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Online Dominant Generalized Eigenvectors
Extraction via a Randomized Algorithm

Haoyuan Cai, Student Member, IEEE, Maboud Kaloorazi, Member, IEEE, Jie Chen, Senior Member, IEEE,
Wei Chen, Senior Member, IEEE and Cédric Richard, Senior Member, IEEE

Abstract—This paper is concerned with online algorithms for
the generalized Hermitian eigenvalue problem (GHEP). We first
present an algorithm based on randomization, termed alternate-
projections randomized eigenvalue decomposition (APR-EVD), to
solve the standard eigenvalue problem. The APR-EVD algorithm
is computationally efficient and can be computed by making
only one pass through the input matrix. We then develop
two online algorithms based on APR-EVD for the dominant
generalized eigenvectors extraction. Our proposed algorithms use
the fact that GHEP is transformed into a standard eigenvalue
problem, however to avert computations of a matrix inverse and
inverse of the square root of a matrix, which are prohibitive,
they exploit the rank-1 strategy for the transformation. Our
algorithms are devised for extracting generalized eigenvectors
for scenarios in which observed stochastic signals have unknown
covariance matrices. The effectiveness and practical applicability
of our proposed algorithms are validated through numerical
experiments with synthetic and real-world data.

Index Terms—Randomized algorithms, dominant generalized
eigenvector extraction, online algorithms, matrix decomposition,
fast subspace estimation and tracking, real-time hyperspectral
image denoising.

I. INTRODUCTION

GHEP plays a vital role in many signal processing and
machine learning applications, such as sound zone gen-

eralization [2], nonorthogonal multiple access system [3], hy-
perspectral image denoising [4], canonical correlation analysis
[5], linear discriminant analysis [6], and multichannel Wiener
filtering [7], to name a few. Given a matrix pencil (Ry,Rx),
where Ry , Rx ∈ CN×N are Hermitian and positive definite,
the generalized Hermitian eigenvalue problem (GHEP) [8] is
defined follows:

Rywi = λiRxwi, i = 1, ..., N, (1)

where w1, · · · ,wN ∈ CN\ {0} are generalized eigenvectors
corresponding to N generalized eigenvalues λ1 > λ2 > · · · >
λN > 0. The ith generalized eigen-pair is denoted by (wi,
λi). To solve the GHEP, in many cases, one can transform (1)
into a Hermitian or non-Hermitian eigenvalue problem. For
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the former case, provided that R
1/2
x (R

1/2
x )H = Rx, the set of

eigenvectors w is obtained by (R
−1/2
x )Hv, where v is the set

of eigenvectors of R
−1/2
x Ry(R

−1/2
x )H . Here v is determined

so that wTRxw = I. For the latter case, transforming into a
non-HEP, (1) reduces to R−1

x Ryw = Λw, where Λ contains
λi’s, and consequently solved by a relevant standard algorithm
[8]. Traditional methods for solving the GHEP include power
and inverse iteration based methods, Lanczos method and
Jacobi-Davidson method [8]. The bottleneck of these methods,
however, lies in the computation of a matrix inverse as well
as inverse of the square root of a matrix, which is demanding
particularly for large data matrices.

This paper focuses on developing adaptive algorithms in
order to fast extract and track the generalized eigenvectors for
online applications in which observed stochastic signals have
unknown covariance matrices, that is, matrices Ry and Rx

are time-variant and required to be estimated. The traditional
methods (also called batch methods) are inefficient and, in
some cases, infeasible to apply for such applications due to
their computational workload. To overcome this drawback,
adaptively computing generalized eigenvectors methods were
proposed [9]–[16]. These methods can be found in a wide
variety of applications including blind source separation [17],
[18], feature extraction [19], [20], noise filtering [21], fault
detection [22], antenna array processing [9]–[11], classifica-
tion [23], speech enhancement [24]. The adaptive methods
presented in [9]–[11] are gradient-based, and extract the first
dominant (or principal) generalized eigenvector. These meth-
ods, however, are unsuitable for applications where multiple
dominant generalized eigenvectors are desired [24], [25]. To
address this issue, after extracting the principal eigenvector,
[12] used the deflation technique, and the works in [15],
[16] proposed to use nested orthogonal complement structure
of the generalized eigensubspace in order to compute the
remaining generalized eigenvectors in a decreasing order of
their importance. However, the shortcomings of gradient-based
methods are that (i) they converge slowly, (ii) it is challeng-
ing to determine an appropriate learning rate to guarantee
tracking speed and numerical stability, and (iii) it is difficult
to parallelize them (in order to exploit modern computa-
tional platforms), thereby making them unsuitable for large
data matrices. The methods in [15], [16] are called coupled
methods, and extract generalized eigenvectors by using the
orthogonal projection technique, which make them challenging
for parallelization. Yang et al. [12] proposed recursive least-
square (RLS)-type adaptive algorithms based on the projection
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approximation subspace tracking (PAST) technique [26] for
r ≥ 1 dominant generalized eigenvectors extraction. To reduce
the computational costs of the RLS-based methods, the work in
[13] presented R-GEVE (reduced-rank generalized eigenvector
extraction) based on the reduced rank idea [27], which, instead
of directly solving the GHEP of size N ×N , reduces it into
an r(r + 1)-dimensional subspace by searching the current
generalized eigenvectors in the subspace spanned by the
previous generalized eigenvectors and the current observed
sample vector. The shortcoming of this method, however, is
that the dimension of the subspace where eigenvectors are
searched is very narrow in the sense that it has limitation in fast
tracking [14]. Tanaka [14] developed an adaptive algorithm to
extract multiple generalized eigenvectors based on the power
iteration scheme. The algorithm uses a rank-1 update strategy,
and transforms the GHEP (1) into a HEP. However, the main
steps needed in each iteration include O(rN2) floating-point
operations (flops) when tracking the r-dominant generalized
eigenvectors, which is still computationally expensive.

Recently developed algorithms based on randomization
have been shown to be highly accurate for low-rank matrix
approximation [28]–[36]. They are computationally efficient
and easy to implement on parallel machines. However, these
algorithms provide approximation for a single matrix and
hence can not be directly applied to generalized eigenvectors
tracking. The work in [37] proposed a randomized algorithm
for GHEP. However it considers a given matrix pencil and
matrices are not assumed to be varying over time. The work
in [1], which contains primary results of the current work,
utilizes randomization for generalized eigenvectors tracking.
This work substantially extends [1] by presenting the proof for
APR-EVD as well as convergence behavior of the proposed
online tracking algorithms. In addition, we present more
numerical results, which further demonstrate the effectiveness
and efficiency of the algorithms. Our work considers streaming
data and seeks a reduced-size problem as in [13], however
our algorithms search the generalized eigenvectors in the space
comprised the collection of observed sample vectors up to k,
i.e.,

∑k
i=1 α

k−ix(i)xH(i) and
∑k
i=1 β

k−iy(i)yH(i), where
α and β are forgetting factors. This naturally extends the
subspace where generalized eigenvectors are sought.

A. Summary of Contributions

In this paper, firstly we present an efficient algorithm termed
APR-EVD (alternate-projections randomized eigenvalue de-
composition) to solve a standard eigenvalue problem. We de-
velop an error bound for this algorithm, and further empirically
investigate the tightness of the bound via two matrices. Then,
based on APR-EVD, we devise two fast and efficient algo-
rithms for dominant generalized eigenvectors extraction: we
harness the rank-1 update strategy to transform the GHEP into
HEP and non-HEP, and then apply the APR-EVD algorithm
to track the principal eigenvectors. The proposed algorithms
have fast tracking speed in a time-varying environment, as
will be demonstrated in simulation sections. Our proposed
algorithms takes O(N2) flops during each necessary iterative
computations, which achieves the better balance between fast

tracking and lower computation among several existing meth-
ods. Further, they can be parallelized on modern computers
due to compounding randomized sampling techniques and
rank-1 update strategy. In addition, the proposed algorithms are
investigated under various settings and scenarios. In particular,
they are employed for the task of real-time denoising of
hyperspectral images.

The remainder of this paper is organized as follows. In
Section II, a novel randomized algorithm for solving standard
eigenvalue problems is proposed. In Section III, we develop
two online algorithms for the extraction of r-dominant gen-
eralized eigenvectors. We provide a detailed description of
the implementation and computational complexity of the the
proposed algorithms. In Section IV, we establish theoretical
analysis for the proposed algorithms under the assumption
that the covariance estimations are unbiased. We also provide
the low-rank approximation error bound for APR-EVD. In
Section V, we present numerical experimental results and
discuss the efficacy and efficiency of our proposed algorithms
in relation to existing algorithms. Concluding remarks are
given in Section VI.

B. Notation

Normal fonts x and X denote scalar. Boldface small letters
x and capital letters X denote column vectors and matrices,
respectively. C denotes the complex domain. The superscript
(·)∗ denotes the conjugate of a complex number, (·)H denotes
the Hermitian transpose operator, and (·)† denotes the pseudo-
inverse of a matrix. IN denotes an identity matrix of order N .
orthr(·) constructs an orthonormal basis with r columns for
the range of a matrix. The notation || · ||2 denotes the `2-norm.

II. ALTERNATE-PROJECTIONS RANDOMIZED EVD
(APR-EVD)

This section presents our algorithm (APR-EVD) for solving
the standard eigenvalue problem. APR-EVD utilizes random-
ization and forms the building block of online generalized
eigenvectors extraction algorithms presented in the next sec-
tion.

In many practical applications, the signal subspace spanned
by the dominant generalized eigenvectors lies in a low-
dimensional space [24]. This implies that low-rank approxi-
mation techniques, which approximate an input matrix by one
of lower rank, can be applied to treat GHEPs. Recent low-
rank approximation methods based on randomized sampling
[33]–[35] are computationally efficient. In addition, they can
harness advanced computer architectures. In this section, we
propose the APR-EVD algorithm. The proposed online algo-
rithms, presented in the next section, will extract generalized
eigenvectors by applying APR-EVD to a transformation of (1).

A. The APR-EVD Algorithm

Our proposed APR-EVD algorithm is described as follows.
First, an orthonormal basis for the range of a general square
input matrix A ∈ CN×N is obtained. Next, a representation of
A is computed by the basis. Finally, the left or right dominant
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eigenvectors and corresponding eigenvalues are extracted by
utilizing the Rayleigh-Ritz process. Before proceeding with
the detailed procedure of our algorithm, we assume that A
has only r independent columns, i.e., the numerical rank of
A is r. This implies that the range of A can be constructed
with r independent orthonormal columns.

Our decomposition is constructed as follows: we first gen-
erate a random matrix Ψ ∈ CN×d, where r ≤ d < N ; we
consider random variables with standard Gaussian distribution
(alternative distributions, e.g., the subsampled randomized
Fourier transform (SRFT) [38], can also be used). Then, we
construct the N × d matrix:

G = AHΨ. (2)

Matrix G is a projection onto the row space of A by Ψ. Next,
we form the N × d matrix:

H = AG. (3)

Matrix H is a projection onto the column space of A by G.
After, we orthonormalize the columns of H in order to obtain
a basis Q. This operation can efficiently be performed by a
call to a packaged QR decomposition. We only keep the first
r columns, i.e., Q is of size N × r:

Q = orthr(H). (4)

Note that the rank of H is at most r [39], and Q approximates
the range of A. Through exploiting Q, we use the Rayleigh-
Ritz method [40], [41] to compute a Ritz pair (Λ,V) of the
following matrix:

T = QHAQ. (5)

Thus
Ur , QV. (6)

and Λ constitute the approximate eigenpair of A.
Provided that the matrix A is stored in the row-major format

or is revealed rows by rows, equations (2) and (3) can be
computed through a single pass over A. The APR-EVD algo-
rithm thus needs two passes over the input matrix. However, by
approximating equation (5), we devise a single-pass algorithm,
which can be directly employed for streaming data processing.
We estimate matrix T through a pre-multiplication of the
identity in (5) by ΨHQ:

ΨHQT = ΨHQQHAQ.

Having known that A ≈ QQHA and by the definition of
G (2), an estimation T̃ is given by:

T̃ = [ΨHQ]†[GHQ]. (7)

B. Computational Complexity Bound for APR-EVD

To construct an approximation to an N × N matrix A,
APR-EVD incurs the following costs: generating a matrix of
Gaussian random variables costs O(Nd) flops. Forming G (2)
and H (3) each costs O(N2d) flops. Generating Q (4) costs
O(Nd2) flops. Considering the estimation to (5), forming T̃
and computing an eigenpair costs O(Nr2) + O(r3) flops.

The operation count of the decomposition is dominated by
multiplications of A, and we thus have the complexity of order

CAPR-EVD = O(N2d).

Here d (the sampling size parameter) is very close to r.

III. PROPOSED ADAPTIVE ALGORITHMS

By transforming (1) into either HEP or non-HEP, the APR-
EVD algorithm is capable of extracting the generalized eigen-
vectors with considerably less computation than batch method.
However, integrating the construction of random structured
subspace (2) and (3) with online statistic estimation of Rx

and Ry , we have obtained two efficient tracking procedures,
which operates in the reduced-size level and avoids prohibitive
matrix-matrix multiplication, matrix inverse and square root
of inverse of matrix operations. We firstly discuss the online
estimation of matrix pencil (Ry,Rx) in order to obtain these
two tracking procedures.

In many signal and information processing applications, Rx

and Ry are associated to data covariance matrices. Let the co-
variance matrices of zero-mean stochastic vectors x(k) ∈ CN
and y(k) ∈ CN be given by Rx = E{x(k)xH(k)} and
Ry = E{y(k)yH(k)}. When processing online streaming
data, at each instant k scaled versions of these matrices are
typically estimated by time averaging with the most recent
data by

Rx(k) = αRx(k − 1) + x(k)xH(k), (8)

Ry(k) = βRy(k − 1) + y(k)yH(k), (9)

where parameters α ∈ (0, 1) and β ∈ (0, 1) are smoothing
constants.

Considering the above setting, this section describes two
algorithms that address the GHEP in an online manner. They
first reduce (1) to a standard eigenvalue problem as presented
at the beginning of this paper, and then apply APR-EVD to
track the generalized principal eigenvectors. In Algorithm 1,
the problem (1) is transformed to a HEP by integrating the
statistics from streaming data, where we track the random
structured subspace of R

−1/2
x (k)Ry(k)(R

−1/2
x (k))H to ex-

tract the r-dominant generalized eigenvectors. Whereas, the
problem (1) is transformed to a non-HEP in Algorithm 2, and
the random structured subspace of R−1

x (k)Ry(k) is tracked
simultaneously.

A. Extracting r-dominant generalized eigenvectors
by tracking the random structured subspace of
R
−1/2
x (k)Ry(k)(R

−1/2
x (k))H

By exploiting rank-1 update strategy under the scenario
of streaming data, we can efficiently compute the random
structured subspace of a input matrix described in equations
(2) and (3). It is known that GHEP can be treated as a stan-
dard eigenvalue problem. Therefore, one way is to track the
random structured subspace R

−1/2
x (k)Ry(k)(R

−1/2
x (k))HΨ.

Updating this random structured subspace requires to up-
date R

−1/2
x (k)Ry(k)(R

−1/2
x (k))H beforehand. However, di-

rectly updating R
−1/2
x (k)Ry(k)(R

−1/2
x (k))H , involves com-

putations of matrix square root and its inversion, as ex-
pounded in Section I. This is computationally prohibitive,
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i.e., it requires O(N3) operations. We thus adopt the rank-
1 update strategy presented in [14] to recursively com-
pute R

−1/2
x (k)Ry(k)(R

−1/2
x (k))H , where these steps involve

equations (10) - (13). For ease of notation, let

K(k) = R−1/2
x (k),

R(k) = K(k)Ry(k)KH(k).
(10)

The procedure of this algorithm (hereafter Algorithm
1) involves updating R(k), recursively forming G(k) =
RH(k)Ψ(k), and finally H(k) = R(k)G(k), which enables
the extraction of orthonormal basis Q(k). R(k) and K(k) are
updated through the following equations:

R(k) =
1

α

[
βR(k − 1) + ỹ(k)ỹH(k)

+ x̃(k)cH(k) + δ1(k)h(k)x̃H(k)
]
,

(11)

K(k) =
1√
α

K(k − 1) + δ1(k)x̃(k)x̄H(k).

where
ỹ(k) = K(k − 1)y(k),

x̃(k) =
1√
α

K(k − 1)x(k),

c(k) = δ∗2(k)x̃(k) + δ1(k)h(k),

h(k) = βrx(k) + a1(k)ỹ(k),

x̄(k) =
1√
α

KH(k − 1)x̃(k).

(12)

In the above relations, a1(k), δ1(k), δ2(k) and rx(k) are
defined by:

a1(k) = ỹH(k)x̃(k),

δ1(k) =
1

‖x̃(k)‖2
( 1√

1 + ‖x̃(k)‖2
− 1
)
,

δ2(k) = |δ1(k)|2 (βx̃H(k)rx(k) + |a1(k)|2),

rx(k) = R(k − 1)x̃(k).

(13)

After updating R(k) and K(k), G(k) is obtained through
the recursion:

G(k) =RH(k)Ψ

=
1

α

[
βR(k − 1) + ỹ(k)ỹH(k) + x̃(k)cH(k)

+ δH1 (k)h(k)x̃H(k)
]H

Ψ

=
1

α

[
βG(k − 1) + ỹ(k)yHo (k) + c(k)xHo (k)

+ δ1(k)x̃(k)hHo (k)
]
,

(14)

where
yo(k) = ΨH ỹ(k),

xo(k) = ΨH x̃(k),

ho(k) = ΨHh(k).

We note that Ψ is generated before the streaming data x(k)
and y(k) is fed and it is kept as a constant, which implies
Ψ(0) = · · · = Ψ(k). Therefore, the index k is omitted for the

ease of exposition. Accordingly, H(k) is obtained through
the recursion:

H(k) =R(k)G(k)

=
1

α2

[
β2H(k − 1) + S1(k) + S2(k) + S3(k) + S4(k)

]
.

(15)
The terms {Si(k)}4i=1 are given by:

S1(k) = βry(k)yH
o (k) + βrc(k)xH

o (k) + βδ1(k)rx(k)hH
o (k),

S2(k) = ỹ(k)
[
βyH

h (k) + a2(k)yH
o (k)

+ a∗3(k)xH
o (k) + δ1(k)a1(k)hH

o (k)
]
,

S3(k) = x̃(k)
[
βcH

h (k) + a3(k)yH
o (k)

+ a4(k)xH
o (k) + δ1(k)a5(k)hH

o (k)
]
,

S4(k) = h(k)
[
δ1(k)βxH

h (k) + δ1(k)a∗1(k)yH
o (k)

+ δ1(k)a∗5(k)xH
o (k) + |δ1(k)|2 a6(k)hH

o (k)
]
.

(16)
where

ry(k) = R(k − 1)ỹ(k),

rc(k) = R(k − 1)c(k),

yh(k) = GH(k − 1)ỹ(k),

a2(k) = ỹH(k)ỹ(k),

a3(k) = cH(k)ỹ(k),

ch(k) = GH(k − 1)c(k),

a4(k) = cH(k)c(k),

a5(k) = cH(k)x̃(k),

xh(k) = GH(k − 1)x̃(k),

a6(k) = xH(k)x̃(k).

(17)

Next, we orthonormalize the columns of H(k) (15), obtain-
ing Q(k):

Q(k) = orthr(H(k)), (18)

which gives an approximate basis for the range of R(k). Then,
to lower computational workload, instead of computing T(k),
we make use of the formula in (7) to compute T̃(k):

T̃(k) = [ΨHQ(k)]†[GH(k)Q(k)].

By performing the EVD on T̃(k), we obtain the eigenpair
(Λ̃(k), Ṽ(k)). Accordingly, an approximation to the r leading
generalized eigenvectors of the matrix pencil (Ry,Rx) is
obtained by:

W̃(k) = K(k)Q(k)Ṽ(k). (19)

Computational Cost of Algorithm 1. The steps described,
due to the fact that they share the same observed vectors
in time index k as well as some common variables which
have been known through the computation in time index
k − 1, (i) are computationally less expensive compared with
matrix-matrix multiplications and matrix square-root inverse,
especially for very large N , and (ii) can be executed in parallel.
The main steps involve computations of (11)-(17) in each
iteration. Steps (18)-(19) are not necessary at each iteration.
TABLE I summarizes the dominant cost of Algorithm 1
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TABLE I: Dominant cost of Algorithm 1

Equations Complexity order
(11) 10N2 +O(N)
(12) 3N2 +O(N)
(13) N2 +O(N)

(14) - (16) 2N2 +O(Nd)
(18) - (19) N2r +O(Nr2)

overall N2r + 16N2 +O(Nr2) +O(Nd)

B. Extracting r-dominant generalized eigenvectors by tracking
the random structured subspace of R−1

x (k)Ry(k)

Let P(k) = Qx(k)Ry(k), where Qx(k) = R−1
x (k). The

algorithm presented here (hereafter called Algorithm 2) first
recursively updates P(k), then applies it as the input matrix
for ARP-EVD to extract the generalized eigenvectors. In doing
so, by applying the SM-formula (Sherman-Morrison-formula)
[42], we obtain a recursion for Qx(k):

Qx(k) = R−1
x (k) =

1

α

[
Qx(k − 1)− qx(k)qHx (k)

α+ xH(k)qx(k)

]
,

(20)
where

qx(k) = Qx(k − 1)x(k).

As a result, P(k) is obtained by:

P(k) =Qx(k)Ry(k)

=
1

α

[
βP(k − 1) + qy(k)yH(k)− qx(k)zH(k)

]
,

(21)

where
qy(k) = Qx(k − 1)y(k),

z(k) =

(
βxH(k)P(k − 1)

α+ xH(k)qx(k)
+

qHx (k)y(k)yH(k)

α+ xH(k)qx(k)

)H
.

After expressing P(k) through a recursion, we now update
G(k) as follows:

G(k) = PH(k)Ψ

=
1

α

[
βG(k − 1) + y(k)mH

y (k)− z(k)mH
x (k)

]
,

(22)
where

my(k) = ΨHqy(k),

mx(k) = ΨHqx(k).

We then obtain H(k) through the following equation:

H(k) = P(k)G(k)

=
1

α2

[
β2H(k − 1) + J1(k) + J2(k) + J3(k)

]
,

(23)

The terms {Ji(k)}3i=1 in (23) are given by:

J1(k) = βdy(k)mH
y (k)− βdz(k)mH

x (k),

J2(k) = qy(k)
(
βnHy (k) + b1(k)mH

y (k)− b2(k)mH
x (k)

)
,

J3(k) = qx(k)
(
b3(k)mH

x (k)− βnHz (k)− b∗2(k)mH
y (k)

)
.

(24)
where

dy(k) = P(k − 1)y(k),

dz(k) = P(k − 1)z(k),

ny(k) = GH(k − 1)y(k),

b1(k) = yH(k)y(k),

b2(k) = yH(k)z(k),

nz(k) = GH(k − 1)z(k),

b3(k) = zH(k)z(k).

We now orthonormalize the columns of H(k) (23), obtain-
ing Q(k) = orthr(H(k)), which provides approximation
to the range of P(k). Following the procedure described
in Algorithm 1, we form T̃(k) and compute the eigenpair
(Λ̃(k), Ṽ(k)). The r leading generalized eigenvectors of the
matrix pencil (Ry,Rx) are then approximated by:

W̃(k) = Q(k)Ṽ(k). (25)

Computational Cost of Algorithm 2. TABLE II summarizes
the dominant cost of Algorithm 2. The flop count of Algorithm
2 satisfies 13N2 +O(Nr2) +O(Nd) flops.

TABLE II: Dominant cost of Algorithm 2

Equations Complexity order
(20) - (21) 11N2 +O(N)

(22) O(Nd)
(23)-(24) 2N2 +O(Nd)

(25) O(Nr2) +O(r3)
overall 13N2 +O(Nr2) +O(Nd)

IV. THEORETICAL ANALYSIS

In this section, we characterize the performance of the
proposed algorithms by providing an error bound which shows
the accuracy of the computed basis.

Online updates of sample covariance matrices by (8) and (9)
lead to unbiased estimates of

R′x =
1

1− α
Rx,

R′y =
1

1− β
Ry.

Assume that the `2-norm errors of sample covariance matrix
estimates at instant k are bounded, i.e.,

E
{∥∥Rx(k)−R′x

∥∥
2

}
≤ εx(k),

and
E
{∥∥Ry(k)−R′y

∥∥
2

}
≤ εy(k).

The error upper bounds of R−1
x (k)Ry(k) and

R
− 1

2
x (k)Ry(k)(R

− 1
2

x (k))H can then be denoted by:

E
{∥∥R−1

x (k)Ry(k)−R′x
−1

R′y
∥∥2

2

}
≤ ε1(k),

and

E
{∥∥R− 1

2
x (k)Ry(k)R

− 1
2

x (k)−R′
− 1

2
x R′y(R′

− 1
2

x )H
∥∥2

2

}
≤ ε2(k).

where ε1(k) and ε2(k) are two constants depending on εx(k),
εy(k), and cond(Rx) with cond(·) denoting the condition
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number of a matrix. Note that these upper bounds only rely
on the statistic properties of random variables x(k) and y(k),
and they are independent of the proposed algorithms.

The results of proposed online algorithms are equivalent
to those from applying APR-EVD to R−1

x (k)Rx(k) and
R
− 1

2
x (k)Ry(k) R

− 1
2

x (k) at each instant k. Having known that
the accuracy of the covariance estimation is independent of
the algorithms, establishing an approximation error bound of
APR-EVD plays the crucial role in our analysis. In what
follows, we bound from above the error of the low-rank
approximation constructed by APR-EVD.

For simplicity, we consider the case where the input matrix
A upon which APR-EVD operates is real-valued. An exten-
sion to the complex-valued matrix is straightforward. To bound
the error of APR-EVD, we first define the SVD [42], which
factors A as:

A = UΣWT =
[
U1 U2

] [Σ1 0
0 Σ2

] [
WT

1

WT
2

]
, (26)

where orthogonal U1 ∈ RN×r and U2 ∈ RN×(N−r)

are the left singular vectors, Σ1 , diag(σ1, ..., σr) and
Σ2 , diag(σr+1, ..., σN ) are diagonal of order r and N − r,
respectively, whose entries σis are the singular values, and
orthogonal W1 ∈ RN×r and W2 ∈ RN×(N−r) are the right
singular vectors of A. For the rank-r approximation of A, the
least error is achieved by the SVD such that:

‖A−U1U
T
1 A‖2 = ‖Σ2‖2,

To derive an error bound in relation to the optimal one, we
consider r + p ≤ d < N , where p ≥ 0 is called oversampling
parameter and, considering the interaction of left singular
vectors of A with Ψ (2), define

UTΨ , [Ψ̃T
1 Ψ̃T

2 ]T ,

where Ψ̃1 and Ψ̃2 have d−p and N−d+p rows, respectively.
We now put forth our theorem.

Theorem 1: Let a matrix A be square with order N and
numerical rank r. Let Ur be computed by (6) with APR-EVD.
Then,

‖A−UrU
T
r A‖2 ≤ ‖Σ2‖2 +

√
C2

1‖Ψ̃2‖22‖Ψ̃
†
1‖22

1 + C2
2‖Ψ̃2‖22‖Ψ̃

†
1‖22

, (27)

where C1 =
√
r
σ2
d−p+1

σr
, and C2 =

σ2
d−p+1

σ1σr
.

Proof: Let PUr
, UrU

T
r = QVVTQT = QQT , PQ.

This relation follows because V is an orthonormal matrix of
order r. We therefore have

‖(I−PUr
)A‖2 = ‖(I−PQ)A‖2. (28)

It now suffices to bound the right-hand side of (28). To
do so, writing A = A1 + A2, where A1 = U1Σ1W

T
1 and

A2 = U2Σ2W
T
2 , and using the triangle inequality, we will

have:

‖(I−PQ)A‖2 ≤ ‖(I−PQ)A1‖2 + ‖(I−PQ)A2‖2. (29)

For the first term on the right-hand side of (29), by following
the procedure described in the proofs of Theorems 4 and 5 of
[32], we have

‖(I−PQ)A1‖2 ≤

√
C2

1‖Ψ̃2‖22‖Ψ̃
†
1‖22

1 + C2
2‖Ψ̃2‖22‖Ψ̃

†
1‖22

, (30)

where C1 =
√
r
σ2
d−p+1

σr
, and C2 =

σ2
d−p+1

σ1σr
. For the second

term on the right-hand side of (29), we will have

‖(I−PQ)A2‖2 ≤ ‖I−PQ‖2‖A2‖2 ≤ ‖Σ2‖2. (31)

Substituting the results in (30) and (31) into (29), the
theorem follows.

Theorem 2: Let matrix A have an SVD defined in (26),
r + p ≤ d < N , where p ≥ 0, and Ur be computed by
APR-EVD. Let 0 < Ξ� 1, and define

CΞ =
e
√
d

p+ 1

( 2

Ξ

) 1
p+1
(√

n− d+ p+
√
d+

√
2log

2

Ξ

)
.

Then, with probability at least 1− CΞ, we have

‖(I−PUr
)A‖2 ≤ ‖Σ2‖2 +

√
rσ4
d−p+1

σ2
r

C2
Ξ.

Proof: According to [35, Theorem 5.8], for standard
Gaussian matrices Ψ̃1 and Ψ̃2, we have

P
{
‖Ψ̃2‖2‖Ψ̃†1‖2 ≥ CΞ

}
≤ Ξ. (32)

Moreover, (27) is simplified to

‖(I−PUr
)A‖2 ≤ ‖Σ2‖2 +

√
C2

1‖Ψ̃2‖22‖Ψ̃
†
1‖22. (33)

By substituting the result (32) into (33), the theorem follows.

V. NUMERICAL SIMULATIONS

This section demonstrates the experimental results of our
numerical tests conducted to verify our theoretical findings
as well as the performance of our proposed algorithms for
tracking the generalized eigenvectors of matrix pencils. The
first example involves the evaluation of the error bound of
APR-EVD algorithm. Examples 2 to 4 consider the tracking of
generalized eigenvectors from streaming data with stationary
or time-varying statistics, and the last example considers the
application of online hyperspectral image denoising.

In the numerical examples, we compare the results of
Algorithms 1 and 2 with those of the following algorithms:

• Power Iteration-based (PI-based) [14]: a fast tracking
algorithm based on the power iteration.

• PAST-based: these algorithms are extensions of PAST and
PASTd [12]. For examples 2 and 3, we use the sequential
version [12, Algorithm 2]. For example 4, we use [12,
Algorithm 1], which is used to extract largest generalized
eigenvector.

• R-GEVE [13]: this algorithm is based on the reduced-
rank technique.
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(a) Comparison of the `2-norm approximation error for the Hermitian input matrix
A1.
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(b) Comparison of the `2-norm approximation error for the non-Hermitian input
matrix A2.

Fig. 1: Empirical evaluation of the error bound for the APR-EVD algorithm.

• Gradient-based [15, Algorithm 3]: with negative step size
to track the principal component and multiple generalized
eigenvectors tracking is implemented using orthogonal
complement structure.

• GSVD [42]: the batch algorithm for generalized singular
value decomposition.

A. Example 1

This subsection empirically investigates via two synthetic
matrices the accuracy of APR-EVD in constructing a low-rank
approximation, and the tightness of the error bound developed;
it compares the `2-norm approximation error produced by
APR-EVD with the theoretical bound presented in (27). In
the context of GHEP, the input matrix considered is not an
arbitrary square matrix. Instead, it is well structured based
on the transformation discussed in Section III. To be precise,
the N × N input matrix is synthesized using two Hermitian
matrices Ry and Rx satisfying equation (1) and has the form
of R−1

x Ry and R
−1/2
x Ry(R

−1/2
x )H , as is the case considered

in Algorithms 1 and 2. For this purpose, we generate the matrix
pencil using the well-known jointly diagonalization [43],

WHRyW = Λr′ .

WHRxW = IN .
(34)

In the above equations, W is a randomly generated
Rx-orthonormal matrix, Rx is a randomly generated
Hermitian positive definite matrix, Λr′ is a diagonal
matrix containing r′-dominant generalized eigenvalues that
decrease geometrically from 1 to 10−5, and the remaining
generalized eigenvalues λi = 10−1λr′(i = r′ + 1, · · · , N).
In MATLAB notation, Ux = randn(N); Rx
= Ux’*Ux; smax =1; smin =1e-5; s1 =
linspace(smax, smin,N); s1(r+1:N) = 1e-6;
W = sqrtm(inv(Rx))*orth(randn(N)); Ry
= inv(W)’*diag(s)*inv(W). This example
considers two cases of input matrix: i) Hermitian matrix

A1 = R
−1/2
x Ry(R

−1/2
x )H , and ii) non-Hermitian matrix

A2 = R−1
x Ry . We set N = 100 and the practical

rank is set to r′ = 10. We then fix the value r = r′

and increase the sampling parameter size d to evaluate
the value of ‖Ai − UrU

T
r Ai‖2 (i = 1, 2), under the

assumption 2 ≤ p ≤ d − r′. Figs. 1 and 2 depict the
`2-norm approximation errors ‖A1 − UrU

T
r A1‖2 and

‖A2 − UrU
T
r A2‖2 versus different choices of sampling

size d respectively, where the black curve indicates the
optimal error bound, i.e., (r + 1)-th singular value obtained
by the SVD of Ai and the black curve gives the upper
bound presented in Theorem 1. Judging from the figures, we
conclude that APR-EVD algorithm achieves a highly accurate
approximation for both types of input matrices A1 and A2

when d is greater than its practical rank r′. Increasing the
value of d, however, does not lead to improved approximation
performance. Therefore, a moderate choice of d ≥ r′ + 2
is sufficient to yield an accurate approximation basis. We
also observe that all the approximation errors are strictly
upper-bounded by the theoretical bound under different tested
values of d.

B. Example 2

In this example, we simultaneously extract the dominant
generalized eigenvectors from two non-stationary real-valued
random vector processes {y(k)k∈Z} and {x(k)k∈Z}. The
signal model for generating the random vector processes is
synthesized using the MATLAB script described in Example
1. The non-stationary matrix pencil (Ry,Rx) can be obtained
by varying W and Rx over time.

To compare the convergence speed and estimation accuracy,
we use the angle between subspaces; it measures the closeness
of two subspaces (estimated and exact subspaces) [44], [45].
We also use sample standard deviation of subspace angle to
measure numerical stability of considered algorithms, which
is computed similar to the criteria defined in (36).
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Fig. 2: Angle between subspaces and sample standard deviation results of dominant generalized eigenvectors for Example 2.
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Fig. 3: Runtime versus dimension over 2000 iterations based on the experiment
settings in Example 2.

The basic settings of the algorithms considered in this
example are set as follows: we set forgetting factors to
α = β = 0.998 as in [15]. Since the explicit knowledge
of (Ry,Rx) is unknown, the step size of gradient-based
algorithm is set to −0.001, which guarantees a considerable
convergence speed and numerical stability. For Algorithms 1
and 2, in order to obtain more accurate estimations, we set
r = d = 13. All parameters of the other algorithms and
initial values are the same as in Example 1. For PAST-based
algorithm, we set β = 0.92, c(0)i = 0.1ei, and di(0) = 1 for
i = 1, 2 as suggested in [12], where ei is the ith column of
the N ×N identity matrix. All algorithms are initialized with
Rx(0) = Ry(0) = IN , and w̃i(0) = ei.

Figs. 2(a) and 2(b) display the subspace angle and sample
standard deviation for the estimated r′-dominant generalized
eigenvectors, respectively. In terms of tracking the r′-dominant
generalized eigenvectors, Fig. 2(a) shows that Algorithm 2,
Algorithm 1, PAST-based, PI-based and GSVD exhibit the
fastest convergence speed in the initial phase. R-GEVE and
gradient-based methods face difficulties to converge. Starting
from time instant k = 3000, Algorithm 1, Algorithm 2 and

PI-based method are able to track the shift of the signal model
in the fastest convergence speed. From Fig. 2(b), though R-
GEVE has the best numerical stability, this method does not
converge. PAST-based method tends to fluctuate in the steady
state. In both figures, we observe that Algorithm 1, Algorithm
2 and PI-based method demonstrate similar performance.

C. Runtime comparison

The runtime versus matrix dimension is assessed for the
compared algorithms. The simulation is conducted via MAT-
LAB on a PC with a 3.59 GHz AMD Ryzen 5 3600 6-core
processor and 16 GB of memory. The results are obtained over
2000 iterations via the same signal model and experimental
settings as in example 2.

From Fig. 3, we observe that Algorithm 2 and R-GEVE
exhibit the fastest processing speed among all these algorithms
as matrix dimension increases. However, the latter encoun-
ters difficulties to converge under high-dimensional setting.
Algorithm 1 has the second best processing speed among
the considered algorithms. Gradient-based and GSVD are
computationally prohibitive which limits their practical use for
high-dimensional applications.

D. Example 3

In this example, we simultaneously extract the dominant
generalized eigenvectors from two real-valued random vector
processes {y(k)k∈Z} and {x(k)k∈Z}. These signals are gen-
erated by two sinusoids in additive noise defined in the time
domain [15], [16], [46]:

y(k) =
√

2 sin (0.62πk + θ1) + n1(k),

x(k) =
√

2 sin (0.46πk + θ2) +
√

2 sin (0.74πk + θ3) + n2(k),

where θi, for i = 1, 2, 3, are the initial phases, which follow
uniform probability distributions within [0, 2π]. n1(k) and
n2(k) are zero-mean white Gaussian noises with variance
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σ2
1 = σ2

2 = 0.1. The input vectors {y(k)} and {x(k)} are
arranged in blocks of size N = 8, that is,

y(k) = [y(k), · · · , y(k −N + 1)]T ,

x(k) = [x(k), · · · , x(k −N + 1)]T ,

and k ≥ N . Define the N ×N matrix pencil
(
R̄y, R̄x

)
with

the (m,n) entry (m,n = 1, . . . , N) of R̄y and R̄x given by[
R̄y

]
mn

= cos[0.62π(n−m)] + δmnσ
2
1 ,[

R̄x

]
mn

= cos[0.46π(n−m)] + cos[0.74π(n−m)] + δmnσ
2
2 .

Where δmn is the Kronecker delta function. When the
forgetting factors α and β are set to 1, we have

lim
k→∞

1

k
Ry(k) = R̄y,

lim
k→∞

1

k
Rx(k) = R̄x.

The generalized eigenvalues of the matrix pencil (R̄y, R̄x)
are calculated as λ̄1 = 16.0680, λ̄2 = 6.8302, λ̄3 = 1.0,
λ̄4 = 1.0, λ̄5 = 0.1592, λ̄6 = 0.0708, λ̄7 = 0.0254, and λ̄8 =
0.0198. For the first two generalized eigenvalues λ̄1, λ̄2, the
ratio λ̄1+λ̄2∑N

i=1 λ̄i
= 90.96%, showing that the summation of first

two generalized eigenvalues λ̄1 and λ̄2 accounts for a large
proportion. Therefore, the first two generalized eigenvectors
are dominant.

To compare the convergence speed and estimation accuracy,
we use the direction cosine, which measures the similarity be-
tween the ith estimated and reference generalized eigenvectors
of matrix pencil

(
R̄y, R̄x

)
:

DCi(k) =

∣∣w̃H
i (k)w̄i

∣∣
‖w̃i(k)‖‖w̄i‖

, (35)

where w̃i and w̄i are the ith estimated and reference gen-
eralized eigenvectors, respectively. When w̃i converges to
w̄i, DCi(k) = 1. Here the result of (35) is averaged over
100 independent trials. Moreover, to measure the numerical
stability of considered algorithms, we use the sample standard
deviation (SSD) of the direction cosine defined as:

SSDi(k) =

√√√√ 1

L− 1

L∑
j=1

[
DCi,j(k)−DCi(k)

]2
, (36)

where DCi,j(k) is the direction cosine of jth independent trial,
where j = 1, · · · , L, of the ith estimated generalized eigen-
vector, and DCi(k) is the direction cosine of ith estimated
generalized eigenvector averaged over L trials. Here L = 100.

The basic settings of the algorithms considered in this
example are as follows: for PI-based algorithm, we set α =
β = 0.998 as suggested in [14]. For PAST-based algorithm,
we start with µ = 0.998 as suggested in [12, Experiment 1].
For R-GEVE, we set β = 0.998 as suggested in [13]. For
Gradient-based algorithm α = β = 0.998 as suggested in
[15]. For GSVD, we set α = β = 0.998. Finally, for the
proposed Algorithms 1 and 2, we set α = β = 0.998. By the
current setting, all algorithms use the same forgetting factors
to estimate the covariance matrices. For Algorithms 1 and 2,
in order to obtain more accurate estimations, we set r = 3 or

r = 4 and, accordingly the sample size parameter d = 5, as
our simulation results show better estimated dominant gener-
alized eigenvectors. Based on smallest and largest generalized
eigenvalue of

(
R̄y, R̄x

)
, for gradient-based algorithm, the step

size is set to η = −0.0005 ∈
(
2/
(
λN − λ1

)
, 0
)

to guarantee
a considerable convergence speed and numerical stability. The
other settings follow those of example 2.

Figs. 4(a) and 4(b) display the direction cosine for the first
two estimated dominant generalized eigenvectors. In terms of
tracking the first dominant generalized eigenvector, Fig. 4(a)
shows that Algorithm 2 has the fastest convergence speed
and the best estimation accuracy. In terms of tracking the
second dominant generalized eigenvector, Fig. 4(b) shows that
Algorithm 2 also has the fastest convergence speed and a
similar estimation accuracy compared to the gradient-based
method. However, the gradient-based method has a much
slower convergence speed. In both figures, we observe that Al-
gorithm 1 shows similar performance as the PI-based method,
however it is computationally more efficient. Algorithm 1 has
the lowest computational complexity among the algorithms.
Figs. 4(c) and 4(d) display the sample standard deviation for
the first two estimated dominant generalized eigenvectors. In
both figures, we observe that Algorithm 2 establishes the best
numerical stability.

E. Example 4

In this example, the input vectors {y(k)} and {x(k)} are
complex-valued vectors defined in the spatial domain, which
represent a linear antenna array with multiple fading paths [9]:

y(k) = [y1(k), . . . , yN (k −N + 1)]H ,

x(k) = [x1(k), . . . , xN (k −N + 1)]H ,

with k ≥ N , where yi(k) and xi(k) for i = 1, ..., N stand
for the complex-valued signal impinging the ith element of
antenna array, with N being the number of array elements.
This model considers the case where an antenna array re-
ceives a multipath signal plus a multipath interference. In this
scenario, in order to maximize the output signal power and
minimize the output interference-plus-noise power, the optimal
array weight is found by searching the largest generalized
eigenvector of matrix pencil (R̄y, R̄x), where the entries
(m,n) for m,n = 1, ..., N of (R̄y, R̄x) are given by

[
Ry

]
mn

=
1

I

I−1∑
i=0

e
j
(
φ
(1)
m,i−φ

(1)
n,i

)

[
Rx

]
mn

= δmnσ
2 +

1

I

I−1∑
i=0

e
j
(
φ
(2)
m,i−φ

(2)
n,i

)
.

In this example, we consider an antenna array with N = 8
elements. σ2 is the variance of the complex Gaussian white
noise, φ(q)

m,i = mπ sin [θq −∆q/2 + i∆q/(I − 1)] (q = 1, 2)
represent the phases of the multipath signals for a given
nominal angle-of arrival θq , and I is the number of paths for
each signal. The signal and interference scatter are uniformly
distributed over sectors (angles-of-arrival) of extent ∆q . We
evaluate the tracking performance of the compared algorithms
under SNR = 20 dB.
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Fig. 4: Direction cosine and sample standard deviation results for Example 3.

We give the following settings for generating the signal,
I = 12, θ1 = 5,∆1 = 30, θ2 = 25,∆2 = 30. Since the power
of signal has been normalized, we simply adjust noise power
to adjust SNR [9], [46]. Here, we set σ2 = 0.01 to guarantee
SNR = 20 dB. With the setting, the generalized eigenvalues
of (R̄y, R̄x) are calculated as λ̄1 = 187.9995, λ̄2 = 14.2617,
λ̄3 = 1.3983, λ̄4 = 0.6141, λ̄5 = 0.0447, λ̄6 = 0.0015,
λ̄7 = 0.0000, λ̄8 = 0.0000.

We are interested in extracting the largest eigenvectors, that
is, r = 1. We can set d = r+1, with 1 being an oversampling
parameter. However, our simulation results showed that by
searching the first two generalized eigenvectors, i.e., by setting
d = r = 2 and an oversampling parameter of zero, with the
same computational costs, Algorithms 1 and 2 yield slightly
better results. For the gradient-based method, the step size is
set to η = −0.0002 ∈

(
2/
(
λN − λ1

)
, 0
)
. The settings of

other algorithms follow those of example 2.
Fig. 5 shows the direction cosine and sample standard devi-

ation for the principal generalized eigenvector. It is observed
that Algorithms 1 and 2, gradient-based and PI-based methods
show similar performance in terms of estimation accuracy as

well as numerical stability. While, the gradient-based method
has a slow convergence rate due to a small learning rate, which
is required for the algorithm to produce highly accurate results.
In addition, Algorithms 1 and 2, PI-based method and the
batch GSVD exhibit the fastest convergence speed. However,
the latter shows the worse performance in estimation accuracy
among these four algorithms. It is further observed that the
PASTd-based R-GEVE faces difficulties in convergence, and
the extracted principal eigenvector diverges during a specific
time instant.

F. Computational complexity comparison

In this subsection, we detail the computational complexity
of the algorithms considered in this work.

PI-based [14]: PI-based method is comprised of a 8-steps
process. The first four steps are to compute the matrix R(k),
namely K(k)Ry(k)KH(k). These steps takes 12N2 +O(N)
floating-point operations (flops). Step 5 performs power iter-
ation, with a cost of N2r flops. Step 6 reorthonormalizes the
subspace derived from Step 5 using QR factorization, which
requires O(Nr2) flops. Step 7 takes 3N2 + O(N) flops to
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Fig. 5: Direction cosine and sample standard deviation results of the first generalized eigenvector for Example 4.

update matrix K(k). The last step constrains the extracted
generalized eigenvectors to satisfy wH(k)Rx(k)w(k) = 1,
which requires N2r flops. PI-based method costs 2N2r +
15N2 +O(Nr2) flops.

PAST-based [12]: In our paper, the sequential version of
PAST-based method is used for comparison. This technique
is based on the deflation procedure, by projecting the current
searching subspace onto a new subspace that is orthogonal to
the subspace spanned by extracted generalized eigenvectors.
This method starts by recursively updating the inverse matrix
of Rx. This step requires 4N2 +O(N) flops. The subsequent
stage is the deflation procedure. In each loop, updating the
generalized eigenvector wi and some necessary variables
requires 2N2 + O(N) flops. Hence, 2N2r + 4N2 + O(Nr)
flops is indispensable for PAST-based method to extract r-
dominant generalized eigenvectors.

R-GEVE [13]: This method proceeds in the reduced-rank
subspace. Computing the covariance matrix Rx(k) and Ry(k)
costs 6N2 + O(N) flops. Updating the other necessary vari-
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Fig. 6: Flop counts of the recursive algorithms versus the matrix dimension
N , where r and d is fixed to r = d = 15.

ables requires 2N2 + O(Nr2) + O(Nr) flops. Hence, the
dominant cost of R-GEVE is 8N2 +O(Nr2) +O(Nr).

Gradient-based [15]: Updating covariance matrix Ry(k),
Rx(k) and its inverse Qx(k) costs 10N2 + O(N) flops.
In each loop, updating each generalized eigenvector requires
approximately 3N2 + O(N) flops. Note that exploiting the
orthogonal complement structure in order to extract remaining
generalized eigenvectors is very computationally costly, as it
needs O(Nr2) in each loop. Hence, the dominant cost of
Gradient-based method is 3N2r + 10N2 +O(Nr3).

GSVD [42]: GSVD is implemented using singular value
decomposition and QR factorization. Hence, the cost of this
method is O(N3) flop counts.

TABLE III: Computational complexity for different methods

Method Complexity
Algorithm 1 N2r + 16N2 +O(Nr2) +O(Nd)
Algorithm 2 13N2 +O(Nr2) +O(Nd)

PI-based 2N2r + 15N2 +O(Nr2)
PAST-based 2N2r + 4N2 +O(Nr)

R-GEVE 8N2 +O(Nr2) +O(Nr)
Gradient-based 3N2r + 10N2 +O(Nr3)

GSVD O(N3)

Computational complexity of compared algorithms are
shown in Table III. Though R-GEVE requires the lowest order
of computation among these algorithms, it may not be of
practical use due to the difficulty in convergence. Algorithm
2 shares the same computational order, however it achieves
better balance between fast tracking and lower computational
cost.

Fig. 6 shows the flop counts of the recursive algorithms
versus the matrix dimension N , with N � r, in which case the
terms associated with O(·) can be ignored. It is observed that
Algorithms 1 and 2 are among the most efficient algorithms.
Although R-GEVE requires slightly less computations, it does
not converge over finite iterations as has been demonstrated
by our numerical examples 4.
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Fig. 7: Illustration of AVIRIS scenes from spectral band 1 (left) to band 5 (right).

Fig. 8: Illustration of real-time processing results of Algorithm 1 for the first principal component.

Fig. 9: Illustration of real-time processing results of Algorithm 1 for the second principal component..

Fig. 10: Illustration of real-time processing results of Algorithm 1 for the third principal component.

G. Example 5: real-time hyperspectral image denoising

This subsection considers an application of real-time hyper-
spectral image denoising to evaluate the practical usability of
the proposed algorithms. As far as we know, hyperspectral fea-
tures provide distinctive information for real-time tracking of

the moving vehicle due to different reflectance characteristics
from the target [47]. To capture the information required for
this purpose, line-scanning hyperspectral cameras are widely
used in aerial platforms because they are cost-effective and
able to achieve the same resolution as the megapixel area
scan camera. A major concern that arises in rapid scanning
by the line-scanning cameras, however, is how to implement
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Fig. 11: Illustration of real-time processing results of Algorithm 1 for the fourth principal component.

Fig. 12: Illustration of real-time processing results of Algorithm 1 for the fifth principal component.

Fig. 13: Illustration of real-time processing results of Algorithm 2 for the first principal component.

Fig. 14: Illustration of real-time processing results of Algorithm 2 for the second principal component.

noise removal in real-time [48]. Removal of noisy information
can be realized, e.g., by arranging the image component
according to the quality of the image. This can be done
using the minimum noise fraction (MNF) transform [4]. The
filter basis involved in the MNF transform is constructed

by the generalized eigenvectors of the image covariance and
noise covariance [49], [50]. We therefore make use of our
proposed algorithms to perform the online NMF transform for
hyperspectral image denoising.

A real-world hyperspectral image data from the 1992
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Fig. 15: Illustration of real-time processing results of Algorithm 2 for the third principal component.

Fig. 16: Illustration of real-time processing results of Algorithm 2 for the fourth principal component.

Fig. 17: Illustration of real-time processing results of Algorithm 2 for the fifth principal component.

Fig. 18: Illustration of the first five principal components obtained by performing NMF over global data.

AVIRIS India Pines dataset is considered for this example [51].
This AVIRIS scene was taken using 224 spectral reflectance
bands covering the wavelength range 0.4 − 2.5 µm with a
spatial resolution of 145×145 pixels. Fig. 7 shows the first five
spectral bands of the AVIRIS image. In this experiment, we
assume that the line-scan camera builds the rectangular area of
the scene from top to down. The noise samples are estimated

by using a simple subtraction between the neighbouring lines
of image samples. We then use Algorithms 1 and 2 to track
the generalized eigenvectors from the image covariance Ry

and noise covariance Rx for real-time denoising. For both
algorithms, the parameters r and d are set to d = r = 10. The
image covariance Ry and noise covariance Rx are initialized
using the first three lines of samples to ensure a good initial-
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ization. The forgetting factors are set to α = β = 0.9999 to
capture the sample and noise statistics as much as possible.

Figs. 8 to 12 show the real-time processing results of Algo-
rithm 1 for the first principal component to the fifth principal
component, respectively. Figs. 13 to 17 show the real-time
processing results obtained by Algorithm 2. We only demon-
strate some of intermediate results due to space constraints.
For comparison, the denoising results obtained by performing
NMF over global data is also shown in Fig. 18. From these
figures, we observe that both Algorithms achieve considerably
improved quality of the image and can clean the pixels from
the noisy samples. Besides, Algorithm 1 and Algorithm 2
achieve comparable performance with that of the global NMF
over the local regions of the processed image. However,
the adaptive nature and high computational efficiency of our
proposed algorithms make them more suitable for online
hyperspectral image denoising applications. Nonetheless, the
applications of the algorithms proposed in this work extend
beyond real-time hyperspectral denosing. Future work can
be extended to, e.g., sound zone generalization for cocktail
party effect [2], design of efficient receiver for non-orthogonal
multiple access system in wireless communication [3], and
design of multichannel wiener filter [7].

VI. CONCLUSION

In this paper, we firstly proposed the APR-EVD algorithm
that solves the standard eigenvalue decomposition through
randomization. We also provided a theoretical analysis for
APR-EVD. Then, by exploiting the rank-1 update strategy, we
developed two computationally efficient algorithms for online
dominant generalized eigenvectors extraction. We conducted
several experiments: in Example 1, we experimentally inves-
tigated the error bound of APR-EVD algorithm. Simulation
results demonstrate that APR-EVD is highly accurate for low-
rank approximation. In Example 2, time-varying environment
with randomly generated matrix pencil was taken into consid-
eration. Simulation results demonstrate that our proposed algo-
rithms has fastest tracking speed among competing algorithms.
In addition, the runtime results suggest that Algorithm 1 and
Algorithm 2 are advantageous over the other algorithms under
high-dimensional consideration. In Example 3, we evaluated
the applicability of our proposed algorithms in recovering
multiple dominant generalized eigenvectors from two real-
valued random processes defined in time domain. Our results
show that Algorithm 2 outperforms the existing algorithms in
terms of convergence speed, estimation accuracy and numer-
ical stability. In Example 4, we extracted the largest gener-
alized eigenvector for two complex-valued random processes
defined in spatial domain. Our results demonstrate that our
proposed algorithms exhibit fastest convergence speed among
the considered algorithms, while rendering comparable results.
We also considered the application of real-time denoising for
hyperspectral imaging. Experimental results suggest that our
proposed online algorithms can provide high-quality images.
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