ B i , where 2 ≤ i ≤ d. The illustrations of A 2 see Figure1. Especially, A 1 ∈ {C 3 , P 3 }. Theorem 3.6. Let G be a connected graph with at least 3 vertices. Then there exists a vertex

  which contradicts to the fact that |EM (v)| = 2, and hence d G (u) = 2, and so there exists only one vertex y ∈ N G (u) such that uy ∈ EM (v), where y ̸ = v. If d G (y) ≥ 2, then |EM (v)| > 2 which contradict to the fact that |EM (v)| = 2. Therefore, d G (y) = 1, and hence

Theorem 3 . 12 .

 312 If G is a connected graph of order n and G is C 4 -free graph, then dem(G) ≤ 2n/3. Furthermore, the bound is sharp.Proof. Let F be a maximum matching in G. Since F is a maximum matching in G, it follows that the set U = V (G)\V (F ) is an independent set and |U | = n -2α ′ (G). Since |U | ≤ α(G), it follows that n -2α ′ (G) ≤ α(G). From Corollary 3.11 and Lemma 3.5, we have dem(G) ≤ n -α(G) and dem(G) ≤ n -α ′ (G). Therefore, 3 dem(

  1,3 ) = {xy, xz 1 , xz 2 } satisfying the conditions of this claim. Since dG (x, u) = d G (y, u) = i, it follows from Corollary 3.3 that xy / ∈ EM (u). Since d G (y, v) = d G (z 1 , v) = j -1 and d G (y, w) = d G (z 2 , w) = k -1, it follows from Lemma 3.4 that xy / ∈ EM (v) ∪ EM (w) Therefore, xy / ∈ EM (u) ∪ EM (v) ∪ EM (w), which contradicts the fact that E(G) = EM (u) ∪ EM (v) ∪ EM (w).From Claim 8, (8) holds. Conversely, suppose that there exist three vertices u, v, w in G b such that all of the conditions (1)-(8) holds in G b . It suffices to prove that {u, v, w} is a distance-edge-monitoring set of G b , and hence dem(G) = 3. Let xy be any edge of G with x ∈ B i,j,k . Since x ∈ B i,j,k , it follows from Lemma 4.1 that y ∈

Theorem 4 . 2 .

 42 Suppose that k is an integer k ≥ 1. Let G be a connected graph with |V (G)| = n 2 and diam(G) = d. Then, dem(G) n -⌈(d + 1)/2⌉. Furthermore, the bound is sharp. Proof. Let u, v ∈ V (G) with d(u, v) = d and let P uv = v 0 v 1 . . . v d be a path from u to v, where u

Corollary 4 . 3 .Theorem 4 . 4 .

 4344 Let G be a graph of order n. If dem(G) = n -2, then diam(G) = 2 or 3. Let G be a connected graph of order n 3 and dim

  Proof. If G is a bipartite graph with V (G) = S ∪ T and S ∩ T = ∅, where |S| = s ≤ n/2, then S is a vertex cover set of G. From Lemma 3.2, the set S is a distance-edge-monitoring set of G. Since dem(G) = n -2, it follows that n -2 ≤ s ≤ n/2, and hence 3 ≤ n ≤ 4. If n = 4 and dem

Observation 4 . 1 .

 41 If G is a nontrivial connected graph of order n and ℓ true twin equivalence classes, then dem(G) n -ℓ.Theorem 4.5. Let G be a connected graph of order n 3. If ω(G) = n -1, then dem(G) = n -2. Furthermore, there exists a graph such that ω(G) = n -2 and dem(G) = n -2. Proof. Since G is a connected graph of order n 3 with ω(G) = n -1, it follows that G ̸ = K n , and hence from Theorem 1.1, dem(G) n -2. Let H = K n-1 be a clique in G and v ∈ V (G) -V (H) with d = d G (v). Then 1 d n -2. Since U 1 = {v}, U 2 = N (v) = {v 1 , v 2 , . . . , v d } and U 3 = V (G) -N [v] = {v d+1 , v d+2 , . . . , v n-1 }are the true twin equivalence classes, it follows from Observation 4.1 that dem(G) n -3. If dem(G) = n -3, then there exists a distance-edgemonitoring set M 1 with |M 1 | = n -3. By Observation 4.1, V (G) -M 1 = {v, x 2 , x 3 }, where x i ∈ U i for i = 2, 3. Since x 2 x 3 ∈ E(G) and d (x 2 , w) = d (x 3 , w) = 1 for all w ∈ M 1 , it follows from Corollary 3.3 that x 2 x 3 /

  1, it follows that v i v j / ∈ EM (u k ) for any 1 ≤ i ̸ = j ≤ 4 and 5 ≤ k ≤ n, and hence M ∩ {v i | 1 ≤ i ≤ 4} ≥ 2. If {u i | 5 ≤ i ≤ n} ⊆ M , then |M | ≥ n -4 + 2 = n -2. If there exists a vertex u i / ∈ M , then v 1 , v 2 , v 3 , v 4 ∈ M ,and hence |M | ≥ n -5 + 4 > n -2, and so dem(G) ≤ n -2. Therefore, dem(G) = n -2.

  then uv / ∈ P xy for any shortest path P xy from x to y. Therefore, d G (x, y) = d G-uv (x, y) for any y ∈ V (G), and hence (x, y) / ∈ P (M, uv). Suppose thatd G (x, u) = d G (x, v) + 1 and d G-uv (x, u) = d G (x,u). If uv ∈ P xy for any shortest path P xy from x to y, then |P xy

  u), it follows that there exists a shortest path P ′ xy from x to y in graph G -uv with |P ′ xy | = |P xy | which contradict to the fact that uv ∈ P xy for any shortest path P xy from x to y. Therefore, d G (x, y) = d G-uv (x, y) for any y ∈ V (G), and hence (x, y) / ∈ P (M, uv). Suppose that d G

  it follows from Corollary 3.3 that v

i x / ∈ EM (v), and hence EM (v) = {u 1 v, u 2 v}, and so |EM (v)| = 2. Theorem 3.7. Let G be a connected graph of order n. Then there exists a vertex v ∈ V (G) such that |EM (v)| = n -1 if and only if for any vertex w ∈ V (G), there are no w 1 , w 2

  and hence xy can not be monitored by u, v, w From Lemma 3.4, xy / ∈ EM (u) ∪ EM (v) ∪ EM (w), which contradicts the fact that E

  holds. There is no P + 4 with vertex set {z 1 , z 2 , x, y, z 3 } and edge set {z 1 x, z 3 x, xy, yz 2 } such that x ∈ B i,j,k , y ∈ B i-1,j+1,k-1 , and

	Claim 7.

  Case 1. y ∈ B i,j-1,k or y ∈ B i-1,j,k or y ∈ B i,j,k-1 or y ∈ B i,j+1,k or y ∈ B i,j,k+1 or y ∈ B i+1,j,k .For any x ∈ B i,j,k and y ∈ B i,j-1,k , assume that xy / ∈ EM (u)∪EM (v)∪EM (w). Then there is a path P xv from x to v with length j such that xy / ∈ E(P xv ). Let z 2 be the neighbor of x in P j . From Lemma 4.1, we havez 2 ∈ B i ′ ,j-1,k ′ , where i ′ ∈ {i -1, i, i +1} and k ′ ∈ {k -1, k, k + 1},which contradicts to the condition (3.1), and hence xy ∈ EM (u) ∪ EM (v) ∪ EM (w). Similarly, For any x ∈ B i,j,k and y ∈ B i,j-1,k-1 , assume that xy / ∈ EM (u) ∪ EM (v) ∪ EM (w). Then there is a path P xv with length j from x to v such that xy / ∈ E(P xv ). Similarly, there is a path P xw with length k, say P k , from x to w such that xy / ∈ E(P xw ). Let z 2 x ∈ E(P xv ) andz 3 x ∈ E(P xw ). Then there is a 3-star K 1,3 with edge set {xy, xz 2 , xz 3
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Proof. Assume, to the contrary, that d G (y, u

From Claim 1, we have d G (y, u) ∈ {i -1, i, i + 1}. Similarly, d G (y, v) ∈ {j -1, j, j + 1} and d G (y, w) ∈ {k -1, k, k + 1}. Theorem 4.1. Let G be a graph. Then dem(G) = 3 if and only if there exist three vertices u, v, w in G b such that all of the following conditions (1)- [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] hold in G b : 

, where (i 1 , j 1 , k 1 ) and (i 2 , j 2 , k 2 ) satisfy all the following conditions:

(4) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)}, there is no 4-path satisfying the following conditions.

and

(5) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k , x has at most two neighbors in two of

There is no P + 4 satisfying the following conditions:

(7.2) V (P + 4 ) = {z 2 , z 3 , x, y, z 1 } and E(P + 4 ) = {z 2 x, z 3 x, xy, yz 1 } such that x ∈ B i,j,k , y ∈ B i+1,j-1,k-1 , and

and

Proof. Suppose that dem(G) = 3, then dem(G b ) = 3. Let {u, v, w} be a distance-edge monitoring set of G b . 

Claim 1. G[B

, where 1 ≤ i ≤ 3, and hence there is a 4-star with edge set {yx,

which contradicts to the condition [START_REF] Chartrand | Graphs & digraphs[END_REF]. Therefore, the edge xy ∈ EM (u) ∪ EM (v) ∪ EM (w) for any x ∈ B i,j,k and y ∈ B i-1,j-1,k-1 . Similarly, the edge xy ∈ EM (u) ∪ EM (v) ∪ EM (w) for any x ∈ B i,j,k and y ∈ B i+1,j+1,k+1 . Case 3. y ∈ B i-1,j+1,k-1 or y ∈ B i+1,j-1,k-1 or y ∈ B i-1,j-1,k+1 or y ∈ B i+1,j-1,k+1 or y ∈ B i-1,j+1,k+1 or y ∈ B i+1,j+1,k-1 . 

For any

Since y ∈ B i-1,j+1,k-1 , it follows from the conditions (2) and (3.3) that z 1 / ∈ B i-1,j,k-1 ∪ B i-1,j,k , z 3 / ∈ B i-1,j,k-1 ∪ B i,j,k-1 for any z i ∈ N (x) (1 ≤ i ≤ 3). Furthermore, we have

which contradicts to the condition (7.1).

Case 4. y ∈ B i,j-1,k-1 or y ∈ B i-1,j-1,k or y ∈ B i-1,j,k-1 or y ∈ B i,j+1,k+1 or y ∈ B i+1,j+1,k or y ∈ B i+1,j,k+1 .