
HAL Id: hal-04242338
https://hal.science/hal-04242338

Submitted on 14 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Perpetual maintenance of machines with different
urgency requirements

Leszek Gąsieniec, Tomasz Jurdziński, Ralf Klasing, Christos Levcopoulos,
Andrzej Lingas, Jie Min, Tomasz Radzik

To cite this version:
Leszek Gąsieniec, Tomasz Jurdziński, Ralf Klasing, Christos Levcopoulos, Andrzej Lingas, et al..
Perpetual maintenance of machines with different urgency requirements. Journal of Computer and
System Sciences, 2024, 139, pp.103476. �10.1016/j.jcss.2023.103476�. �hal-04242338�

https://hal.science/hal-04242338
https://hal.archives-ouvertes.fr

Perpetual maintenance of machines with different
urgency requirements?

Leszek Gąsieniec1, Tomasz Jurdziński2, Ralf Klasing3, Christos Levcopoulos4
Andrzej Lingas4, Jie Min1, and Tomasz Radzik5

1 Department of Computer Science, University of Liverpool, Liverpool, UK,
{l.a.gasieniec, J.Min2}@liverpool.ac.uk.

2 Institute of Computer Science, University of Wrocław, Poland,
tju@cs.uni.wroc.pl.

3 CNRS, LaBRI, Université de Bordeaux, France, ralf.klasing@labri.fr.
4 Department of Computer Science, Lund University, Lund, Sweden,

{christos.levcopoulos, andrzej.lingas}@cs.lth.se.
5 Department of Informatics, King’s College London, London, UK,

tomasz.radzik@kcl.ac.uk.

Abstract. A garden G is populated by n ≥ 1 bamboos b1, b2, ..., bn with
the respective daily growth rates h1 ≥ h2 ≥ · · · ≥ hn. It is assumed that
the initial heights of bamboos are zero. The robotic gardener maintain-
ing the garden regularly attends bamboos and trims them to height zero
according to some schedule. The Bamboo Garden Trimming Problem
(BGT) is to design a perpetual schedule of cuts to maintain the eleva-
tion of the bamboo garden as low as possible. The bamboo garden is a
metaphor for a collection of machines which have to be serviced, with
different frequencies, by a robot which can service only one machine at a
time. The objective is to design a perpetual schedule of servicing which
minimizes the maximum (weighted) waiting time for servicing.

We consider two variants of BGT. In discrete BGT the robot trims only
one bamboo at the end of each day. In continuous BGT the bamboos
can be cut at any time, however, the robot needs time to move from one
bamboo to the next.

? L. Gąsieniec and J. Min’s work was partially supported by Network Sciences and
Technologies (NeST) at University of Liverpool. This study has been carried out in
the frame of “the Investments for the future” Programme IdEx Bordeaux – SysNum
(ANR-10-IDEX-03-02). R. Klasing’s research was partially supported by the ANR
project TEMPOGRAL (ANR-22-CE48-0001). C. Levcopoulos and A. Lingas work
were supported by the Swedish Research Council grants 621-2017-03750 and 2018-
04001. T. Radzik’s work was supported in part by EPSRC grant EP/M005038/1,
“Randomized algorithms for computer networks.” Part of this work was done while
T. Radzik was visiting the LaBRI as a guest professor of the University of Bordeaux.
T. Jurdzinski’s work was supported by the Polish National Science Centre project
no. 2020/39/B/ST6/03288. Preliminary versions of some of the results presented in
this paper appeared in Proc. 43rd International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2017), LNCS 10139, pp. 229–
240, Springer (2017) [25].

2 L. Gąsieniec et al.

For discrete BGT, we show tighter approximation algorithms for the case
when the growth rates are balanced and for the general case. The former
algorithm settles one of the conjectures about the Pinwheel problem. The
general approximation algorithm improves on the previous best approxi-
mation ratio. For continuous BGT, we propose approximation algorithms
which achieve approximation ratios O(logdh1/hne) and O(logn).

Key Words: Bamboo Garden Trimming problem, BGT problem, Per-
petual scheduling, Periodic maintenance, Pinwheel scheduling, Approxi-
mation algorithms, Patrolling

1 Introduction

We consider a perpetual scheduling problem in which n ≥ 2 (possibly virtual)
machines need to be attended (serviced) with known but possibly different fre-
quencies, i.e. some machines need to be attended more often than others. The
frequencies of attending individual machines are specified as positive weights
h1, h2, . . . , hn and the objective is to design a perpetual schedule of attending
the machines which minimizes the maximum weighted time any individual ma-
chine waits for the next service. Since a higher weight hi (comparing with other
weights) means that machine i should be attended relatively more frequently,
we refer to the weights also as urgency factors. The same optimization prob-
lem arises when a data stream keeps filling a collection of n buffers according
to a known distribution: buffer i receives hi units of data in each unit of time.
The objective is to design a perpetual schedule of emptying the buffers which
minimizes the maximum occupancy of any individual buffer.

We model such perpetual scheduling problems using the following metaphor
of the Bamboo Garden Trimming (BGT) Problem. A collection (garden) of n ≥ 2
bamboos b1, b2, . . . , bn with known respective daily growth rates h1, h2, . . . , hn.
We assume that these growth rates are already arranged into a non-increasing
sequence: h1 ≥ h2 ≥ · · · ≥ hn > 0. Initially the height of each bamboo is set to
zero. The robotic gardener maintaining the garden trims bamboos to height zero
according to some schedule. The height of a bamboo bi at time t ≥ 0 is equal to
(t− t′)hi, where t′ is the last time when this bamboo was trimmed, or t′ = 0, if
it has never been trimmed by time t. The main task of the BGT problem is to
design a perpetual schedule of cuts to keep the highest bamboo in the garden as
low as possible, while complying with some specified constraints on the timing
of cutting. The basic constraints considered in this paper are that the gardener
can cut only one (arbitrary) bamboo at the end of each day and is not allowed
to attend the garden at any other times. Once the gardener has decided which
bamboo to trim in the current round (at the end of the current day), then the
action of actual trimming is instantaneous.

Referring back to the two scheduling problems mentioned earlier, the heights
of the growing bamboos would represent the weighted times the machines wait
for the next service, or the current occupancy of the data buffers. The action of
cutting a bamboo bi at the end of the current day represents attending machine

Perpetual maintenance schedules 3

i or emptying buffer i in the current time slot. Other problems which can be
modeled by BGT include the perpetual testing of virtual machines in cloud
systems [1]. In such systems frequency in which virtual machines are tested for
undesirable symptoms vary depending on the importance of dedicated cloud
operational mechanisms.

We consider two variants of the BGT problem. The constraint that only
one bamboo is cut at the end of each day (round) defines discrete BGT. The
gardener has equal access to all bamboos, so can select in each round any bamboo
for cutting. In the second variant, continuous BGT, we assume that for any two
bamboos bi and bj , we know the time ti,j > 0 (which may be fractional) that
the robot needs to relocate from bi to bj . In this variant the time when the
next bamboo is trimmed depends on how far that bamboo is from the bamboo
which has just been trimmed. As in discrete BGT, when the robot arrives at
the bamboo to trim it, the actual action of trimming is instantaneous. In this
paper we consider symmetric travel times (that is, ti,j = tj,i) and assume that
the robot travels always along the fastest route, so the travel times satisfy the
triangle inequality. We also assume that the robot is initially at the location of
b1. Discrete BGT is the special case of continuous BGT when all travel times
ti,j , for i 6= j, are the same, while metric TSP is the special case of continuous
BGT when all growth rates hi are the same.

In both discrete and continuous cases, we consider algorithms A which for
an input instance I of the form (hi : 1 ≤ i ≤ n) in the discrete case and
[(hi : 1 ≤ i ≤ n), (ti,j : 1 ≤ i, j ≤ n)] in the continuous case, produce a perpetual
(trimming) schedule A(I) as a sequence of indices of bamboos (i1, i2, . . .) which
defines the order in which the bamboos are trimmed. We are mainly interested
in the approximation ratios of such algorithms, which are defined in the usual
way. For an input instance I and a trimming schedule S for I, let MH(S) denote
the supremum of the heights of bamboos over all times t ≥ 0 when the trimming
proceeds according to schedule S, and let OPT(I) denote the infimum of MH(S)
over all schedules S for I. The approximation ratio of a schedule S is defined as
MH(S)/OPT(I) and the approximation ratio of an algorithm A is the supremum
of MH(A(I))/OPT(I) over all input instances I.

Regarding the time complexity of BGT algorithms, we aim at polynomial
preprocessing time followed by computation of the consecutive indices of the
schedule in poly-logarithmic time per one index. We will call algorithms with
such performance simply polynomial-time (BGT) algorithms. The computa-
tional complexity of continuous BGT is related to the complexity of TSP, as
the latter is a special case of the former. To discuss computational complexity
of discrete BGT, we introduce first a lower bound on the height of schedules.

For each instance I of discrete BGT with the sum of the growth rates H =
H(I) = h1 + h2 + · · ·+ hn, a simple and natural lower bound on the maximum
height of a bamboo in any schedule is OPT(I) ≥ H. Indeed, while the heights
of all bamboos are at most H ′ < H, then during each day the total height of
all bamboos, that is, the sum of the current heights of all bamboos, increases
at least by H − H ′ > 0 (the total growth over all bamboos is H but only

4 L. Gąsieniec et al.

one bamboo, of height at most H ′, is cut). Thus on some day within the first
bnH ′/(H −H ′)c+ 1 days the total height of the bamboos must exceed nH ′, so
the height of one of the bamboos must exceed H ′. Observe also that it cannot
happen that the maximum height of a bamboo approaches H but never reaches
H, because there are only finitely many possible heights of bamboos which are
less than H.

There are instances with OPT(I) = H. The obvious one is the uni-
form instance hi ≡ H/n. A non-uniform example is the input instance I =
(1/2, 1/4, 1/4), where all bamboos are kept within theH = 1 height by the sched-
ule with period (b1, b2, b1, b3). An example of an input instance withOPT(I) > H
is I = (7/15, 1/3, 1/5), for whichH = 1 but OPT(I) = 4/3. For this instance, the
schedule with period (b1, b2, b1, b2, b1, b3) does not let any bamboo grow above
the height 4/3. On the other hand, a schedule which keeps the heights of b1
and b2 strictly lower than 4/3 must cut b1 every other day, implying that b2
must also be cut every other day (after the initial couple of days). Thus, after
the initial couple of days, there are no further days available to cut b3, so its
height grows to infinity. If we have only two bamboos and their growth rates are
h1 = 1 − ε, and h2 = ε, for any 0 < ε ≤ 1/2, then OPT(I) = 2(1 − ε), so can
be arbitrarily close to 2. We note here that for any instance I, OPT(I) ≤ 2H(I)
(this is explained in Section 4.1).

The context and previous related research

Our paper focuses on perpetual maintenance of a given environment where each
vital element has its own, possibly unique urgency factor. This makes it related
to periodic scheduling [38], a series of papers on the Pinwheel problems [13, 14,
26] including the periodic Pinwheel problem [27, 35] and the Pinwheel scheduling
problem [37], as well as the concept of P-fairness in sharing multiple copies of
some resource among various tasks [5, 6].

The Pinwheel problem introduced in [26] can be viewed as a special case of
discrete BGT. The complexity results for the Pinwheel problem presented in [26]
imply that for a given K ≥ H, if there is a schedule with height at most K,
then there is a cyclic schedule with height at most K, but the shortest such
schedule can have exponential length.1 This implies that the decision version of
discrete BGT can be solved by considering all cyclic schedules of up to exponen-
tial length, and this can be implemented in PSPACE. Further from [26], while
the cyclic schedules of height H can also have exponential length, they have con-
cise polynomial-size representations, and there is a polynomial-time algorithm
for checking if a given concise representation of a cyclic schedule of height H
is valid. This implies that the restricted decision version of discrete BGT which
asks if there is a schedule of height H is in NP. Jacobs and Longo [28] show
that there is no pseudopolynomial time algorithm solving the Pinwheel problem
unless SAT has an exact algorithm running in expected time nO(logn log logn) and
1 Exponential in the size of the input, assuming that the growth rates are rational
numbers given as pairs of integers.

Perpetual maintenance schedules 5

consider the complexity of related problems. However, the exact complexity of
the Pinwheel problem remains a long-standing open question.

In related research on minimizing the maximum occupancy of a buffer in
a system of n buffers, the usual setting is a game between the player and the
adversary [8, 11, 16]. The adversary decides how the fixed total increase of data in
each round is distributed among the buffers and tries to maximize the maximum
occupancy of a buffer. The player decides which buffer (or buffers, depending on
the variant of the problem) should be emptied next and tries to minimize the
maximum buffer size. The upper bounds developed in this more general context
can be translated into upper bounds for our BGT problems, but our aim is to
derive tighter bounds for the case when the rates of growth of the occupancy
of buffers, or the rates of growth of bamboos in our terminology, are fixed and
known. Similar models, under the name of “cup (emptying) games”, have been
considered, with recent papers including [7, 9, 32–34].

The continuous BGT problem is a natural extension of several classical algo-
rithmic problems with the focus on monitoring and mobility, including the Art
Gallery Problem [15] and its dynamic extension called the k-Watchmen Prob-
lem [39]. In a more recent work on fence patrolling [18, 19, 30] the studies focus on
monitoring vital (possibly disconnected) parts of a linear environment where each
point is expected to be attended with the same frequency. Czyzowicz et al. [20]
study monitoring linear environments by robots prone to faults. Problems sim-
ilar to continuous BGT are considered also by Baller et al. [4], who focus on
special cases (special metric spaces) to investigate the boundary between easy
(that is, polynomial) and hard cases, and by Bosman et al. [12], who minimize
the travel cost subject to the feasibility requirement of maintaining the specified
minimum frequencies of visiting bamboos.

Probably the most natural strategy to keep the elevation of the bamboo gar-
den low is the greedy approach of always moving next to the currently highest
bamboo and cutting it. This approach, called Reduce-Max, is particularly ap-
pealing in the context of discrete BGT, where there are no travel times to be
accounted for. Reduce-Max was considered recently in the context of periodic
testing of virtual machines in cloud systems [1], and was also studied in the
adversarial setting of the buffer minimization problems mentioned above. The
results presented in [11] imply a tight upper bound ofH ·(Hn−1+1) = Θ(H log n)
on MH(S) for schedules S produced by Reduce-Max for a variant of the discrete
BGT with the adversary which in each round arbitrarily distributes the total
daily growth of H among the bamboos. Here Hk =

∑k
i=1

1
k = Θ(log k) is the k-

th harmonic number. While this O(H log n) upper bound applies obviously also
to our non-adversarial discrete BGT, when the growth rates are fixed, it was a
long standing open question whether there were instances for which Reduce-Max
lets some bamboos grow to heights Ω(H log n), or even to heights ω(H). The ex-
perimental work presented in [1] pointed towards a conjecture that Reduce-Max
keeps the maximum bamboo height within O(H), and the question has been fi-
nally recently answered in Bilò et al. [10], where a bound of 9H on the maximum
bamboo height under the Reduce-Max algorithm was proven. Kuszmaul [31] has

6 L. Gąsieniec et al.

recently shown that the maximum height of a bamboo under the Reduce-Max
cutting strategy is at most 4H.

As mentioned above, there are instances for which the optimal maximum
height can be arbitrarily close to 2H (see also Bilò et al. [10] and Kuszmaul [31]).
This, however, does not imply a lower bound greater than 1 on the approximation
ratio of any algorithm (which is defined with respect to the optimum rather than
the lower bound H). We note that the input instance I = (3/8 − ε, 1/4, 1/4),
where 0 < ε < 1/24 can be arbitrarily small, shows that the approximation ratio
of Reduce-Max cannot be less than 9/8. For this instance, OPT(I) = 1 (for ε <
1/24) with the optimal schedule repeating (b1, b2, b1, b3), but the Reduce-Max
schedule is (b1, b2, b3, b1, . . .), with the first bamboo reaching the height 9/8−3ε.
In Section 2 we show that the approximation ratio of Reduce-Max is not less
than 12/7.

In [25], which included preliminary versions of some of the results presented
in this paper, we introduced a modification of Reduce-Max, which we called
Reduce-Fastest, to show the first simple greedy algorithm achieving constant
approximation ratio. Reduce-Fastest(x), where x > 0 is a parameter of the
algorithm, works in the following way. Keep track of the “tall” bamboos, de-
fined as having the current height at least x · H, and cut in each step the
tall bamboo with the highest growth rate (no cutting, if there is no tall bam-
boo). In [25], we presented a detailed proof that the approximation ratio of
Reduce-Fastest(2) is at most 4. D’Emidio et al. [23] conducted an extensive
experimental evaluation of various BGT strategies, which led them to conjec-
ture that Reduce-Max, Reduce-Fastest(2), and Reduce-Fastest(1) keep the max-
imum height of a bamboo within 2H, 3H, and 2H, respectively. Subsequently,
Bilò et al. [10] proved that for x = 1 + 1/

√
5 ≈ 1.45, the maximum bamboo

height under the Reduce-Fastest(x) strategy is not greater than an approxima-
tion ratio of (3 +

√
5)/2 ≈ 2.62. They also presented efficient implementations

of Reduce-Fastest and Reduce-Max.

Kuszmaul [31] has recently shown that for any x ≥ 2, the strategy
Reduce-Fastest(x) keeps all bamboos strictly below (x + 1) · H, proving this
way the conjecture from [23] that Reduce-Fastest(2) keeps the bamboos below
3H. For a lower bound, Kuszmaul [31] has shown that whatever the value of
parameter x is, Reduce-Fastest(x) does not give a bound better than (2.01) ·H,
disproving the conjecture from [23] that Reduce-Fastest(1) keeps bamboos below
2H. The lower bound of (2.01) · H together with the bound OPT(I) ≤ 2H(I)
imply that the approximation ratio of Reduce-Fastest is at least 2.01/2 = 1.005.
In Section 2, we give examples showing better lower bounds on the approxima-
tion ratio of Reduce-Fastest. Bilò et al. [10] and Kuszmaul [31] consider algo-
rithms which guarantee the 2H bound on the maximum bamboo height (the
best possible bound with respect to H), the former focusing on resource-efficient
algorithms and the latter on simplicity of computation. These algorithms there-
fore have approximation ratios at most 2, but it is not known if those ratios are
strictly less than 2.

Perpetual maintenance schedules 7

We refer informally to BGT algorithms like Reduce-Max and Reduce-Fastest
as online scheduling. These algorithms are based on simple greedy strategies, the
trimming schedule is revealed while the cutting progresses, and the whole cutting
process would naturally adapt to changing growth rates. An alternative offline
scheduling pre-computes the whole (cyclic) schedule. This approach would sac-
rifice the flexibility offered by simple greedy strategies but hopefully would give
better approximation ratios. Indeed, using the Pinwheel results given in [26], one
can easily obtain an offline algorithm A which guarantees MH(A(I)) ≤ 2H(I)
for each input I, so a 2-approximation algorithm for discrete BGT. An efficient
implementation of this algorithm was developed in [10]. Recently, [40] has shown
an offline scheduling algorithm, also based on Pinwheel results, which guaran-
tees 12/7-approximation – the best approximation ratio for the general problem
shown prior to our paper. We emphasise that our online/offline categorisation of
scheduling algorithms is informal, and does not refer to the availability of input
(in both cases the whole input is known in advance) but only indicates the general
nature of algorithms. Similarly, to distinguish algorithms like Reduce-Max and
Reduce-Fastest from more complex approaches, Kuszmaul [31] refers informally
to this type of algorithms as simple algorithms.

The optimisation objective in our work, and in the related work discussed
above, is minimizing the maximum (weighted) waiting time (the maximum
height of a bamboo). Anily et al. [2, 3] consider perpetual scheduling of ser-
vicing machines with the objective of minimizing the average (weighted) time
of waiting for maintenance (using different but equivalent terminology of ’lin-
early increasing operational costs’). They show that there is always an optimal
schedule which is cyclic and propose and evaluate various strategies of comput-
ing schedules for the general case of n machines [2] and for the special case of 3
machines [3].

Structure of the paper and our contributions

In Sections 2 to 5, we consider the discrete BGT. In Section 2, we derive some
lower bounds on the approximation ratios of the simple strategies Reduce-Max
and Reduce-Fastest. In Section 3, we elaborate on the Pinwheel problem and its
relation to discrete BGT, laying foundations for our main results. In Section 4,
we present our main approximation algorithm for discrete BGT, which is an
offline algorithm derived by further exploration of the relation between discrete
BGT and the Pinwheel problem and has approximation ratio (1 +O(

√
h1/H)).

The benefits of the relation between the discrete BGT and Pinwheel problems
extend both ways. On the one hand, our approximation algorithm uses properties
of the Pinwheel problem. On the other hand, the approximation ratio which we
achieve settles one of the conjectures about the Pinwheel problem as explained
in Section 3.

In Section 5, we turn our attention to general approximation bounds. As
mentioned earlier, the best previous general bound is 12/7 given in [40]. We show
an algorithm with approximation ratio 8/5 + o(1) < 12/7. This improvement is
based on a new approach of splitting the growth rates into two groups of large

8 L. Gąsieniec et al.

and small rates, computing good schedules separately for each group, and then
merging these two schedules into one schedule for all rates. The algorithm uses
the (1 + O(

√
h1/H))-approximation algorithm to compute a schedule for the

group of small rates.
In Section 6, we show algorithms for continuous BGT with approximation

ratios O(logdh1/hne) and O(log n).2 We also discuss how tight these approx-
imation ratios are. We show instances of continuous BGT such that for any
schedule the maximum bamboo height is greater by a Θ(log n) factor than the
lower bounds which we use in the analysis of approximation ratios. Thus for
these input instances our O(log n)-approximation algorithm computes in fact
schedules with constant approximation ratios. We also show instances for which
this algorithm computes Θ(log n)-approximate schedules.

2 Approximation ratio of simple strategies

In Section 1, we presented the previous work on the simple strategies
Reduce-Max and Reduce-Fastest, which focused on analysing the maximum
height of any bamboo in relation to the sum of the growth rates H. The value H
is, however, only a lower bound on the optimum, so the bounds in relation to H
do not necessarily give good bounds on the approximation ratios, which refer to
the optimal values. Recall that there are BGT instances for which the optimal
(minimal) height is arbitrarily close to 2H. In this section, we show some lower
bounds on the approximation ratios of these two strategies.

Approximation ratio of Reduce-Max.
We show that the approximation ratio of Reduce-Max is not less than 12/7

by considering the following BGT instances. Let i = 7k + 3, for any integer
k ≥ 1. We have a sequence of i + 1 = 7k + 4 growth rates partitioned into two
groups. In group 1, we have only the largest growth rate h1 = 3k

i = 3/7 − 9
7i ,

while the remaining i growth rates belong to group 2 and are all equal to 1
2i . It

is easy to see that the optimal (minimal) height for these instances is at most 1:
schedule b1 every other time slot and the other bamboos in the remaining slots
in the round-robin manner.

We now look at the computation of Reduce-Max on this sequence of growths
and consider three initial stages defined as follows.

– Stage 1: all bamboos in group 2 are smaller than h1, so b1 is cut during each
round.

– Stage 2: all bamboos in group 2 are smaller than 2h1, but some of them
are taller than h1, implying that b1 is cut in every other round, whenever it
reaches height 2h1.

– Stage 3: all bamboos in group 2 are smaller than 3h1, but some of them are
taller than 2h1, implying that b1 is cut in every third round, whenever it
reaches height 3h1.

2 As Metric TSP is a subproblem of continuous BGT, it is NP-hard to approximate
continuous BGT with a factor better than 123/122 [29].

Perpetual maintenance schedules 9

The main idea is to show not only that Stage 3 is not empty, but also that at
the end of Stage 3, there are still 3 bamboos in group 2 which have never been
cut. Such bamboos are taller than 3h1, so b1 is not cut for 3 consecutive rounds,
growing to the height 4h1.

In Stage 1 no bamboos from group 2 are cut, and they all grow to height h1,
at the end of Stage 2, some bamboos from group 2 grow to height 2h1, and at
the end of Stage 3 some bamboos from group 2 grow to height 3h1. As in Stage 2
and Stage 3 some bamboos from group 2 are cut, we need to show that we have
enough bamboos in this group for some of them not to be cut in either of the
three stages.

For each Stage j, j = 1, 2, 3, there is a bamboo in group 2 which adds h1
to its height (growing from (j − 1)h1 to jh1), so there are h1/ 1

2i = h1 · 2i = 6k
rounds in every stage. Thus 3k bamboos from group 2 are cut in Stage 2 (one
group-2 bamboo cut in every other round in this stage), and 4k bamboos from
group 2 are cut in Stage 3 (two of them are cut in each sequence of 3 consecutive
rounds in this stage). Thus, after all three stages, at most 7k different bamboos
from group 2 will be cut altogether. Hence, at least 3 bamboos from group 2 will
not be cut in either of the three stages. 3 of these bamboos will be cut in the
next 3 rounds. Therefore, bamboo b1 will grow to height 4h1 = 12/7− o(1).

While Reduce-Max pushes the maximum bamboo height close to 12/7 for our
BGT instances, this may be happening only in the initial period of the schedule.
However, it is easy to see that in these instances b1 will have to keep growing to
the height of 3h1, even in the long run. Otherwise, after some round t, the height
of each bamboo would never go above 2h1 + o(1) < H, which is not sustainable.
Thus, denoting by mt the maximum height of any bamboo at any round after
round t, our input instances show that we can get mt ≥ 9/7− ε, for arbitrarily
small ε > 0.

Approximation ratio of Reduce-Fastest.
For 0 < x < 1, the input instance I = (x, ε), where 0 < ε < min{x, 1 − x},

shows that the approximation ratio of Reduce-Fastest(x) is unbounded, as noted
in Kuszmaul [31]. For this instance, OPT(I) = 2x with the optimal schedule
repeating (b1, b2), but the Reduce-Fastest(x) schedule never cuts bamboo b2,
hence the height of bamboo b2 grows to infinity.

For 1 ≤ x < 2, the input instance I = (x/2− ε, ε), where 0 < ε < x/2, shows
that the approximation ratio of Reduce-Fastest(x) cannot be less than 3/2. For
this instance, OPT(I) = x − 2ε with the optimal schedule repeating (b1, b2),
but the Reduce-Fastest(x) schedule only cuts bamboo b1 every 3 rounds, hence
bamboo b1 reaches the height 3x/2− 3ε.

For the parameter x ≥ 2, the input instance I = (1−ε, ε), where 0 < ε < 1/2,
shows that the approximation ratio of Reduce-Fastest(x) cannot be less than 3/2.
For this instance, OPT(I) = 2− 2ε with the optimal schedule repeating (b1, b2),
but the Reduce-Fastest(x) schedule only cuts bamboo b1 at most every 3 rounds,
hence bamboo b1 reaches at least the height 3− 3ε.

10 L. Gąsieniec et al.

3 Discrete BGT problem and Pinwheel

The input of the Pinwheel problem is a sequence V = 〈f1, f2, . . . , fn〉 of integers
2 ≤ f1 ≤ f2 ≤ . . . ≤ fn called (pinwheel) frequencies. The objective is to specify
an infinite sequence S of indices drawn from the set 1, 2, . . . , n such that for
each index i, any sub-sequence of fi consecutive elements in S includes at least
one index i, or to establish that such a sequence does not exists. A sequence
S with this property is called a schedule of V , and if such a sequence does not
exist, then we say that the sequence of frequencies V is not feasible or that it
cannot be scheduled. The Pinwheel problem is a special case of discrete BGT: an
input instance 〈f1, f2, . . . , fn〉 of Pinwheel is feasible if, and only if, the optimal
(minimum) height for the input instance (1/f1, 1/f2, . . . , 1/fn) of discrete BGT
is at most 1.

The Pinwheel problem was introduced in [26], where some complexity results
were presented and some classes of feasible sequences of frequencies were estab-
lished. It is easy to see that it is not possible to schedule any instance V whose
density D(V) ≡

∑n
i=1 1/fi is greater than 1, since in any feasible schedule each

frequency fi takes at least 1/fi fraction of the slots.3 (This upper bound of 1 on
the density of a feasible instance of the Pinwheel problem is a special case of the
lower bound of H on the maximum height for an instance of discrete BGT.) The
sequence of frequencies (2, 4, 4) is an example of a feasible instance of the Pin-
wheel problem with density 1. On the other hand, the input instances (2, 3,M),
where M is an arbitrarily large integer, show that there are instances with den-
sities arbitrarily close to 5/6 which are not feasible. One of the conjectures for
the Pinwheel problem, which remains open, is that 5/6 is the universal threshold
guaranteeing feasibility of input instances. That is, it has been conjectured (ever
since the pinwheel problem was introduced) that any instance with density at
most 5/6 can be scheduled. The current best proven bound is 3/4 [24].

Our work is related to another conjecture for the Pinwheel problem, made
by Chan and Chin [13], that when the first frequency f1 keeps increasing, then
the density threshold guaranteeing feasibility keeps increasing to 1. To be more
precise, let V, Vyes ⊆ V and V(f,∆) ⊆ V denote the set of all instances V of
the Pinwheel problem with density D(V) ≤ 1, the set of all feasible instances
and the set of instances with f1 = f and density D(V) ≤ ∆, respectively.
Define d(f) ≡ sup{∆ : V(f,∆) ⊆ Vyes} as the density threshold guaranteeing
feasibility of instances with the first frequency equal to f . That is, each input
instance (f1 = f, f2, f3, . . .) with density less than d(f) is feasible, while for each
ε > 0, there is an infeasible instance with density less than d(f) + ε. Chan and
Chin [13, 14] conjecture that limf→∞ d(f) = 1, consider a number of heuristics
for the Pinwheel problem (referred to as schedulers) and analyze the guarantee
density threshold

dA(f) ≡ sup{D : heuristic A schedules each instance in V(f,D)}
3 More precisely, in each prefix of length T − fn of a feasible schedule, where T is
arbitrarily large, each frequency fi must take at least (1/fi)(T − fi) slots, implying∑n

i=1 1/fi ≤ 1.

Perpetual maintenance schedules 11

for each considered heuristic A. They derive lower bounds `A(f) on the values
dA(f), but for each of their lower bounds, limf→∞ `A(f) is strictly less than 1,
which leaves possibility that limf→∞ dA(f) is also strictly less than 1.4 Thus [13,
14] left open the question of designing an algorithm A for which limf→∞ dA(f) =
1, and there have not been other results in this direction prior to our work. Such
an algorithm would immediately imply that limf→∞ d(f) = 1.

Our (1 + O(
√
h1/H))-approximate polynomial-time algorithm for discrete

BGT applied to input instances (1/f1, 1/f2, . . . , 1/fn) is a polynomial-time
scheduler for Pinwheel input instances 〈f1, f2, . . . , fn〉 with the guarantee den-
sity threshold 1−O(

√
1/f1). This threshold tends to 1 with increasing f1, prov-

ing the conjecture that limf→∞ d(f) = 1. To see that this Pinwheel sched-
uler has indeed the guarantee density threshold 1 − O(

√
1/f1), let c > 0 be

a constant such that the approximation ratio of our algorithm for discrete
BGT is at most 1 + c

√
h1/H. If the density D(V) of a Pinwheel instance

V = 〈f1, f2, . . . , fn〉 is at most 1 − c/
√
f1, then the BGT schedule computed

for the input (1/f1, 1/f2, . . . , 1/fn) does not let the height of any bamboo go
above (note that here H = D(V) < 1):

D(V)
(

(1 + c
√

(1/f1)/D(V)
)

= D(V) + c
√
D(V)/f1

≤ 1− c/
√
f1 + c

√
D(V)/f1 ≤ 1.

Thus the computed schedule is a feasible schedule for the Pinwheel instance.

4 Discrete BGT by offline scheduling

In this section we focus on offline scheduling which permits tighter approxima-
tion than the approximation of online algorithms discussed in Section 2. These
results are achieved by exploring the relationship between BGT and the Pin-
wheel scheduling problem. Some known facts about Pinwheel scheduling give
immediately a 2-approximation BGT algorithm. Our main result in this sec-
tion is a (1 +O(

√
h1/H))-approximation algorithm. One of the consequences of

this approximation algorithm is that it settles the conjecture made for the Pin-
wheel problem that if the first (smallest) frequency keeps increasing, the density
threshold which guarantees feasibility increases to 1 (cf. Section 3).

4.1 Reducing discrete BGT to Pinwheel scheduling

We use the notation for the Pinwheel problem introduced in Section 3. Each
feasible input sequence of frequencies f1 ≤ f2 ≤ · · · ≤ fn has the density D =∑n

i=1 1/fi at most one. We also know that any instance with density at most 3/4
is feasible [24], and it is conjectured that any instance with density at most 5/6

4 Chan and Chin [13, 14] showed that for some algorithms which they considered
limf→∞ dA(f) is actually strictly less than 1. For the other algorithms, they left
unanswered the question whether limf→∞ dA(f) = 1.

12 L. Gąsieniec et al.

is feasible. To see the relationship between the BGT and the Pinwheel problem,
define for a BGT input instance I = (h1 ≥ h2 ≥ · · · ≥ hn > 0) the sequence
of frequencies f ′i = H/hi, i = 1, 2, . . . , n. This sequence is a pseudo-instance
〈f ′1, f ′2, . . . , f ′n〉 of Pinwheel (pseudo, since these frequencies are rational numbers
rather than integers) with density:

D′ =

n∑
i=1

1

f ′i
=

n∑
i=1

hi
H

= 1.

We multiply the frequencies f ′i by 1 + δ to obtain another pseudo-instance f ′′i =
f ′i(1 + δ), i = 1, 2, . . . , n, with the density reduced to 1/(1 + δ) < 1, where
δ > 0 is a suitable parameter. Finally, we obtain a (proper) instance V (I, δ) =
〈f1, f2, . . . , fn〉 of the Pinwheel problem by reducing each frequency f ′′i to an
integer fi ≤ f ′′i . We require that the integer frequencies fi are not greater than
the rational frequencies f ′′i , but we do not specify at this point their exact values,
leaving this to concrete algorithms. Reducing frequencies f ′′i to fi increases the
density of the sequence. The room for this increase of the density was made by
the initial decrease of the density to 1/(1 + δ).

Lemma 1. If I is an instance of BGT, δ > 0 and an instance V (I, δ) of the
Pinwheel problem is feasible, then a feasible schedule for this Pinwheel instance
V (I, δ) is a (1 + δ)-approximation schedule for the BGT instance I.

Proof. In a feasible schedule for V (I, δ), two consecutive occurrences of an index
i are at most fi ≤ H(1 + δ)/hi slots apart. This means that if this schedule
is used for the BGT instance I, then the height of bi is never greater than
hi · fi ≤ H(1 + δ). 2

In view of Lemma 1, the goal is to get a feasible instance V (I, δ) of Pinwheel
for as small value of δ as possible. We also want to be able to compute efficiently a
feasible schedule for V (I, δ), if one exists. By decreasing the rational frequencies
f ′′i to integer frequencies fi, we increase the density of the Pinwheel instance,
making it possibly harder to schedule. Thus we should aim at decreasing the
frequencies f ′′i only as much as necessary. However, simply rounding down the
frequencies f ′′i to the nearest integers might not be the best way since the integer
frequencies obtained that way might not be sufficiently “regular” to imply a
feasible schedule.

A 2-approximation algorithm. To give a simple illustration how Lemma 1
can be used, we refer to the result from [26] which says that any instance of
Pinwheel with frequencies being powers of 2 and the density at most 1 can be
scheduled and a feasible schedule can be easily computed. For an instance I of
BGT, we take the instance V (I, 1) where the frequencies f ′′i are rounded down
to the powers of 2. Multiplying first the frequencies by 2 decreases the density to
1/2. The subsequent rounding down to the powers of 2 decreases each frequency
less than by half, so the density of the instance increases less than twice. Thus the

Perpetual maintenance schedules 13

final instance V (I, 1) of Pinwheel has the density less than 1 and all frequencies
are powers of 2, so it can be scheduled and, by Lemma 1, its feasible schedule is
a 2-approximate schedule for the original BGT instance I. In fact, this approach
shows that OPT(I) ≤ 2H(I) for any BGT instance I.

It was shown in [24] that every instance of Pinwheel with density not greater
than 3/4 is feasible and, tracing the proof given in [24], one can obtain an efficient
scheduling algorithm for such instances. For a BTG instance I, the Pinwheel
instance V (I, δ) = 〈f1, f2, . . . , fn〉, where δ = 1/3+h1/H and fi = b(1+δ)H/hic
has density less than 3/4 since

1

fi
<

1

(1 + δ)H/hi − 1
=

hi
H
· 1

1 + δ − hi/H
≤ hi

H
· 1

1 + δ − h1/H
=

3

4
· hi
H
.

Thus Lemma 1 and Pinwheel schedules for instances with density at most 3/4
give the following lemma.

Lemma 2. There is a polynomial-time (4/3 + h1/H)-approximate scheduling
algorithm for the BGT problem.

When h1/H decreases to 0, then this approach gives approximation ratios
decreasing to 4/3, improving on the 2-approximation. We are, however, looking
for an algorithm which would compute BGT schedules with approximation ratio
decreasing to 1 when h1/H decreases to 0.

4.2 A (1 + O(
√
h1/H))-approximation algorithm

Our approach to a better BGT approximation is again through powers-of-two
Pinwheel instances, as in the 2-approximation algorithm, but now we derive an
appropriate powers-of-two instance through a process of gradual transforma-
tions. We start with greater granularity of frequencies than powers of two by
reducing the rational frequencies f ′′i = H(1 + δ)/hi to the closest values of the
form 2k(1 + j/C), where k is an integer, C = 2q for some integer q ≥ 0, and j
is an integer in [0, C − 1]. We set the parameter q in such a way that we always
have q ≤ k, so the frequencies 2k(1+j/C) are integral, forming a proper instance
of Pinwheel. The values of q and C are not fixed constants as they depend on
the input. To show that the obtained instance V (I, δ) of Pinwheel is feasible, for
a suitable choice of δ, and to construct a schedule for this instance, we use the
following two observations.

Observation 1. Let V be an instance of Pinwheel which has two equal even
frequencies fi = fj = 2f . If the instance V ′ obtained from V by replacing these
two frequencies with one frequency f is feasible, then so is instance V . Note
that such updates of a sequence of frequencies do not change its density. We
obtain a schedule for V from a schedule for V ′ by replacing the occurrences of
the frequency f alternatingly with the frequencies fi and fj . In our algorithm
we will be replacing pairs of equal frequencies 2k(1 + j/C) with one frequency
2k−1(1 + j/C).

Observation 2. Generalizing the previous observation, let V be an instance of
Pinwheel which has m equal frequencies fi1 = fi2 = · · · = fim = mf , where f is

14 L. Gąsieniec et al.

an integer. If the instance V ′ obtained from V by replacing these m frequencies
with one frequency f is feasible, then so is instance V and a schedule for V
can be easily obtained from a schedule for V ′ (in the schedule for V ′, for each
i ≥ 0 and 1 ≤ q ≤ m, replace the (im + q)-th occurrence of f with fiq). As
before, such updates of a sequence of frequencies do not change its density. In
our algorithm we will be combining mj = C + j frequencies 2k(1 + j

C) into one
frequency 2k(1 + j/C)/mj = 2k/C, which will be a power of 2.

We are now ready to describe our algorithm. Step 1 of the algorithm initial-
izes the Pinwheel context by changing the BGT input instance of the rates of
growth (h1, h2, . . . , hn) into a Pinwheel pseudo-instance 〈f ′′1 , f ′′2 , . . . , f ′′n 〉 of ra-
tional frequencies. Step 2 converts this pseudo-instance into a proper Pinwheel
instance 〈f1, f2, . . . , fn〉 of integer frequencies. Steps 3–5 transform this Pinwheel
instance into a powers-of-2 instance 〈g1, g2, . . . , gr〉, r ≤ n. Steps 2–5 are illus-
trated in Figure 1. The final step 6 computes first a schedule for the powers-of-2
instance 〈g1, g2, . . . , gr〉 and then expands it to a schedule for the Pinwheel in-
stance 〈f1, f2, . . . , fn〉, which is returned as the computed schedule for the BGT
input instance.

The Main Algorithm

Input: BGT instance I = (h1 ≥ h2 ≥ · · · ≥ hn).
Output: A (cyclic) perpetual schedule of I specified by pairs (pi, qi), for 1 ≤
i ≤ n. Item bi occurs in the schedule at positions pi + kqi, for k ≥ 0.

1. Set the parameter δ = 3
√
h1/H ≤ 3.

Form a pseudo-instance 〈f ′′1 ≤ f ′′2 ≤ . . . ≤ f ′′n 〉 of Pinwheel, by setting
f ′′i = (1+δ)H/hi. The density of this pseudo-instance is

∑
i 1/f ′′i = 1/(1+δ),

and the setting of the parameter δ implies that f ′′1 ≥ 4, regardless of the
value of h1. Let min ≥ 2 be the largest integer such that 2min ≤ f ′′1 and let
max ≥ min be the smallest integer such that 2max+1 > f ′′n .

2. Reduce each frequency f ′′i to the closest value fi of the form 2k
(
1 + j

C

)
,

where k, C and j are integers such that k ≥ min, C = 2q ≥ 2 for q =
bmin/2c ≥ 1, and 0 ≤ j ≤ C − 1. These conditions imply that the new
frequencies fi are integral. Since the reduction of f ′′i to fi = 2k

(
1 + j

C

)
is

by a factor less than 1 + 1
C , the density of the whole sequence of frequencies

increases at most by a factor of 1 + 1
C , to at most

(
1 + 1

C

)
/(1 + δ).

The sequence 〈f1, f2, . . . , fn〉 is our (proper) instance V (I, δ) of the Pinwheel
problem. The remaining steps compute a schedule of this sequence. Steps 3-5
use Observations 1 and 2, and further reductions of the frequencies if needed,
to transform the sequence 〈f1, f2, . . . , fn〉 to a sequence 〈g1, g2, . . . , gr〉, r ≤ n
where all frequencies gi are powers of 2.

3. We refer to the range [2k, 2k+1) of frequencies as layer k, and to the set of
frequencies of the same value 2k

(
1 + j

C

)
as the group j in layer k.

For k = max,max−1, . . . ,min+1, apply Observation 1 in layer [2k, 2k+1) as
many times as possible to combine pairs of the same frequencies 2k

(
1 + j

C

)
,

Perpetual maintenance schedules 15

Fig. 1. Illustration of the execution of the Main Algorithm. The top half: transforma-
tion of frequencies in layers other than the min layer. The bottom half: transformation
in the min layer and the final powers-of-2 frequencies.

16 L. Gąsieniec et al.

1 ≤ j ≤ C− 1, pushing them down to the lower layer by replacing each such
pair with one frequency 2k−1

(
1 + j

C

)
(see the top half of Figure 1).

On the conclusion of this step, there is at most one frequency 2k
(
1 + j

C

)
,

for each combination of k ∈ [min+ 1,max] and j ∈ [1, C − 1].

4. Apply Observation 2 in the layer [2min, 2min+1) until there are at most
C + j − 1 frequencies 2min

(
1 + j

C

)
left, for any j ∈ [1, C − 1] (see the first

part of the bottom half of Figure 1).
5. For k = max,max − 1, . . . ,min, reduce all remaining frequencies in range

[2k, 2k+1) which are not powers of 2, group by group starting from the top
group defined by j = C − 1, and pushing each frequency down to the next
lower group. While progressing down through the groups, keep applying
Observation 1 whenever possible, if in a layer k ≥ min+1, and Observation 2
in the lowest layer for k = min.
On the conclusion of this step, we have a sequence of frequencies
〈g1, g2, . . . , gr〉, r ≤ n, which are powers of 2, but the density further in-
creases by some value ∆D ≥ 0. Thus the density of this final powers-of-2
instance 〈gi〉 of the Pinwheel problem is at most

(
1 + 1

C

)
/(1 + δ) +∆D. We

will show that the setting of the parameters δ and C imply that this bound
is at most 1, so the Pinwheel sequence 〈gi〉 is feasible.

6. Compute a cyclic schedule for the sequence of frequencies 〈g1, g2, . . . , gr〉
using the algorithm for powers-of-2 Pinwheel instances from [26]. Such a
schedule is specified by pairs (pi, qi), for 1 ≤ i ≤ r, which mean that the
frequency gi is placed in the perpetual schedule of 〈g1, g2, . . . , gr〉 at positions
pi + kqi, for k ≥ 0.
Expand the schedule of 〈g1, g2, . . . , gr〉 to a schedule of 〈f1, f2, . . . , fn〉 by
tracing back the applications of Observations 1 and 2. The schedule of
〈f1, f2, . . . , fn〉 is returned as the computed schedule of the BGT input in-
stance (h1, h2, . . . , hn).

The final step 6 of the algorithm is illustrated by an example given in Figure 2.
In this example, a frequency fj (computed in step 2) was subsequently (in steps
3–5) paired twice with other frequencies by applications of Observation 1 (con-
tributing first to a new frequency fj/2 and then to a new frequency fj/4) and
ended up in a group of 10 equal frequencies fj/4. These 10 frequencies were
replaced with one new frequency gi = fj/40 by an application of Observation 2.
Let the pair (pi, qi) represent the positions of gi in the computed cyclic schedule
of 〈g1, g2, . . . , gr〉: frequency gi is placed at positions pi + kqi, for k ≥ 0.

Expanding the schedule of 〈g1, g2, . . . , gr〉 to the schedule of 〈f1, f2, . . . , fn〉,
every 40-th occurrence of frequency gi is replaced by frequency fj . More precisely,
we first replace every 10-th occurrence of gi with the frequency a = fj/4, starting
from the 4-th occurrence of gi. Then every second occurrence of a is replaced
with y = fj/2, starting from the 2-nd occurrence of a, and finally every other
occurrence of y is replaced with v = fj . Thus frequency fj is placed in the
schedule at positions (pi + 13qi) + k(40qi).

Perpetual maintenance schedules 17

Fig. 2. Illustration of combining frequencies in the Main Algorithm. In steps 3–5 of
the algorithm, frequency fj is paired twice with other frequencies by applications of
Observation 1, creating a frequency fj/4 (node a). The resulting frequency is then put
into a group of 10 frequencies fj/4 and this group is replaced with one new frequency
gi = fj/40 by an application of Observation 2.

Theorem 1. For each BGT input instance, the Main Algorithm computes a
(1 + 3

√
h1/H)-approximation schedule.

Proof. We show that the density of the sequence of frequencies 〈g1, g2, . . . , gr〉
computed in step 5 of the algorithm is at most 1. Since these frequencies are pow-
ers of 2, the sequence 〈g1, g2, . . . , gr〉 is feasible and gives a (1+δ)-approximation
schedule for the initial BGT input instance (Lemma 1).

The density of the Pinwheel pseudo-instance 〈f ′′1 , f ′′2 , . . . , f ′′n 〉 is D′′ = 1/(1 +
δ). To bound the density D of the Pinwheel instance 〈f1, f2, . . . , fn〉, observe
that if fi = 2k (1 + j/C), then fi has been obtained from the rational frequency
f ′′i such that

2k
(

1 +
j

C

)
≤ f ′′i < 2k

(
1 +

j + 1

C

)
.

This means that

fi = 2k
(

1 +
j

C

)
> f ′′i

(
1 +

j

C

)
/

(
1 +

j + 1

C

)
= f ′′i

C + j

C + j + 1
≥ f ′′i

C

C + 1
,

so
D < (1 + 1/C)D′′ = (1 + 1/C)/(1 + δ).

Steps 3 and 4 of the algorithm transform the Pinwheel instance
〈f1, f2, . . . , fn〉 using Observations 1 and 2, but without changing its density.

Step 5 further transforms the sequence of frequencies, increasing the density
of the sequence whenever individual frequencies are reduced. We bound sepa-
rately the increase ∆Dabove of the density when we modify the frequencies in
layers max,max− 1, . . . ,min+ 1, and the increase ∆Dmin of the density when
we modify the frequencies in layer min.

18 L. Gąsieniec et al.

∆Dabove ≤
max∑

k=min+1

C−1∑
j=1

1

2k

(
1

1 + (j − 1)/C
− 1

1 + j/C

)

=

max∑
k=min+1

1

2k

(
1− 1

1 + (C − 1)/C

)
≤ 1

2min
· C − 1

2C − 1
.

∆Dmin ≤
C−1∑
j=1

(C + j − 1)
1

2min

(
1

1 + (j − 1)/C
− 1

1 + j/C

)

=
C

2min
·
C−1∑
j=1

1

C + j
.

Let K = 2min/C2 ∈ {1, 2}. Then the density of the final powers-of-two
Pinwheel instance 〈g1, g2, . . . , gr〉 is at most

D +∆Dabove +∆Dmin

≤ 1 + 1/C

1 + δ
+

1

2min
· C − 1

2C − 1
+

C

2min
·
C−1∑
j=1

1

C + j

=
1 + 1/C

1 + δ
+

1

KC
·

 C − 1

C · (2C − 1)
+

C−1∑
j=1

1

C + j

 (1)

=
1 + 1/C

1 + δ
+

1

KC
·

 1

C
− 1

2C − 1
+

C−1∑
j=1

1

C + j

=

1 + 1/C

1 + δ
+

1

KC
·
2C−2∑
j=C

1

j

≤ 1 + 1/C

1 + δ
+

1

KC
· ln 2 (2)

=
1

1 + δ
+

1

C
·
(

1

1 + δ
+

ln 2

K

)
≤ 1

1 + δ
+

√
2K

3
· δ√

1 + δ
·
(

1

1 + δ
+

ln 2

K

)
(3)

≤ 1. (4)

To get Equality (1), use 2min = KC2. To get Inequality (2), use the known
fact that for the harmonic numbers Hk = 1 + 1/2 + 1/3 + 1/4 + ... + 1/k,
we have Hk = ln k + δk, where (δk) is a sequence of positive numbers strictly

Perpetual maintenance schedules 19

monotonically decreasing. Hence, we have H2k −Hk = ln 2 + δ2k − δk < ln 2. To
get Inequality (3), use

C ·
√

2K =
√

2min+1 >
√
f ′′1 =

√
(1 + δ)

H

h1
=

3
√

1 + δ

δ
.

Inequality (4) follows from the fact that for 0 ≤ δ ≤ 3 and K ∈ {1, 2}, the
function fK(δ) in line (3) is maximized for δ = 0. To see this, substitute γ ≡√
δ + 1 (so for δ increasing from 0 to 3, γ increases from 1 to 2) to obtain

fK(δ)− 1 = fK(γ2 − 1)− 1 =
1

γ2
+

√
2K

3
· (γ2 − 1)

γ
·
(

1

γ2
+

ln 2

K

)
− 1

=
γ2 − 1

3γ3

(√
2 ln 2√
K

γ2 − 3γ +
√

2K

)
. (5)

The quadratic in the parentheses in (5) has two distinct real roots

3±
√

9− 8 ln 2

2
√

2 ln 2/
√
K

.

For both K ∈ {1, 2}, the smaller root rK,1 is less than 1 (r1,1 < r2,1 = 0.823...)
and the larger root rK,2 is greater than 2 (r2,2 > r1,2 = 2.478...). This means
that (5) is equal to 0 for γ = 1 and negative for γ ∈ (1, 2], or equivalently,
fK(δ)− 1 is equal to 0 for δ = 0 and negative for δ ∈ (0, 3]. 2

The discussion in Section 3 and Theorem 1 imply the following corollary.

Corollary 1. For Pinwheel instances 2 ≤ f1 ≤ f2 ≤ . . . ≤ fn, the Main Al-
gorithm applied to sequences (1/f1, 1/f2, . . . , 1/fn) is a Pinwheel scheduler with
the guarantee density threshold 1 − 3/

√
f1. Thus each Pinwheel instance with

density at most 1− 3/
√
f1 is feasible.

Theorem 2. The Main Algorithm can be implemented so that its running time
is O(n log n), assuming constant-time operations on real numbers, including the
logarithm operation and rounding.

Proof. Steps 1 and 2 take linear time (or O(n log n), if the input sequence is not
provided in the sorted order). In steps 3–5, the non-empty groups are maintained
in a dictionary data structure, which can be created in O(n log n) time.

In steps 3 and 4, the groups are considered in the decreasing order (from
the highest group in the highest layer). In step 3, if two frequencies are paired
by Observation 1, then the group to which the new frequency should be added
can be found (or created, if empty) in O(log n) time. This can happen only
O(n) times, since each pairing reduces the number of frequencies, so step 3 takes
O(n log n) time. In step 4, if m frequencies are combined by Observation 2 into
one new frequency 2min/C, then the required computation takes O(m) time (in
this case, no need to look for the group with frequencies 2min/C). Thus step 4
takes O(n) time.

20 L. Gąsieniec et al.

In step 5, the groups are again considered in the decreasing order. For each
group, frequencies are paired by Observation 1 or combined by Observation 2 (as
above, all this computation takes O(n log n) time) and the remaining frequencies
are appended to the next non-empty group in constant time. Thus step 5 takes
O(n log n) time.

Step 6, the computation of a cyclic schedule of the feasible powers-of-2 fre-
quencies 〈g1, g2, . . . , gr〉, is done by the following algorithm from [26], which
can be implemented to run in linear time, assuming that the input sequence is
sorted. Take two largest frequency values gr−1 and gr, replace them with a new
frequency g′ = 2gr−1 and compute a cyclic schedule for the new (r− 1)-element
sequence. To get a schedule for the original sequence 〈g1, g2, . . . , gr〉, replace the
occurrences of g′ with alternating occurrences of gr−1 and gr. That is, if g′ oc-
curs at positions p+ kq, for k ≥ 0, then gr−1 occurs at positions p+ 2kq and gr
occurs at positions p+ (2k + 1)q, for k ≥ 0.

During the computation in steps 3–5, the pairing and combining of frequen-
cies is recorded in ordered trees as illustrated in Figure 2. The additional time
required to create one such tree is linear in the size of the tree, so O(n) time
for creating all trees. By traversing these trees, we can expand in O(n) time the
cyclic schedule of 〈g1, g2, . . . , gr〉 to a cyclic schedule of 〈f1, f2, . . . , fn〉.

The Main Algorithm computes the representation of a cyclic schedule in the
form of pairs (pi, qi), which enables constant-time answers to queries: given the
current step T , when will be the next step when a given element bi is serviced?
To generate the schedule step by step, taking O(log n) time per step, maintain
a priority queue (e.g. as the heap data structure) with the pairs (i, ti), where
i = 1, 2, . . . , n and ti is the next step when element bi will be serviced. Initially
the priority queue contains pairs (i, pi). For the current step of the schedule,
remove from the priority queue the pair (i, ti) with the smallest ti, schedule the
element bi, and insert to the priority queue the pair (i, ti + qi).5 2

5 Improved approximation for the general case

In this section, we consider general approximation (upper) bounds of polynomial
BGT algorithms, that is, bounds on the approximation ratios which hold for
any BGT input, irrespectively of its characteristics. Comparing with the best
previous general bound of 12/7 given in [40], we show a BGT algorithm with
approximation ratio not greater than 8/5 + o(1) < 12/7. We assume throughout
this section that the growth rates are normalized to H = 1.

Our algorithm uses the approximation algorithm from Section 4.2, which
computes (1 + o(1))-approximation schedules, if the highest growth rate h1
is o(1). The algorithm first partitions the input set I into two groups S and
L, separating bamboos with small growth rates of values o(1) from bamboos

5 This works, if the cyclic schedule does not have gaps, and the cyclic schedule com-
puted in the Main Algorithm does not have gaps. If the cyclic schedule may have
gaps, then we should keep track of the current step T and schedule bi only if ti = T .

Perpetual maintenance schedules 21

with large growth rates. Then schedules S for S and L for L are computed sep-
arately, and finally these two schedules are merged into the final schedule I for
the whole input I. The schedule S for the small rates is computed using the ap-
proximation algorithm from Section 4.2, so MH(S) ≤ H(S)+o(1). The schedule
L for the large rates is either an optimal schedule, computed using exhaustive
search, or an approximation schedule computed by the 2-approximation algo-
rithm which we mentioned in Section 4.1. The choice depends on the parameters
of L and S. In the former case, we use the bound MH(L) = OPT(L) ≤ OPT(I)
in the analysis of the approximation ratio, while in the latter case, we use the
bound MH(L) ≤ 2 ·H(L).

We summarise this result in the theorem stated below and the remaining
part of this section is the proof of this theorem. In our case analysis, for some
cases we need to separate the fastest growing bamboo b1 from the set L, getting
a partition of I into three sets B = {b1}, L and S, and computing schedules
S and L for S and L as above. The final schedule I for the whole input I is
defined by a pattern in which the schedules S and L, and cutting b1 (if b1 is
separated from L) are interleaved. For example, if I is defined by the pattern
(L,B,L, S), then the schedule L is put in I in every other position starting from
position 1, the schedule S is in every fourth position starting from position 4,
and b1 occupies the remaining positions.

Theorem 3. There is a polynomial-time algorithm which for any instance I of
the BGT problem, computes a (8/5 + o(1))-approximation schedule.

The basic split of the input sequence. We partition I into two groups of large
growth rates L = {bi : hi ≥ 1/m} and small growth rates S = {bi : hi < 1/m}.
We set the threshold value m = log n/(4 log log n), where log x stands here for
log2(x), if x > 1, or for 1, if x ≤ 1 (so m is well-defined and positive for
all integers n ≥ 2). Observe that m < n, so S is never empty, but L can be
empty, if there are no large growth rates. We define L̄ = H(L) =

∑
bi∈L hi

and S̄ = H(S), so L̄ + S̄ = 1. Generally, if A is a subset of bamboos, then
Ā denotes the sum of the rates of bamboos in A. Let S be a schedule for S
computed by the approximation algorithm from Section 4.2. If S̄ = Ω(1), then
MH(S) = S̄(1 + o(1)), and if S̄ = o(1), then MH(S) ≤ 2S̄ = o(1), so in both
cases MH(S) = S̄ + o(1).

Fact 1 An optimal schedule for the growth rates L can be computed in o(n)
time.

Proof. The lower bound of 1/m on the growth rates in L imply that |L| ≤ m.
Since OPT(L) ≤ 2L̄ ≤ 2, then in an optimal schedule for L, every bamboo can
have at most 2m different heights. This means that the number of configurations
to consider is at most (2m)m, where a configuration is an |L|-tuple of possible
heights of the bamboos in L, as observed just before the next cutting. Each
(infinite) schedule ` = (i1, i2, . . .) can be represented as a sequence of configura-
tions (C1, C2, . . .). If this sequence is (C1, C2, . . . , Ck, Ck+1, . . . , Ck+p, . . .), where

22 L. Gąsieniec et al.

Ck+1 = Ck+p is the first repeat of the same configuration, then for the periodic
schedule `∗ formed as (i1, i2, . . . , ik) followed by repetitions of (ik+1, . . . , ik+p),
we have MH(`)∗ ≤ MH(`). Hence, there is an optimal schedule which is periodic,
where k (the length of the initial sequence of distinct configurations) and p (the
length of the period) are both at most (2m)m. Such a periodic optimal sched-
ule can be found by an exhaustive search, or any better search strategy which
guarantees taking into account all periodic schedules.

This type of argument – a configuration space of finite size and finitely many
feasible structures – has been used previously in analyses of processes of sim-
ilar nature. For example, in the context of computing a perpetual schedule of
maintaining machines, such an argument was used by Anily et al. [2].

We provide further details to justify our choice of m. We have set the value
of m appropriately small in terms of n, so that the following algorithm finds
an optimal schedule for L in o(n) time. Let G be the directed graph of the
configurations space: the vertices are the configurations with height at most 2|L|
(that is, with the maximum height of bamboo at most 2|L|), and each edge
is a possible one-round change from the current configuration to another one,
defined by cutting a given bamboo. This graph has at most (2m)m vertices and
each vertex has at most |L| ≤ m outgoing edges (at each configuration, there are
|L| choices of a bamboo for cutting, but some choices may take the maximum
height of a bamboo above the 2|L| threshold). For any positive number M ,
OPT(L) ≤M , if and only if, the subgraph ofG induced by all configurations with
height at mostM has a cycle reachable from the initial configuration (hj : j ∈ L)
(the configuration just before the first cutting). Thus we can find OPT(L), and
an optimal schedule for L, by binary search over the O(m2) possible heights of
configurations (each bamboo has at most 2m possible heights). In this binary
search, one iteration takes time linear in the size of graph G, so the total running
time is O((2m)mm logm) = O(n1/2). 2

Fact 2 For the set S, if S̄ = Ω(1), then the algorithm of Section 4.2 computes
a (1 + o(1))-approximation schedule S for S in O(n log n) time.

Proof. A direct consequence of Theorems 1 and 2. 2

If L = ∅, then we have a (1 + o(1))-approximation for the whole instance I
from Fact 2, so from now on we assume that L 6= ∅. We consider separately the
cases specified below. The (8/5 + o(1))-approximation factor follows because for
each case and each b ∈ I, we either establish that the maximum height of b in I
is at most 8/5 + o(1), or we establish that it is at most OPT(I)(8/5 + o(1)).

Case 1: |L| ≥ 2, 0 < S̄ ≤ 2/5,
Case 2: |L| ≥ 2, 2/5 < S̄ ≤ 8/15, h1 ≤ 8/25,
Case 3: |L| ≥ 2, 2/5 < S̄ ≤ 8/15, h1 > 8/25,
Case 4: |L| ≥ 2, 8/15 < S̄ ≤ 3/5,
Case 5: |L| ≥ 1, 3/5 < S̄ < 1,
Case 6: |L| = 1, 0 < S̄ ≤ 3/5.

Perpetual maintenance schedules 23

Case 1: |L| ≥ 2, 0 < S̄ ≤ 2/5. We use an optimal schedule L for L and the
pattern (L,L,L, S). We obtain a schedule I where the bamboos in S stay within
the height 4 · (S̄ + o(1)) ≤ 8/5 + o(1). For any b ∈ L, if f denotes the frequency
of b in L, that is, the longest time, in rounds, between two consecutive cuts of b
in L, then the frequency of b in I is at most f + df/3e (for two consecutive cuts
of b in L, we are adding between them in I at most df/3e cuts from sequence
S). Thus the height of b in I is never greater than

(f + df/3e)hb = fhb

(
1 +
df/3e
f

)
≤ OPT(L)

(
1 +
df/3e
f

)
≤ OPT(I)

(
1 +
df/3e
f

)
≤ 3

2
OPT(I). (6)

The last inequality holds because for f ≥ 2, df/3e ≤ f/2.
Case 2: |L| ≥ 2, 2/5 < S̄ ≤ 8/15, h1 ≤ 8/25. We use an optimal schedule
L for L and the pattern (L,L, S). For any b ∈ S, its height in I is at most
3 · (S̄ + o(1)) ≤ 8/5 + o(1). For any b ∈ L, its frequency f in L increases to at
most f + df/2e in I, since now for two consecutive cuts of b in L, we are adding
in I at most df/2e cuts from sequence S. Thus, following a similar argument
as in (6), the height of b in I is at most OPT(I)(1 + df/2e/f). The factor
1+df/2e/f is at most 8/5 for each f ≥ 2 except f = 3 (we have df/2e ≤ (3/5)f
for each integer f ≥ 2 except f = 3). If f = 3, then the height of b in I is at
most (f + df/2e)h1 = 5h1 ≤ 8/5.
Case 3: |L| ≥ 2, 2/5 < S̄ ≤ 8/15, h1 > 8/25. We remove b1 from L and put it in
a separate singleton set B, and we move some bamboos from S to L, to obtain a
partition of I into three sets B = {b1}, S′ and L′ such that S̄′ = 2/5 + o(1) and
L̄′ ≤ 3/5−h1. This is feasible, because all growth rates in S are o(1). The set L′
may now be large, with size up to linear in n, but from this case on, we do not
compute an optimal schedule for L′, using instead a schedule L′ computed by the
2-approximation algorithm mentioned in Section 4.1, which runs in O(n log n)
time. For set S′, we use a schedule S ′ computed by the approximation algorithm
from Section 4.2.

The final schedule I is defined by the pattern (L′, B, L′, S′), if 8/25 < h1 ≤
2/5, or the pattern (B,L′, B, S′), if h1 > 2/5. In both cases, the height of any
b ∈ S′ in I is at most 4(2/5+o(1)) = 8/5+o(1). In the former case, for any b ∈ L′,
the height of b in L′ is at most 2L̄′, so at most 4L̄′ ≤ 4(3/5−h1) ≤ 28/25 < 8/5
in I, and the height of b1 is at most 4h1 ≤ 8/5. In the latter case, for any b ∈ L′,
the height of b in L′ is at most 2L̄′, so at most 8L̄′ ≤ 8(3/5 − h1) ≤ 8/5 in I,
and the height of b1 is at most 2h1 ≤ OPT(I).
Case 4: |L| ≥ 2, 8/15 < S̄ ≤ 3/5. We move some bamboos from S to L, to obtain
a partition of I into two sets S′ and L′ such that S̄′ = 8/15+o(1), and L̄′ ≤ 7/15,
and we compute schedules S ′ and L′ as in the previous case. The final schedule
I is defined by the pattern (L′, L′, S′). The height of any b ∈ S′ in I is at most
3(8/15 + o(1)) = 8/5 + o(1). As in Case 2, the frequency of any b ∈ L′ increases
from f in L to at most f+df/2e in I, so the maximum height of b increases from

24 L. Gąsieniec et al.

fhb ≤ 2L̄′ ≤ 14/15 in L to at most (f + df/2e)hb ≤ (14/15)(1 + df/2e/f) ≤ 8/5
in I. For the last inequality, recall from Case 2 that df/2e ≤ (3/5)f for all f ≥ 2
except f = 3, and verify the f = 3 case separately.
Case 5: |L| ≥ 1, 3/5 < S̄ < 1. Move some bamboos from S to L, to obtain a
partition of I into two sets S′ and L′ such that S̄′ = 3/5 + o(1) and L̄′ ≤ 2/5,
compute schedules S ′ and L′ as in the previous two cases, and define the final
schedule I by the pattern (L′, S′). The height of any b ∈ S′ in I is at most
2(3/5 + o(1)) < 8/5, and the height of any b ∈ L′ in I is at most 4L̄′ ≤ 8/5.
Case 6: |L| = 1, 0 < S̄ < 3/5. The set I is partitioned into B = {b1} and
S = I −B, and the final schedule I is defined by (B,S). The height of b ∈ S in
I is at most 2(3/5 + o(1)) < 8/5, and the height of b1 is at most 2h1 ≤ OPT (I).

The running time of this approximation algorithm is dominated by the
O(n log n) time of the approximation algorithm from Section 4.2.

6 Continuous BGT

We consider now the continuous variant of the BGT problem. Since this variant
models scenarios when bamboos are spread over some geographical area, we will
now refer not only to bamboos b1, b2, . . . , bn but also to the points v1, v2, . . . , vn
(in the implicit underlying space) where these bamboos are located. We will
denote by V the set of these points.

Recall that input I for the continuous BGT problem consists of the growth
rates (hi : 1 ≤ i ≤ n) and the travel times between bamboos (ti,j : 1 ≤ i, j ≤ n).
We assume that h1 ≥ h2 ≥ . . . ≥ hn, as before, and normalize these rates,
for convenience, so that h1 + h2 + . . . + hn = H = 1 (this normalization is
done without loss of generality, since only the relative heights of bamboos are
relevant). We assume that the travel distances form a metric on V .

For any V ′ ⊆ V , the minimum growth rate among all points in V ′ is denoted
by hmin(V ′), and the maximum growth rate among all points in V ′ is denoted
by hmax(V ′). Let hmin = hmin(V) = hn, and hmax = hmax(V) = h1. Recall that
we assume n ≥ 2 (to avoid the trivial case), and now we additionally assume
that hmax > hmin (the uniform case, when hmax = hmin, is TSP).

The diameter of the set V is denoted by D = D(V) = max{ti,j : 1 ≤
i, j ≤ n}. For any V ′ ⊆ V , MST(V ′) denotes the minimum weight of a spanning
tree on V ′ (the travel times are the weights of the edges). Recall that for an
algorithm A and input I, MH(A(I)) denotes the maximum height that any
bamboo ever reaches, if trimming is done according to the schedule computed
by A, and OPT(I) is the optimal (minimal) maximum height of a bamboo over
all schedules.

6.1 Lower bounds and simple approximation based on discrete
BGT

We first show some simple lower bounds on the maximum height of a bamboo.
For notational brevity, we omit the explicit reference to the input I. For example,

Perpetual maintenance schedules 25

the inequality MH(A) ≥ Dhmax in the lemma below is to be understood as
MH(A(I)) ≥ D(V (I)) · hmax(V (I)), for each input instance I.

Lemma 3. MH(A) ≥ Dhmax, for any algorithm A.

Proof. The robot must visit another point x in V at distance at least D/2 from
v1. When the robot comes back to v1 after visiting x (possibly via a number
of other points in V), the bamboo at v1 has grown at least to the height of
Dh1 = Dhmax. 2

Lemma 4. MH(A) ≥ hmin(V ′) ·MST(V ′), for any algorithm A and V ′ ⊆ V .

Proof. Let v be the point in V ′ visited last: all points in V ′ \ {v} have been
visited at least once before the first visit to v. The distance traveled until the
first visit to v is at least MST(V ′), so the bamboo at v has grown to the height
at least hv ·MST(V ′) ≥ hmin(V ′) ·MST(V ′). 2

One may ask how good are the schedules for continuous BGT which are
computed taking into account only the growth rates, ignoring the travel times. If
we use, for example, the schedules computed by the 2-approximation algorithm
from Section 4, which guarantee that the maximum height of a bamboo does
not grow above 2 (recall that we normalize the growth rates, so H = 1), then
there are at most b2/hic − 1 cutting actions between two consecutive cuttings
of bamboo bi. Otherwise bamboo bi would grow in discrete BGT to the height
at least hi(b2/hic + 1) > 2 = 2H. Thus in continuous BGT the time between
two consecutive cuttings of bamboo bi is at most Db2/hic, so the height of this
bamboo is never greater than hiDb2/hic ≤ 2D. Combining this with Lemma 3,
we conclude that the 2-approximation algorithm for discrete BGT is a (2/hmax)-
approximation algorithm for continuous BGT. In particular, this approach gives
Θ(1)-approximate algorithm for continuous BGT for inputs with h1 = Θ(1). To
derive good approximation algorithms for other types of input, we will use the
lower bound from Lemma 4.

6.2 Approximation algorithms

We present in this section three approximation algorithms for continuous BGT
which are based on computing spanning trees. Algorithm 1 computes only one
spanning tree of all points and the schedule for the robot is to traverse repeatedly
an Euler tour of this tree. This simple algorithm ignores the growth rates of
bamboos and computes a schedule of cutting taking into account only the travel
times between points.

Algorithms 2 and 3 group the bamboos according to the similarity of their
growth rates and compute a separate spanning tree for each group. The robot
moves from one tree to the next in the Round-Robin fashion. At each spanning
tree T , the robot walks along the Euler-tour of this tree for time D before
moving to the next tree. When the robot eventually comes back to tree T , it
resumes traversing the Euler tour of T from the point when it last left this tree.

26 L. Gąsieniec et al.

Algorithm 1: An O(hmax/hmin)-approximation algorithm for continuous BGT.

1. [Pre-processing] Calculate a minimum spanning tree T of the point set V .
2. [Walking] Repeatedly perform an Euler-tour traversal of T .

The growth rates of bamboos in the same spanning tree are within a factor
of 2. Algorithm 3 differs from Algorithm 2 by using spanning trees only for the
first Θ(log n) groups, which include bamboos with growth rates greater than
1/n2. The remaining bamboos, which all have low growth rates, are dealt with
individually.

We describe our Algorithms 1, 2 and 3 in pseudocode and give their approxi-
mation ratio in the theorems below. The description of each algorithm consists of
two parts: pre-processing and walking. We do not explicitly mention the actions
of cutting/attending bamboos, assuming that whenever the robot passes a point
in V, it cuts the bamboo growing at this point.

Theorem 4. Algorithm 1 is an O(hmax/hmin)-approximation algorithm for the
continuous BGT problem.

Proof. Let A1 denote Algorithm 1. Every point vi ∈ V is visited by A1 at least
every 2 ·MST(V) time units. Hence,

MH(A1) = O(hmax(V) ·MST(V)). (7)

According to Lemma 4,

OPT = Ω(hmin(V) ·MST(V)). (8)

Combining the two bounds (7) and (8), it follows that Algorithm 1 is an
O(hmax/hmin)-approximation algorithm for BGT. 2

Theorem 5. Algorithm 2 is an O(log dhmax/hmine)-approximation algorithm
for the continuous BGT problem.

Proof. For any i ∈ {1, 2, . . . , s}, consider any point v ∈ Vi. The robot walks
along one tree for at most distance 2D and then covers at most distance D to
move to the next tree. After a visit to point v, the robot comes back to tree
Ti at most d2 ·MST(Vi)/De times before visiting v again. Therefore, recalling
from the algorithm that there are at most s = blog2(hmax/hmin)c+ 1 trees, the
distance traveled between two consecutive visits to point v is at most

3Ds

⌈
2 ·MST(Vi)

D

⌉
≤ 3s(D + 2 ·MST(Vi)).

Hence, the height of the bamboo at v is always

O

(
hmax(Vi) · log

⌈
hmax

hmin

⌉
·max{D,MST(Vi)}

)
. (9)

Perpetual maintenance schedules 27

Algorithm 2: An O(logdhmax/hmine)-approximation algorithm for continuous BGT.

[Pre-processing]
1. Let s = blog2(hmax/hmin)c+ 1.
2. For i ∈ {1, 2 . . . , s}, let Vi = {vj ∈ V | 2i−1 · hmin ≤ hj < 2i · hmin}.
3. for i = 1 to s such that Vi 6= ∅ do
4. Let Ti be a minimum spanning tree on Vi.
5. Let Ci be a directed Euler-tour traversal of Ti.
6. Set an arbitrary point on Ci as the last visited point on Ci.

[Walking]
7. repeat forever
8. for i = 1 to s such that Vi 6= ∅ do
9. Walk to the last visited point on Ci.

10. If Vi has at least 2 points, then walk along Ci in the direction of the tour,
stopping as soon when the distance covered is at least D.

On the other hand, using Lemmas 3 and 4, we obtain

OPT ≥ hmin(Vi) ·max{D,MST(Vi)}. (10)

Combining the two bounds (9) and (10), and observing that hmax(Vi) ≤
2 · hmin(Vi), we obtain that the height of the bamboo at v is always O(OPT ·
logdhmax/hmine), so Algorithm 2 is an O(logdhmax/hmine)-approximation algo-
rithm for BGT. 2

Theorem 6. Algorithm 3 is an O(log n)-approximation algorithm for the con-
tinuous BGT problem.

Proof. Each round of Algorithm 3, that is, each iteration of the repeat loop, is a
cycle over all s = Θ(log n) trees and a visit to one point in the set V0. Consider
any point v ∈ Vi, for any i ∈ {1, 2, . . . , s}. The distance traveled between two
consecutive visits of v is at most

(3Ds+D)

⌈
2 ·MST(Vi)

D

⌉
≤ (3s+ 1)(D + 2 ·MST(Vi))

= O(log n ·max{D,MST(Vi)}).

Hence, the height of the bamboo at v is always

O(hmax(Vi) · log n ·max{D,MST(Vi)}).

Using the lower bound (10) on OPT and the fact that hmax(Vi) ≤ 2 · hmin(Vi),
we conclude that the height of the bamboo at v is always O(OPT · log n).

Consider now a point v ∈ V0. The distance traveled between two consecutive
visits of v is at most

(3Ds+D)|V0| = O(n ·D · log n).

28 L. Gąsieniec et al.

Algorithm 3: An O(logn)-approximation algorithm for continuous BGT.

[Pre-processing]
1. Let s = d2 · log2 ne.
2. Let V0 = {vi ∈ V | hi ≤ n−2}. Let V0 = {v′0, v′1, . . . , v′`−1}.
3. For i ∈ {1, 2, . . . , s}, let Vi = {vj ∈ V | 2i−1 · n−2 < hj ≤ 2i · n−2}.
4. for i = 1 to s such that Vi 6= ∅ do
5. Let Ti be a minimum spanning tree on Vi.
6. Let Ci be a directed Euler-tour traversal of Ti.
7. Set an arbitrary point on Ci as the last visited point on Ci.

[Walking]
8. j = 0.
9. repeat forever

10. for i = 1 to s such that Vi 6= ∅ do
11. Walk to the last visited point on Ci.
12. If Vi has at least 2 points, then walk along Ci in the direction of the tour,

stopping as soon when the distance covered is at least D.
13. If V0 6= ∅, then walk to v′j and let j = j + 1 (mod `).

Hence, the height of the bamboo at v is always

O(hmax(V0) · n ·D · log n) = O(n−2 · n ·D · log n) = O(hmax ·D · log n).

This and Lemma 3 imply that the height of the bamboo at v is always O(OPT ·
log n). Thus Algorithm 3 is an O(log n)-approximation algorithm for BGT. 2

Note that the pre-processing in all Algorithms 1, 2 and 3 is dominated by
the minimum-spanning tree computation, which can be implemented in O(n2)
time (e.g. by using Prim’s algorithm [36]). Then the running time to produce
the schedule (the consecutive steps of the schedule) is constant per one step of
the schedule.

6.3 How tight are the upper and lower bounds?

Our O(log n)-approximation algorithm for the continuous BGT (Algorithm 3)
can return schedules which are worse than the optimal schedules by a factor of
Θ(log n). For example, consider the input which consists of two sets V ′ and V ′′
of n/2 points each such that in each set the points are very close to each other
(with the total distance to visit all points in this set less than D), but the sets
are at distance greater than D/2 from each other. The rates of growth in set V ′
include the Θ(log n) values 1/4, 1/8, . . . , 1/2i, . . . , 1/n, and the same rates are
in set V ′′. For this input instance the value of the optimal schedule is Θ(D):
visit all points in V ′, then all points in V ′′ (for the total distance Θ(D)), and
repeat. The schedule computed by Algorithm 3 uses Θ(log n) trees and makes
the robot traverse each tree for a distance at least D before returning to the

Perpetual maintenance schedules 29

bamboo with the highest rate of growth of 1/4. Thus this bamboo grows to the
height Θ(D log n), which is a factor of Θ(log n) worse than the optimum.

The approximation bounds which we presented in Section 6.2 are derived
by comparing the upper bounds on the maximum bamboo heights guaranteed
by the algorithms with the lower bounds shown in Section 6.1. We show now
a class of instances, for which any schedule leads to bamboo heights greater
than our lower bounds by a Θ(log n) factor. Thus for these input instances our
general lower bounds turn out to be weak, while our O(log n)-approximation
algorithm computes in fact constant approximation schedules. To improve the
approximation ratio of algorithms for the continuous BGT to o(log n), one will
therefore require both: new algorithmic techniques as well as stronger lower
bounds.

We consider the following input V ∗ for the continuous BGT problem. The
n points in V ∗ are placed on the Euclidean plane within a unit-radius circle.
The points lie evenly spaced along the spiral inside this circle, which starts at a
point A at distance 1/2 from the center of the circle and swirls outward creating
rings separated by distance d2 = n−1/3; see Figure 3, but note that the drawing
is not to scale. We view the points in V ∗ as ordered along the spiral, with the
first point at A and the Euclidean distance between two consecutive points equal
to d1 = n−2/3. Thus the length of the spiral between two consecutive points in
V ∗ is equal to n−2/3(1 + o(1)), so the length of the part of the spiral which is
occupied by the points in V ∗ is equal to n1/3(1 + o(1)). As the length of the
spiral within the circle is at least (1/2)πn1/3 (since (1/2)/d2 = n1/3/2 rings,
each of them of length at least π), for any sufficiently large n, all points in V ∗
are indeed inside the circle. On the other hand, for a sufficiently large n, there
are two points in V ∗ at distance at least 1 from each other, so the diameter D
of V ∗ satisfies 1 ≤ D ≤ 2.

The points in V ∗ are grouped into subsets G1, G2, . . . , G(logn)/3 and G′

of consecutive points along the spiral, starting from position A. Here log n =
log2(n), and for convenience we assume that (log n)/3 is an integer. The first
two groups G1 and G2 are indicated in Figure 3. For i = 1, 2, . . . , (log n)/3,
the size of group Gi is n/2i and each point in Gi has the same growth rate
hi = (3 − ε)2i/(n log n), where 0 < ε = o(1). The last group G′ contains the
remaining o(n) points in V ∗ and the growth rate of each point in G′ is equal
to h′ = 1/n4/3 = hmin(V ∗). The exact value of ε = o(1) is such that all growth
rates sum up to 1.

Since hmax(V ∗) = h(logn)/3 = Θ(1/(n2/3 log n)), Lemma 3 gives the lower
bound of Ω(1/(n2/3 log n)) on the optimal solution. We check now what lower
bounds we can get from Lemma 4. The MST of this set of points V ∗ is obtained
by following the spiral and the weight of this MST is equal to nd1 = n1/3, giving
the lower bound of hmin(V ∗) ·MST(V ∗) = 1/n. For each i = 1, 2, . . . , (log n)/3,
the weight of the MST of the set of points V (i) =

⋃(logn)/3
j=i Gj , which is

the subset of all points in V ∗ with growth rates at least hi, is equal to
d1

∣∣∣⋃(logn)/3
j=i Gj

∣∣∣ = Θ(d1|Gi|) = Θ(n1/3/2i). This gives the lower bound of

hi ·MST(V (i)) = Ω(1/(n2/3 log n)). This is the best lower bound which we can

30 L. Gąsieniec et al.

Fig. 3. Example of a spiral input.

obtain from Lemma 4, since hmin(V ′) ·MST(V ′) is maximized by including in
V ′ all points in V ∗ with growth rates at least hmin(V ′). Thus Lemmas 3 and 4
give for this input instance the lower bound Ω(1/(n2/3 log n)).

The O(log n)-approximation Algorithm 3 gives the schedule for V ∗ with the
maximum bamboo height Θ(1/n2/3), which is a log n factor above our lower
bounds. Indeed, observe that for some j ≥ 0, each set Gi, 1 ≤ i ≥ (log n)/3,
is the sets Vj+i in Algorithm 3. Thus, to service all points in Gi, the algorithm
needs Θ(MST(Gi)/D) iterations of the walking loop (the “repeat forever” loop).
The walking in each iteration takes Θ(D) time per each set Gx, so Θ(D log n)
time in total. This means that a bamboo in set Gi grows up to the height of
Θ(hi(D log n)(MST(Gi)/D)) = Θ(1/n2/3). We show next that for this input any
possible schedule produces bamboos of height Ω(1/n2/3).

Lemma 5. For each schedule for the input V ∗, there must be a bamboo which
grows to the height d1/2 = Ω(1/n2/3).

Proof. Assume that there is a schedule such that the height of each bamboo in⋃(logn)/3
i=1 Gi is always at most d1/2. In such a schedule, each point in each set Gi

is serviced after at most distance (d1/2)·(n log n)/((3−ε)2i) ≤ d1 ·(n log n)/2i+2.
Since the distance between each two points in V ∗ is at least d1, the growth rate
of each point in Gi in this schedule must be at least 2i+2/(n log n). Thus the
sum of the growth rates of all points in

⋃
Gi in this schedule is at least

(logn)/3∑
i=1

2i+2

n log n
· n

2i
= 4/3,

Perpetual maintenance schedules 31

which is a contradiction since the growth rates of the points in any valid schedule
must sum up to at most 1. This contradiction implies that in each valid schedule
there is a bamboo which grows higher than d1/2. 2

7 Conclusions and open questions

There are several interesting open questions about approximation algorithms for
the BGT problems. For discrete BGT and simple strategies such as Reduce-Max
and Reduce-Fastest, we still do not know the exact upper bounds on the maxi-
mum heights of the bamboos, in relation to H, or the exact worst-case approxi-
mation ratios (these two parameters are related but not the same).

Assuming the growth rates are normalized to H = 1, the best known upper
bound on the maximum height of a bamboo under the Reduce-Fastest strategy
is 2.62 (Bilò et al. [10]) and the best known lower bound is 2.01 (Kuszmaul [31]).
The first constant bound on the maximum height under the Reduce-Max strat-
egy, shown in [10], was 9, and the current best bound, shown in [31], is 4, while
a simple example shows that bamboos can reach heights arbitrarily close to
2. Can we decrease the upper bounds on the maximum height of bamboos in
Reduce-Max or Reduce-Fastest, or find examples to increase the lower bounds?
Similarly, there are gaps between the upper and lower bounds on the approxi-
mation ratios of Reduce-Max and Reduce-Fastest, where the upper bounds, so
far, come only as straight consequences of the upper bounds on the maximum
heights mentioned above, and the lower bounds are as discussed in Section 2.

Other sets of questions are about general bounds on approximation ratios
for the BGT problem. We showed in Section 5 a 8/5 + o(1)-approximation algo-
rithm, improving on the previous-best 12/7-approximation by Van Ee [40]. Can
this bound be further improved, ideally achieving a PTAS algorithm? Another
question is whether the 1 + O(

√
h1/H) approximation ratio of our algorithm

for discrete BGT presented in Section 4 can be improved. Can we achieve an
approximation ratio of 1 +O(h1/H), or even just 1 + o(

√
h1/H)?

For continuous BGT, we do not know whether our Algorithm 3, or any other
algorithm, achieves an approximation ratio of o(log n). The two special cases of
continuous BGT – discrete BGT and the metric TSP – have both constant-ratio
polynomial-time approximation algorithms, not giving any indication why we
should not expect the same for the more general problem. Note that a constant
approximation for the path was given by Chuangpishit et al. [17], and a PTAS
was presented by Damaschke [21].

In this paper we considered only the case of one robot. Damaschke [21, 22]
studies the case with two robots patrolling on a line. The work of Bender et
al. [7] and Kuszmaul [31] on cup emptying games includes a methodology of
transferring results from single- to multi-processor scenarios. Generally, however,
the studies of perpetual scheduling for multi-robot scenarios have been so far
rather limited, but we expect that this will change.

32 L. Gąsieniec et al.

References

1. Sultan S. Alshamrani, Dariusz Kowalski, and Leszek Gąsieniec. Efficient discovery
of malicious symptoms in clouds via monitoring virtual machines. In 2015 IEEE
International Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing, pages 1703–1710, Oct 2015.

2. Shoshana Anily, Celia A. Glass, and Refael Hassin. The scheduling of maintenance
service. Discret. Appl. Math., 82(1-3):27–42, 1998.

3. Shoshana Anily, Celia A. Glass, and Refael Hassin. Scheduling maintenance ser-
vices to three machines. Ann. Oper. Res., 86:375–391, 1999.

4. Annelieke C. Baller, Martijn van Ee, Maaike Hoogeboom, and Leen Stougie. Com-
plexity of inventory routing problems when routing is easy. Networks, 75(2):113–
123, 2020.

5. Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, and Donald A. Varvel. Pro-
portionate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, Jun 1996.

6. Sanjoy K. Baruah and Shun-Shii Lin. Pfair scheduling of generalized pinwheel task
systems. IEEE Transactions on Computers, 47(7):812–816, July 1998.

7. Michael A. Bender, Martin Farach-Colton, and William Kuszmaul. Achieving
optimal backlog in multi-processor cup games. In Moses Charikar and Edith Cohen,
editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1148–1157.
ACM, 2019.

8. Michael A. Bender, Sándor P. Fekete, Alexander Kröller, Vincenzo Liberatore,
Joseph S. B. Mitchell, Valentin Polishchuk, and Jukka Suomela. The minimum
backlog problem. Theoretical Computer Science, 605:51–61, 2015.

9. Michael A. Bender and William Kuszmaul. Randomized cup game algorithms
against strong adversaries. In Dániel Marx, editor, Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, Jan-
uary 10 - 13, 2021, pages 2059–2077. SIAM, 2021.

10. Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Giacomo Scor-
navacca. Cutting bamboo down to size. Theoretical Computer Science, 909:54–67,
2022.

11. Marijke H. L. Bodlaender, Cor A. J. Hurkens, Vincent J. J. Kusters, Frank Staals,
Gerhard J. Woeginger, and Hans Zantema. Cinderella versus the wicked step-
mother. In Jos C. M. Baeten, Thomas Ball, and Frank S. de Boer, editors, Theo-
retical Computer Science - 7th IFIP TC 1/WG 2.2 International Conference, TCS
2012, Amsterdam, The Netherlands, September 26-28, 2012. Proceedings, volume
7604 of Lecture Notes in Computer Science, pages 57–71. Springer, 2012.

12. Thomas Bosman, Martijn van Ee, Yang Jiao, Alberto Marchetti-Spaccamela,
R. Ravi, and Leen Stougie. Approximation algorithms for replenishment prob-
lems with fixed turnover times. Algorithmica, 84(9):2597–2621, 2022.

13. Mee Yee Chan and Francis Y. L. Chin. General schedulers for the pinwheel problem
based on double-integer reduction. IEEE Transactions on Computers, 41(6):755–
768, June 1992.

14. Mee Yee Chan and Francis Y. L. Chin. Schedulers for larger classes of pinwheel
instances. Algorithmica, 9(5):425–462, May 1993.

15. Wei-pang Chin and Simeon C. Ntafos. Optimum watchman routes. Information
Processing Letters, 28(1):39–44, 1988.

Perpetual maintenance schedules 33

16. Marek Chrobak, János Csirik, Csanád Imreh, John Noga, Jirí Sgall, and Gerhard J.
Woeginger. The buffer minimization problem for multiprocessor scheduling with
conflicts. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Automata, Languages and Programming, 28th International Colloquium, ICALP
2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes
in Computer Science, pages 862–874. Springer, 2001.

17. Huda Chuangpishit, Jurek Czyzowicz, Leszek Gąsieniec, Konstantinos Georgiou,
Tomasz Jurdzinski, and Evangelos Kranakis. Patrolling a path connecting a set of
points with unbalanced frequencies of visits. In A Min Tjoa, Ladjel Bellatreche,
Stefan Biffl, Jan van Leeuwen, and Jirí Wiedermann, editors, SOFSEM 2018: The-
ory and Practice of Computer Science - 44th International Conference on Current
Trends in Theory and Practice of Computer Science, Krems, Austria, January
29 - February 2, 2018, Proceedings, volume 10706 of Lecture Notes in Computer
Science, pages 367–380. Springer, 2018.

18. Andrew Collins, Jurek Czyzowicz, Leszek Gąsieniec, Adrian Kosowski, Evangelos
Kranakis, Danny Krizanc, Russell Martin, and Oscar Morales Ponce. Optimal
patrolling of fragmented boundaries. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013,
pages 241–250, New York, NY, USA, 2013. ACM.

19. Jurek Czyzowicz, Leszek Gąsieniec, Adrian Kosowski, and Evangelos Kranakis.
Boundary patrolling by mobile agents with distinct maximal speeds. In Camil
Demetrescu and Magnús M. Halldórsson, editors, Algorithms - ESA 2011 - 19th
Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Pro-
ceedings, volume 6942 of Lecture Notes in Computer Science, pages 701–712.
Springer, 2011.

20. Jurek Czyzowicz, Leszek Gąsieniec, Adrian Kosowski, Evangelos Kranakis, Danny
Krizanc, and Najmeh Taleb. When patrolmen become corrupted: Monitoring a
graph using faulty mobile robots. Algorithmica, 79(3):925–940, 2017.

21. Peter Damaschke. Two robots patrolling on a line: Integer version and approxima-
bility. In Leszek Gąsieniec, Ralf Klasing, and Tomasz Radzik, editors, Combinato-
rial Algorithms - 31st International Workshop, IWOCA 2020, Bordeaux, France,
June 8-10, 2020, Proceedings, volume 12126 of Lecture Notes in Computer Science,
pages 211–223. Springer, 2020.

22. Peter Damaschke. Distance-based solution of patrolling problems with individual
waiting times. In Matthias Müller-Hannemann and Federico Perea, editors, 21st
Symposium on Algorithmic Approaches for Transportation Modelling, Optimiza-
tion, and Systems, ATMOS 2021, September 9-10, 2021, Lisbon, Portugal (Virtual
Conference), volume 96 of OASIcs, pages 14:1–14:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

23. Mattia D’Emidio, Gabriele Di Stefano, and Alfredo Navarra. Bamboo garden
trimming problem: Priority schedulings. Algorithms, 12(4):74, 2019.

24. Peter C. Fishburn and J. C. Lagarias. Pinwheel scheduling: Achievable densities.
Algorithmica, 34(1):14–38, Sep 2002.

25. Leszek Gąsieniec, Ralf Klasing, Christos Levcopoulos, Andrzej Lingas, Jie Min,
and Tomasz Radzik. Bamboo garden trimming problem (perpetual maintenance
of machines with different attendance urgency factors). In SOFSEM 2017: Theory
and Practice of Computer Science - 43rd Int. Conf. on Current Trends in Theory
and Practice of Computer Science, Proceedings, volume 10139 of Lecture Notes in
Computer Science, pages 229–240. Springer, 2017.

34 L. Gąsieniec et al.

26. Robert Holte, Al Mok, Louis Rosier, Igor Tulchinsky, and Donald Varvel. The
pinwheel: a real-time scheduling problem. In Proceedings of the Twenty-Second
Annual Hawaii International Conference on System Sciences. Volume II: Software
Track, pages 693–702, Jan 1989.

27. Robert Holte, Louis Rosier, Igor Tulchinsky, and Donald Varvel. Pinwheel schedul-
ing with two distinct numbers. Theoretical Computer Science, 100(1):105–135,
1992.

28. Tobias Jacobs and Salvatore Longo. A new perspective on the windows scheduling
problem. CoRR, abs/1410.7237, 2014.

29. Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability
bounds for TSP. Journal of Computer and System Sciences, 81(8):1665–1677, 2015.

30. Akitoshi Kawamura and Yusuke Kobayashi. Fence patrolling by mobile agents
with distinct speeds. Distributed Computing, 28(2):147–154, April 2015.

31. John Kuszmaul. Bamboo trimming revisited: Simple algorithms can do well too. In
Kunal Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM Symposium
on Parallelism in Algorithms and Architectures, Philadelphia, PA, USA, July 11 -
14, 2022, pages 411–417. ACM, 2022.

32. William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup
game. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1558–1577. SIAM, 2020.

33. William Kuszmaul. How asymmetry helps buffer management: achieving optimal
tail size in cup games. In Samir Khuller and Virginia Vassilevska Williams, edi-
tors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1248–1261. ACM, 2021.

34. William Kuszmaul and Shyam Narayanan. Optimal time-backlog tradeoffs for
the variable-processor cup game. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229
of LIPIcs, pages 85:1–85:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

35. Shun-Shii Lin and Kwei-Jay Lin. A pinwheel scheduler for three distinct numbers
with a tight schedulability bound. Algorithmica, 19(4):411–426, Dec 1997.

36. Robert C. Prim. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6):1389–1401, Nov. 1957.

37. Theodore H. Romer and Louis E. Rosier. An algorithm reminiscent of Euclidean-
gcd computing a function related to pinwheel scheduling. Algorithmica, 17(1):1–10,
Jan 1997.

38. Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling
problems. SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.

39. Jorge Urrutia. Chapter 22 - art gallery and illumination problems. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, pages 973–1027.
North-Holland, Amsterdam, 2000.

40. Martijn van Ee. A 12/7-approximation algorithm for the discrete bamboo garden
trimming problem. Operations Research Letters, 49(5):645–649, 2021.

