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Tuning-free Plug-and-Play Hyperspectral Image
Deconvolution with Deep Priors

Xiuheng Wang, Graduate Student Member, IEEE, Jie Chen, Senior Member, IEEE,
and Cédric Richard, Senior Member, IEEE.

Abstract—Deconvolution is a widely used strategy to miti-
gate the blurring and noisy degradation of hyperspectral im-
ages (HSI) generated by the acquisition devices. This issue is
usually addressed by solving an ill-posed inverse problem. While
investigating proper image priors can enhance the deconvolution
performance, it is not trivial to handcraft a powerful regularizer
and to set the regularization parameters. To address these issues,
in this paper we introduce a tuning-free Plug-and-Play (PnP)
algorithm for HSI deconvolution. Specifically, we use the alter-
nating direction method of multipliers (ADMM) to decompose the
optimization problem into two iterative sub-problems. A flexible
blind 3D denoising network (B3DDN) is designed to learn deep
priors and to solve the denoising sub-problem with different noise
levels. A measure of 3D residual whiteness is then investigated
to adjust the penalty parameters when solving the quadratic
sub-problems, as well as a stopping criterion. Experimental
results on both simulated and real-world data with ground-truth
demonstrate the superiority of the proposed method.

Index Terms—HSI deconvolution, Plug-and-Play, tuning-free,
deep learning, residual whiteness, parameter estimation.

I. INTRODUCTION

Hyperspectral imaging systems simultaneously capture im-
ages of a scene over continuous narrow spectral bands ranging
from ultraviolet to visible and infrared. The high spectral res-
olution provided by HSIs enables us to conduct analyses that
cannot be performed with conventional imaging techniques.
Benefiting from abundant spectral information, hyperspectral
imaging has been widely applied to applications as diverse as
remote sensing [2] and computer vision [3]. However, due to
various physical and hardware limitations, observed HSIs are
usually blurred and corrupted by noise during the acquisition
process, leading to degraded performance in subsequent anal-
yses. Thus, it is desirable to restore images by deconvolution
(inversion of the degradation process) techniques beforehand.

Multichannel images contain abundant spectral information
across neighboring wavelengths, which raises the challenge
of accounting for spectral correlations while ensuring spatial
consistency compared to ordinary 2D images [4], [5]. State-
of-the-art deconvolution of multichannel (multispectral) im-
ages involves Wiener filter [6], [7], Kalman filter [8], and
regularized least-squares [9]. For hyperspectral deconvolution,

A preliminary version of this work has been published in the proceed-
ings of the 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) [1]. Xiuheng Wang and Cédric Richard are
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an adaptive 3D Wiener filter [10] and a filter-based linear
method [4] have been used for astronomic HSIs. 2D Fast
Fourier Transforms (FFTs) and Fourier-wavelet techniques
have been considered in [11] and [12] for HSI deconvolution in
order to benefit from computational efficiency in Fourier and
wavelet domains. In [13], an online deconvolution algorithm
was devised to process HSIs sequentially collected by a push-
broom device.

Considering that deconvolution problems are usually highly
ill-posed, it is strongly desirable to incorporate prior infor-
mation of images to regularize the solutions. To this end,
a computationally-efficient algorithm in [14] performs HSI
deconvolution subject to positivity constraints while account-
ing for spatial and spectral correlations. The work in [15]
investigates both the spatial non-local self-similarity and
spectral correlations by employing low-rank tensor priors.
Defining proper priors and designing regularizers play a key
role with these methods. However it is not a trivial task to
handcraft powerful regularizers, having in mind that complex
regularizers may also introduce extra difficulties in solving
optimization problems. Recently, benefiting from the variable
splitting principle, various PnP methods have been proposed
recently. They consist of plugging image denoising modules
in optimization modules to solve inverse problems. We shall
now outline the main principles of the PnP framework.

Consider the general inverse problem consisting of mini-
mizing the following objective function:

x̂ = argmin
x

D(x) + λR(x), (1)

where x is the unknown variable to be estimated, D(x) is
the data fidelity term that ensures the consistency between the
reconstructed and observed signals, and R(x) is a regularizer
that enforces desirable properties of the solution with λ ≥ 0
the regularization parameter. With the ADMM [16] or the half
quadratic splitting method [17], the optimization problem (1)
can be solved in K iterations consisting of two key operations:

x̂ = argmin
x

D(x) +
ρ

2
∥x− v̂∥22; (2)

v̂ = Denoiser(x̂, σ); (3)

where ρ is the penalty parameter, and Denoiser(·) represents
a denoising operator with σ =

√
λ/ρ the denoising strength.

Conversely, this formulation can also implicitly define R(·)
when plugging an arbitrary denoising operator. This allows
to benefit from the merits of deep learning and optimization
methods [18], and to eliminate the need for expensive net-



2

work retraining whenever the inverse problem changes [19].
Applications include magnetic resonance imaging (MRI) re-
construction [19], [20], 2D image restoration [21]–[24] and
hyperspectral unmixing [25], [26]. Despite its effectiveness,
this strategy has not yet been employed in HSI deconvolution
problems, though similar difficulties of designing regularizers
are encountered there.

Regardless of whether the regularizers are manually de-
signed or implicitly learned as in recent PnP algorithms, it
is desirable to select the regularization parameters properly to
balance the contribution of prior information and observations.
Classic parameter estimation methods used with handcrafted
regularizers include the discrepancy principle (DP) [27], the L-
curve [28], [29], the generalized cross-validation (GCV) [30],
[31], and Stein’s unbiased risk estimate (SURE) [32], [33].
Recently, the authors of [34] proposed the maximum curvature
criterion and the minimum distance criterion (MDC) on the
response surface to estimate the regularization parameters in a
non-negative HSI deconvolution problem [14]. The MDC has
been extended to HSI super-resolution by considering a deep
prior regularizer in [35]. By defining and maximizing some
whiteness measures of residual images, the authors of [36]
proposed a 2D image deblurring method with objective criteria
for adjusting the regularization parameter as well as the stop-
ping criterion. In [37], an exact residual whiteness principle
has been proposed for generalized Tikhonov-regularized 2D
image restoration. However, a specific-designed criteria for 3D
images, such as HSIs, is still missing.

Compared to handcrafted regularizers, implicit regularizers
in PnP algorithms introduces extra challenges that need to be
addressed for devising an automatic regularization parameter
estimation strategy. In the PnP framework, λ is reparameter-
ized by a series of internal parameters, including the penalty
parameter ρ, the denoising strength σ, and the number of
iterations K (related to stopping criteria). In [21], [25], [26],
a constant scaling factor is used to increase ρ linearly as
iterations proceed. In [22], σ is exponentially decayed in
sequential denoising sub-problems. Nevertheless, the selected
parameters in all these handcrafted criteria may lead to sub-
optimal performance since the internal parameters may not
change monotonically. To address this issue, the methods
in [23], [24] consist of training a blind denoising network
to estimate σ automatically. The work in [23] considers a
fixed ρ while the approach in [24] considers a fixed λ. Unlike
these semi-automated approaches, deep reinforcement learning
is used in [19] to determine all the internal parameters, leading
to good convergence behavior and performance.

In this paper, we introduce a fully automatic PnP hyper-
spectral deconvolution method that uses spectral-spatial priors
learned from data by a deep neural network. The HSI decon-
volution problem is addressed with an ADMM algorithm. In
order to avoid manually selecting the regularization param-
eters, we define a non-negative scalar measure of whiteness
for 3D residual images, which cooperates with a blind deep
denoiser to adaptively adjust all the internal parameters. The
contributions of this work are summarized as follows:

• We propose a PnP framework for hyperspectral deconvo-
lution. Based on the ADMM algorithm, the optimization

problem is split into two sub-problems, a simple quadratic
sub-problem and a 3D-image denoising sub-problem.

• A blind deep denoiser B3DDN is designed and plugged
into the proposed framework. This denoising operator
learns both spatial context and spectral attributes of HSIs,
bypassing the difficulty in designing regularizers. After
training with simulated data, the flexibility of the B3DDN
allows it to learn, without any extra training, the priors for
real-world images even with a distinct number of spectral
channels.

• The proposed PnP framework is designed in a completely
turning-free manner. Specifically, the penalty parame-
ters are determined automatically by solving a scalar
optimization problem while the denoising strengths are
implicitly learned by the B3DDN. A stopping criterion
for the iterative process is also provided.

• An HSI dataset containing six blurring and clear image
pairs captured in indoor and outdoor scenes is provided
with this work. This dataset allows us to show that
our method is applicable with real-world scenarios. It
also provides a benchmark for future research works in
hyperspectral deconvolution.

The paper is organized as follows. In Section II, HSI
deconvolution is formulated as a linear inverse problem.
Section III introduces the proposed tuning-free deconvolution
method based on the PnP framework with learned deep priors.
In Section IV, experiments with simulated and real-world data
are conducted and analyzed. Section V concludes this paper.

II. PROBLEM FORMULATION

We denote a degraded HSI and its latent clean counterpart
by Y ∈ RN×P×Q and X ∈ RN×P×Q respectively, where
P , Q, and N are the numbers of rows, columns and spectral
bands of the image. Using lexicographical order, Y and X
can be reshaped into vectors y ∈ RNPQ×1 and x ∈ RNPQ×1,
respectively. The degraded image and the clean image at the i-
th spectral band are denoted by Yi ∈ RP×Q and Xi ∈ RP×Q.
For ease of mathematical formulation, the columns of Yi and
Xi are stacked to form vectors yi ∈ RPQ×1 and xi ∈ RPQ×1.
x and y are vectors obtained by stacking vectors xi and yi

(1 ≤ i ≤ N ), respectively. This notation system also works
for other images.

For the i-th channel, Yi is generated from Xi according to
the following 2D degradation model:

Yi = Hi ∗Xi +Ni (4)

where Hi is the convolution kernel, possibly containing null
entries, of size P × Q encoding the Point Spread Function
(PSF) of the i-th channel:

Hi =

H11 · · · H1Q

...
. . .

...
HP1 · · · HPQ

 , (5)

Operator ∗ denotes the discrete 2D convolution performed in
the image domain, and Ni is an additive independent and
identically distributed (i.i.d.) Gaussian noise with standard
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Fig. 1. Architecture of the proposed tuning-free scheme for hyperspectral image deconvolution. (top) Network structure of the B3DDN. (bottom) Numerical
optimization steps in the ADMM framework.

deviation σ. Following [14], model (5) can be written as:

yi = Hixi + ni (6)

where Hi is a PQ × PQ block-Toeplitz matrix with P × Q
Toeplitz blocks. Imposing periodic boundary conditions on Hi,
Hi can be rewritten as a block circulant matrix with circulant
blocks, a structure denoted as circulant-block-circulant (CBC).
This property allows us to design a Fourier domain implemen-
tation for solving the least square problem in Section III-A.

Assuming that the convolution is separable and the noise
variance is independent over spectral bands, the hyperspectral
degradation model can be written as:

y = Hx+ n (7)

where H is a block-diagonal matrix of size NPQ×NPQ:

H =


H1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 HN

 . (8)

The problem in HSI deconvolution is formulated as an inverse
problem, where x is estimated by seeking the minimum of the
following objective function:

x̂ = argmin
x

1

2
∥y −Hx∥2 + λΦ(x) (9)

where the first squared-error term 1
2∥y − Hx∥2 is the data

fidelity term, and Φ(x) is the regularizer.

III. PROPOSED METHOD

Designing an effective regularizer Φ(x) along with an
efficient solving method is not trivial. Meanwhile, it is cum-
bersome to fine-tune the hyperparameter λ to balance the

contribution of Φ(x) for different images. To tackle these
issues, we propose to learn priors from hyperspectral data and
incorporate it into the model-based optimization to tackle the
regularized inverse problem in (9). More specifically, using
the variable splitting technique, we transform problem (9) into
two sub-problems, namely, a simple quadratic problem with a
penalty parameter and a 3D-image denoising problem with a
certain denoising strength. These sub-problems are iteratively
solved, using a linear method and a blind deep neural network,
respectively, until the convergence criterion is met. In this
procedure, the penalty parameter is automatically estimated
while the denoising strength is implicitly learned. Finally, the
algorithm is automatically terminated by stopping criteria. Our
tuning-free HSI deconvolution scheme is illustrated in Fig. 1.

A. Variable splitting based on the ADMM

The ADMM is adopted to decouple the data fidelity term
and the regularization term in (9). By introducing an auxiliary
variable z, problem (9) can be written in the equivalent form:

x̂ =argmin
x

1

2
∥y −Hx∥2 + λΦ(z), s.t. z = x. (10)

The associated augmented Lagrangian function is given by

Lρ(x, z,v) = argmin
x

1

2
∥y −Hx∥2 + λΦ(z)

+ vT (x− z) +
ρ

2
∥x− z∥2

(11)

with v the dual variable, and ρ > 0 the penalty parameter.
Scaling v as u = 1

ρv, problem (11) can be iteratively solved
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by repeating the following successive steps:

xk+1 =argmin
x

1

2
∥y −Hx∥2 + ρk

2
∥x− x̃k∥2 (12a)

zk+1 =argmin
z

λΦ(z) +
ρk
2
∥z̃k − z∥2 (12b)

uk+1 =uk + xk+1 − zk+1 (12c)

where

x̃k = zk − uk (13a)
z̃k = xk+1 + uk (13b)

and ρk denotes the penalty parameter at the k-th iteration. In
this way, the data fidelity term and the regularization term
in (9) are decoupled into two sub-problems, (12a) and (12b).
Sub-problem (12a) is a least square problem that can be solved
analytically as follows:

xk+1 = (HTH+ ρkI)
−1(HTy + ρkx̃k) (14)

Subproblem (12b) can be reformulated as:

zk+1 = argmin
z

1

2σ2
k

∥z̃k − z∥2 +Φ(z) (15)

where σk =
√

λ/ρk.
From a Bayesian perspective1, (15) can be considered as a

denoising problem, removing Gaussian noise with noise-level
σk from the noisy HSI z̃k to obtain the clean HSI zk+1. In
other words, a denoising operator can be used for neglecting
the design of the regularization term Φ(x).

B. Estimating parameters via 3D residual whiteness

In most real-world applications, no ground-truth informa-
tion is available for fine-tuning the algorithm parameters or
terminating the optimization at a proper iteration. To tackle
this issue, a measure of residual whiteness of 3D images is
defined in this subsection, and the optimal value of ρk at
each iteration, as well as the number of iterations, can be
determined with the help of this measure. To be specific, we
propose to evaluate the optimal ρ∗k in (12a) by solving a scalar
optimization problem. The stopping criterion then consists of
comparing this 3D whiteness measure between two iterations.

1) Measure of 3D residual whiteness: We define the resid-
ual image rk+1 ∈ RL with L = NPQ by:

rk+1 = Hxk+1 − y (16)

with its equivalent 3D image matrix denoted by Rk+1 ∈
RN×P×Q. The auto-correlation of Rk+1 is defined as:

ARk+1
=

1

L
(Rk+1 ∗Rk+1) (17)

1Considering a degradation model z̃k = z + nk where nk is Gaussian
noise with standard deviation σk . The denoising problem can be formulated
as the recovery of the posterior probability distribution function (PDF)
p(z|z̃k). Using the Bayes theorem, this PDF can be written as: p(z|z̃k) ∝
p(z̃k|z)p(z) where p(z) is the prior probability distribution of z and ∝
means “proportional to”. Finally, the log-posterior distribution can be written
as −log p(z|z̃k) = 1

2σ2
k

∥z̃k − z∥2 + log p(z) + C where C is a constant.

By rewriting log p(z) as Φ(z), estimating z in the sense of the maximum a
posterior principle leads to the optimization problem in (15).

where ∗ denotes the 3D discrete correlation. The sample auto-
correlation at indexes (n, p, q) is given by:

ARk+1
(n, p, q)=

1

L

∑
m,i,j

Rk+1(n, p, q)Rk+1(m−n, i−p, j−q)

(18)
with 1 ≤ m ≤ N , 1 ≤ i ≤ P , 1 ≤ j ≤ Q. When the residual
is close to the modeling error n, i.e., a white Gaussian noise,
ARk+1

(n, p, q) satisfies the following asymptotic property:

lim
L→∞

ARk+1
(n, p, q) ≈

{
σ2 if (n, p, q) = (0, 0, 0)

0 if (n, p, q) ̸= (0, 0, 0)
(19)

The size L of hyperspectral images is usually large (between
106 and 108), so that we can assume that the sample auto-
correlation at all indexes (n, p, q) ̸= (0, 0, 0) is close to zero.
This assumption is based on the following result of the Gaus-
sian process n with its equivalent 3D image matrix denoted
by N ∈ RN×P×Q and sample auto-correlation ANk+1

(n, p, q)
defined by replacing R as N in (18).

Theorem 1. If n has a finite variance σ and L tends to ∞,
any ANk+1

(n, p, q) with (n, p, q) ̸= (0, 0, 0) is asymptotically
uncorrelated and Gaussian-distributed with zero mean and
stand deviation σa = σ2/L

Proof. The proof follows directly by applying Proposition 1
of [38] to the 3D domain.

The rational behind imposing residual whiteness is to esti-
mate parameters by constraining the residual auto-correlation
at non-zero indexes to be small. To make this measure inde-
pendent from σ, inspired by [37], we consider the normalized
auto-correlation defined as follows:

A
Rk+1

=
ARk+1

ARk+1
(0, 0, 0)

=
Rk+1 ∗Rk+1

∥Rk+1∥2F
(20)

where ∥ · ∥F denotes the matrix Frobenius norm. All entries
Arr(n, p, q) satisfies:

lim
L→∞

A
Rk+1

(n, p, q) ≈

{
1 if (n, p, q) = (0, 0, 0)

0 if (n, p, q) ̸= (0, 0, 0)
(21)

We can now introduce the σ-independent non-negative scalar
measure of 3D residual whiteness defined as:

W(Rk+1) = ||A
Rk+1

||2F =
||Rk+1 ∗Rk+1||2F

||Rk+1||4F
(22)

2) Penalty parameter estimation: Solution xk+1 of (14)
actually depends on parameter ρk setting. To devise the
parameter selection procedure, we make ρk explicit by writ-
ing xk+1,ρk

. In order to automatically estimate the penalty
parameter ρk in (12a), the term ∥x− x̃k∥2 can be viewed as a
regularizer that enforces the solution xk+1,ρk

to tend to x̃k. As
the restored image xk+1,ρk

tends to fit the desired target image,
the related residual image rk+1,ρk

= Hxk+1,ρk
−y tends to be

close to the Gaussian noise perturbation n in (7). With (22), we
propose to estimate the optimal penalty parameter by solving
the following scalar optimization problem:

ρ∗k = argmin
ρk

W(rk+1,ρk
) (23)
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Algorithm 1 Adaptive Penalty Parameter Estimation.
Input: Blurred observation y, internal image x̃k,

blurring kernel H.
Output: Optimal adaptive parameter ρ∗k.

Initialize a, b, ϵ.
while b− a > ϵ do
ρ
(1)
k = a+ δ(b− a)

ρ
(2)
k = b− δ(b− a)

if W(r
k+1,ρ

(1)
k

) < W(r
k+1,ρ

(2)
k

)

b = ρ
(2)
k

else
a = ρ

(1)
k

end while
ρ∗k = (a+ b)/2

The varying range of ρk is (0,∞). In practice, we substitute
the ∞ by a sufficiently large value.

A fast golden-section search method is used for determining
a local minimum of (23). This method operates iteratively over
an interval (a, b) and generates two internal points:

ρ
(1)
k = a+ δ(b− a)

ρ
(2)
k = b− δ(b− a)

(24)

where δ = 0.618 is the golden ratio. As shown in Algorithm 1,
whiteness criterion W(rk+1,ρk

) is compared at ρ(1)k and ρ
(2)
k .

If it is smaller at the former point than at the latter point, then
b is substituted by ρ

(2)
k . Otherwise, a is substituted by ρ

(1)
k .

This procedure is repeated with the new smaller interval (a, b)
until b− a < ϵ with ϵ a small positive threshold. Finally, the
estimated optimal penalty parameter is given by:

ρ∗k = (a+ b)/2 (25)

and the solution of sub-problem (12a) is provided by:

xk+1 = (HTH+ ρ∗kI)
−1(HTy + ρ∗kx̃k) (26)

3) Stopping criterion: To take both HSI deconvolution
performance and computational time into account, it is im-
portant to properly set the maximum number of iterations.
Iterations can be performed until no significant improvement
between two consecutive iterations is observed. Considering
the whiteness measure in (22), we propose to stop the iterative
process with the following normalized criterion:

W(rk+1) ≥ W(rk) or
||W(rk+1)−W(rk)||

W(rk+1)
< ζ (27)

where ζ is a small positive threshold, rk and rk+1 represent
the residual image of the solutions xk and xk+1, respectively.

C. Learning spectral-spatial priors via B3DDN

Instead of using an handcrafted regularizer Φ(·) and solving
subproblem (12b) explicitly, we propose to carry out this task
with a deep neural network based denoiser. This denoiser is
trained beforehand to extract spectral-spatial prior information

from hyperspectral training observations. Then it is plugged
into the iterative algorithm to solve subproblem (12b). We
denote this denoising operator by D(·). As it is performed in
the 3D image domain to jointly capture spatial and spectral
information, we write (15) as follows:

Zk+1 = D(Z̃k, σk) (28)

Observe that D(·) is parameterized by the noise level σk. For
setting it, most existing methods use empirical strategies that
may lead to under-denoising or over-smoothing of Z̃k [23].
In addition, since σk decreases as iterations progress, some
works choose to train a set of specific models that can handle
different noise levels [22]. To avoid these redundant learning
tasks, we shall now see how to design a blind 3D denoising
network F(·) with respect to σk, but parameterised by Θ, by
considering residual learning formulation:

Zk+1 = Z̃k −F(Z̃k; Θ) (29)

1) 3D convolution: Unlike 2D convolution resulting in
spectral information distortion, 3D convolution extracts spatial
features from neighboring pixels and spectral features from
adjacent bands, simultaneously, without compromising spec-
tral resolution. 3D convolution also involves less parameters,
and it is more appropriate for hyperspectral image processing
due to the difficulty in capturing a big enough volume of
hyperspectral data. In addition, 3D convolution enables the
neural network to handle HSIs with arbitrary number of
spectral bands without modifying its architecture [39]. In this
way, there is no need to retrain a neural network when the
number of spectral bands changes. This key property allows
our method to be applied to any real-world dataset by using
a pre-trained neural network.

2) Network architecture: The B3DDN architecture is il-
lustrated in Fig. 1 (top). Each 3D-block contains a 3D con-
volution layer (3DConv), a batch normalization (BN) layer
and a ReLU layer. Batch normalization is used to speed
up the training process as well as to boost the denoising
performance [40]. Besides the input layer and the output
layer, a 3D convolution layer (3DConv), a ReLU activation
function layer, B 3D-blocks and a last 3D convolution layer
are sequentially connected to form the proposed network. The
last convolutional layer contains one 3D-filter while the others
are composed of 32 3D-filters. The kernel size of each 3D-filter
is 3×3×3, which means that the depth of the kernel along the
spectral dimension and its size over the spatial dimension are 3
and 3×3 respectively. Compared to existing complex network
architectures for HSI denoising, B3DDN achieves satisfactory
performance with less parameters. Moreover, it enables us
to apply the neural network learned with simulated data, to
real data that lacks ground truth. An example is provided in
subsection IV-G.

3) Learning strategy: The input of the proposed B3DDN is
a noisy hyperspectral image z̃ = z+v, where v is a Gaussian
noise with arbitrary standard deviation. Inspired by 2D image
denoising algorithm [40], we consider the learning residual
to predict the residual error F(z̃k; Θ) ≈ v in our denoising
network. Then we can achieve the estimated clean image by
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Algorithm 2 Tuning-free HSI deconvolution with deep priors
learnt from B3DDN.
Input: Network parameters Θ, blurred observation y,

blurring kernel H.
Output: Deblurred HSI X.

Initialize x = x0, auxiliary variable z0 = x0,
scaled dual variable u0 = 0, k = 0.
while Stopping criteria in (27) are not met do

x̃k = zk − uk

Estimate ρ∗k using Algorithm 1
xk+1 = (HTH+ µI)−1(HTy + ρ∗kx̃k)
z̃k = xk+1 + uk

Zk+1 = Z̃k −F(Z̃k; Θ)
uk+1 = uk + xk+1 − zk+1

k = k + 1
end while

z̃−F(z̃; Θ). To train the blind neural network F( · ; Θ), we
use the following loss function:

ℓ(Θ) = ∥F(z̃m; Θ)− (z̃m − zm)∥1 (30)

where {(z̃m, zm)}Mm=1 is a training set of generated noisy-
clean HSI (patch) pairs with various noise levels. Note that
the ℓ1-norm is used as a loss that is more robust to noise
than the ℓ2-norm, found providing better performance in image
restoration in the literature [35], [41]. After the B3DDN has
been trained, it is incorporated into the ADMM framework as
a blind denoiser, yielding Algorithm 2.

IV. EXPERIMENTS

In this section, we shall conduct experiments of HSI de-
convolution on both simulated and real-world datasets to
validate our method. The results provided by the proposed
method are compared with those of several HSI deconvo-
lution methods from both quantitative and qualitative per-
spectives. The source code and the proposed real-world data
is made available at https://github.com/xiuheng-wang/Tuning
free PnP HSI deconvolution.

A. Simulation datasets and experimental setup

Two simulation datasets, on the one hand the Columbia
Multispectral Database (CAVE)2 [42], and on the other hand a
remotely sensed hyperspectral data over Chikusei3 [43], were
used to evaluate the performance of our method.

1) CAVE dataset: The CAVE dataset contains 32 HSIs
recorded under controlled illuminations in a laboratory. Each
image has a spatial resolution of 512 × 512 pixels, over
31 spectral channels ranging from 400 nm to 700 nm at a
wavelength interval of 10 nm.

2) Chikusei dataset: The Chikusei dataset is an airborne
hyperspectral scene acquired by a Visible and Near-Infrared
imaging sensor over agricultural and urban regions in Chiku-
sei, Ibaraki, Japan. The scene consists of 2517× 2335 pixels

2https://www1.cs.columbia.edu/CAVE/databases/multispectral/
3http://naotoyokoya.com/Download.html

with a ground sampling distance of 2.5 m, over 128 spectral
channels ranging from 363 nm to 1018 nm. The black bound-
aries in the spatial domain were removed, leading to a scene
of size 2048× 2048 pixels.

The HSIs of the two datasets were scaled to the range [0, 1],
and then used as ground truths for x. The observations y were
generated by using the blurring kernels H and corrupted with
a white Gaussian noise n with standard deviation σ, with H
and σ defined as follows; see Fig. 3:
(a) 9×9 Gaussian kernel with bandwidth 2, and σ=0.01;
(b) 13×13 Gaussian kernel with bandwidth 3, and σ=0.01;
(c) 9×9 Gaussian kernel with bandwidth 2, and σ=0.03;
(d) Circle kernel with diameter 7, and σ = 0.01;
(e) Motion kernel from [44] of size 13×13, and σ = 0.01;
(f) Square kernel with side length 5, and σ = 0.01.

The first 20 images were selected from the CAVE dataset
for training and the remaining 12 images were used for the
test. For the Chikusei dataset, a 1024 × 2048 sub-image
was extracted from the top area of the image for training
while the remaining part was cropped into 32 non-overlapping
256× 256× 128 sub-images that were used as test data.

B. Implementation details

We implemented the proposed blind denoising network
B3DDN with PyTorch framework. The Adam optimizer [45]
with an initial learning rate 0.0002 and batch size 64 was
used to minimize the loss function (30) with 500 epochs.
The weights were initialized by the method in [46]. At every
epoch of the training stage, each original HSI was randomly
cropped into 128 and 512 patches of size 64×64 respectively
for the CAVE and the Chikusei datasets. To train the B3DDN
in a blind manner, we added an i.i.d. Gaussian noise with
random standard deviation in the range [0.2, 10] to each
patch, which was then randomly rotated or flipped for data
augmentation purpose. We set the number B of 3D blocks to
8 by considering the computational cost and memory demand,
and thus the number of parameters of the proposed B3DDN
denoiser is 10113.

Once the denoiser was trained, assuming that the statistics
of the test images differ from training images, we plugged the
B3DDN into the ADMM. Since the computational complexity
of 3D discrete correlation in (22) can be high (O(L2)), we
used the fast Fourier transform (O(L logL)) to compute it.
Step (26) was also efficiently computed in the Fourier do-
main. For the golden-section search method and the stopping
criterion presented in Subsection III-B, we set a = 0, b = 10,
ϵ = 0.001 and ζ = 0.0002.

C. Quantitative metrics and baselines

In order to evaluate the quality of the deconvolution result
X̂ by comparing it with the ground truth of X, we considered
four quantitative metrics. The first one is the Root Mean-
Square Error (RMSE), dedined as

RMSE =

√√√√ 1

NPQ

N∑
i=1

∥∥X̂i −Xi

∥∥2
F
,

https://github.com/xiuheng-wang/Tuning_free_PnP_HSI_deconvolution
https://github.com/xiuheng-wang/Tuning_free_PnP_HSI_deconvolution
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Fig. 2. Visual results for all methods in the blurring scenario (a) on the CAVE dataset. The first and second rows present the results for two different blurred
images. The false color images were generated for clear visualization with the 22nd, 14th and 7th channels used for red, green and blue, respectively.

TABLE I
RMSE, PSNR, SSIM AND ERGAS OF THE DIFFERENT METHODS APPLIED TO THE CAVE DATASET IN THE 6 BLURRING SCENARIOS.

Scenarios Metrics HLP SSP WLRTR 3DFTV Ours

(a)

RMSE 4.420 ± 1.787 4.848 ± 1.825 4.735 ± 2.076 4.332 ± 1.863 3.132 ± 1.320
PSNR 36.166 ± 3.334 35.373 ± 3.385 35.872 ± 3.759 36.450 ± 3.793 39.252 ± 3.465
SSIM 0.9167 ± 0.0379 0.9305 ± 0.0393 0.9380 ± 0.0466 0.9401 ± 0.0439 0.9493 ± 0.0367

ERGAS 18.15 ± 8.25 19.51 ± 8.12 18.96 ± 8.33 17.34 ± 7.69 13.01 ± 6.23

(b)

RMSE 5.707 ± 2.452 5.955 ± 2.398 6.439 ± 2.812 5.667 ± 2.539 4.581 ± 1.993
PSNR 34.034 ± 3.567 33.541 ± 3.492 33.084 ± 3.740 34.116 ± 3.872 36.305 ± 3.612
SSIM 0.8911 ± 0.0483 0.9031 ± 0.0494 0.9025 ± 0.0616 0.9136 ± 0.550 0.9234 ± 0.0422

ERGAS 22.92 ± 10.11 23.71 ± 9.86 25.46 ± 10.84 22.40 ± 9.86 18.54 ± 8.39

(c)

RMSE 7.669 ± 1.390 5.270 ± 1.622 5.099 ± 1.972 5.016 ± 1.727 4.225 ± 1.324
PSNR 30.599 ± 1.550 34.309 ± 2.607 34.827 ± 3.201 34.741 ± 2.975 36.211 ± 2.485
SSIM 0.6406 ± 0.0337 0.8565 ± 0.0539 0.8956 ± 0.0387 0.8851 ± 0.0390 0.8708 ± 0.0594

ERGAS 33.49 ± 16.27 22.28 ± 10.14 20.80 ± 9.07 20.47 ± 8.66 18.64 ± 9.28

(d)

RMSE 4.189 ± 1.636 4.584 ± 1.680 4.328 ± 1.903 4.167 ± 1.803 2.305 ± 0.938
PSNR 36.548 ± 3.181 35.862 ± 3.331 36.686 ± 3.736 36.805 ± 3.803 41.653 ± 3.074
SSIM 0.9165 ± 0.0348 0.9354 ± 0.0374 0.9450 ± 0.0436 0.9403 ± 0.0430 0.9542 ± 0.0340

ERGAS 17.36 ± 7.98 18.49 ± 7.67 17.45 ± 7.82 16.69 ± 7.46 9.86 ± 5.17

(e)

RMSE 3.759 ± 1.166 3.954 ± 1.333 4.335 ± 1.780 3.587 ± 1.443 3.041 ± 2.783
PSNR 37.149 ± 2.492 37.160 ± 3.108 36.497 ± 3.490 37.991 ± 3.543 40.722 ± 5.730
SSIM 0.9118 ± 0.0239 0.9472 ± 0.0311 0.9428 ± 0.0436 0.9510 ± 0.0397 0.8907 ± 0.1642

ERGAS 15.94 ± 7.39 16.01 ± 6.56 17.46 ± 7.49 14.37 ± 6.16 15.56 ± 19.66

(f)

RMSE 3.971 ± 1.453 4.356 ± 1.563 4.109 ± 1.765 3.957 ± 1.666 2.280 ± 1.231
PSNR 36.910 ± 2.985 36.322 ± 3.302 37.130 ± 3.698 37.225 ± 3.743 41.932 ± 3.687
SSIM 0.9195 ± 0.0270 0.9397 ± 0.334 0.9480 ± 0.0450 0.9468 ± 0410 0.9475 ± 0.0618

ERGAS 16.58 ± 7.61 17.60 ± 7.26 16.64 ± 7.46 15.89 ± 7.04 9.79 ± 5.89
The best results are indicated by boldface numbers.

which measures the similarities between the deconvolution
image and the reference image. A lower RMSE value indicates
better quality. The second metric is the Peak-Signal-to-Noise-
Ratio (PSNR):

PSNR =
1

N

N∑
i=1

10 log10

(
PQ max(Xi)

2∥∥X̂i −Xi

∥∥2
F

)
,

which measures the quality of the decovolution image com-
pared to the original image. The higher the PSNR, the better
quality. The third metic is the average of Structural SIMilarity

(SSIM) [47], averaged over all channels of X̂ and X, i.e.,

SSIM =
1

N

N∑
i=1

(2µX̂i
µXi

+ C1)(2σX̂iXi
+ C2)

(µX̂i
+ µXi

+ C1)(σX̂i
+ σXi

+ C2)
,

where µX̂i
and µXi

are the mean values of images X̂i and
Xi, σX̂i

and σXi
are the standard deviations of X̂i and Xi,

σX̂iXi
is the covariance of X̂i and Xi, and C1 > 0 and

C2 > 0 are constants. The SSIM is an indicator of the spatial
structure preservation of the deconvolution image. A higher
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Fig. 3. Blurring kernels used for the experiments: (a)-(c) are Gaussian
kernels, (d)-(f) are circle, motion and square kernels respectively.

TABLE II
RMSE, PSNR, SSIM AND ERGAS OF THE DIFFERENT METHODS

APPLIED TO THE CAVE DATASET IN THE BLURRING SCENARIO (A) WITH
VARIOUS NOISE LEVELS.

σ Methods RMSE PSNR SSIM ERGAS

0.01

HLP 4.420 36.166 0.9167 18.15
SSP 4.848 35.373 0.9305 19.51

WLRTR 4.735 35.872 0.9380 18.96
3DFTV 4.332 36.450 0.9401 17.34

Ours 3.132 39.252 0.9493 13.01

0.02

HLP 5.597 33.571 0.8084 23.77
SSP 5.001 34.951 0.8973 20.52

WLRTR 4.817 35.602 0.9283 19.39
3DFTV 4.486 36.006 0.9301 17.96

Ours 3.574 37.851 0.9140 15.17

0.03

HLP 7.669 30.599 0.6406 33.49
SSP 5.270 34.309 0.8565 22.28

WLRTR 5.099 34.827 0.8956 20.80
3DFTV 5.016 34.741 0.8851 20.47

Ours 4.225 36.211 0.8708 18.64

0.04

HLP 10.018 28.206 0.4942 44.43
SSP 5.643 33.547 0.8155 24.66

WLRTR 6.611 32.107 0.7539 27.42
3DFTV 6.143 32.682 0.7778 26.05

Ours 4.750 35.060 0.8324 21.37

0.05

HLP 12.411 26.320 0.3859 55.50
SSP 6.101 32.742 0.7766 27.49

WLRTR 9.496 28.748 0.5363 40.74
3DFTV 7.696 30.572 0.6462 33.57

Ours 5.329 33.976 0.7984 24.60
The best results are indicated by boldface numbers.

the SSIM value indicates better spatial structure preservation.
The last metric is the Erreur Relative Globale Adimensionnelle
de Synthèse (ERGAS) [48] defined as

ERGAS = 100

√√√√ 1

N

N∑
i=1

∥∥X̂i −Xi

∥∥2
F

mean(X̂i)2
,

which charactersizes the overall quality of the deconvolution
image. A smaller ERGAS means a better result.

We compared our method with three HSI deconvolution
methods of reference: hyper-laplacian priors (HLP) [49],
spatial and spectral priors (SSP) [14], weighted low-rank
tensor recovery (WLRTR) [15], 3D fractional total varia-
tion (3DFTV) [50], each with well-designed regularizers.
The HLP considers spatial gradient priors, i.e., the hyper-
Laplacian priors of images. The SSP exploits both the spatial
and spectral smoothness priors of hyperspectral images. The
WLRTR simultaneously captures non-local similarity within
spectral-spatial cubic and spectral correlation by a low-rank
tensor recovery model. The 3DFTV exploits both the local
and non-local smoothness of images in all dimensions. We
used the codes provided by the authors of these methods and
downloaded them, and we tuned their parameters by following
the rules as stated in the corresponding papers to achieve the
best deconvolution performance.

D. Performance evaluation on simulated data

We start validating the tuning-free scheme with the CAVE
dataset by demonstrating its effectiveness in terms of HSI
deconvolution performance over the other methods.

Table I reports the average values and standard deviations of
RMSE, PSNR, SSIM and ERGAS. For all blurring scenarios,
one can observe that our method outperformed all competing
methods in terms of performance and robustness. For quality
comparison, consider scenario (a) for example. Fig. 2 provides
the blurred image, deblurred images, ground truth of real and
fake peppers (first row) and superballs (second row) from the
CAVE dataset. Visually, our method provides more details,
including sharper edges and more vivid gloss. This confirms
the effectiveness of the proposed method in recovering the
spatial information of the latent clear HSIs. To further evaluate
the robustness of the proposed method, consider scenario (a)
for example. We set the noise level from 0.01 to 0.05 at
an interval of 0.01 to generate varying noise interruptions
added to input images. In Table IV-A2, it can be seen that the
performance of all methods deteriorates with the increase in
noise levels. However, the proposed method still provides the
best quantitative results with all different noise interruptions.

We now evaluate the proposed method on remotely sensed
data: the Chikusei dataset. This dataset, with more spectral
bands, allows to analyze how our method exploits spectral
information. The mean and variance of the numerical results
for all methods in 6 blurring scenarios are provided in Ta-
ble III. It can be observed that the quantitative metrics of our
method surpass the other competing methods in most cases.
Fig. 4 displays the visual results. As can be seen, the proposed
method provides results with clearer and sharper visual effects
compared to the other methods. This illustrates the superiority
of our method in recovering the latent HSIs with more spectral
bands.

E. Convergence illustration

In many PnP algorithms for inverse imaging problems, the
ADMM is widely used as a variable splitting technique. In
some works, the convergence of PnP schemes based on some
linear denoisers, including Non-Local Means (NLM) [51]
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Fig. 4. Visual results for all methods with the blurring scenario (d) applied to the Chikusei dataset. The first and second rows present the results for
two different images. The false color images were generated for clear visualization with the 122nd, 84th and 57th channels used for red, green and blue,
respectively.

TABLE III
RMSE, PSNR, SSIM AND ERGAS OF THE DIFFERENT METHODS APPLIED TO THE CHIKUSEI DATASET IN THE 6 BLURRING SCENARIOS.

Scenarios Metrics HLP SSP WLRTR 3DFTV Ours

(a)

RMSE 3.233 ± 0.420 3.050 ± 0.452 3.138 ± 0.518 3.207 ± 0.501 2.560 ± 0.316
PSNR 38.979 ± 1.131 40.182 ± 1.528 40.051 ± 1.710 39.546 ± 1.583 41.032 ± 1.076
SSIM 0.9124 ± 0.0141 0.9334 ± 0.0148 0.9267 ± 0.0183 0.9171 ± 0.0191 0.9420 ± 0.0086

ERGAS 32.25 ± 3.40 28.13 ± 2.64 25.29 ± 3.54 35.37 ± 2.93 27.87 ± 2.84

(b)

RMSE 3.945 ± 0.576 3.819 ± 0.566 4.091 ± 0.678 4.037 ± 0.644 3.428 ± 0.502
PSNR 37.604 ± 1.348 38.392 ± 1.573 37.872 ± 1.741 37.708 ± 1.637 38.989 ± 1.438
SSIM 0.8822 ± 0.0227 0.9016 ± 0.0222 0.8871 ± 0.0276 0.8819 ± 0.0275 0.9091 ± 0.0183

ERGAS 35.30 ± 4.08 32.40 ± 3.60 31.45 ± 4.97 39.85 ± 3.59 30.92 ± 3.23

(c)

RMSE 7.094 ± 0.197 3.506 ± 0.386 3.777 ± 0.429 3.662 ± 0.416 3.413 ± 0.295
PSNR 31.391 ± 0.252 37.942 ± 0.930 37.447 ± 0.955 37.756 ± 0.994 37.934 ± 0.703
SSIM 0.6268 ± 0.0060 0.8839 ± 0.0146 0.8816 ± 0.0157 0.8841 ± 0.0152 0.8783 ± 0.0113

ERGAS 90.14 ± 11.92 50.26 ± 6.80 39.95 ± 4.34 48.15 ± 5.01 51.38 ± 7.55

(d)

RMSE 3.361 ± 0.177 2.879 ± 0.427 2.890 ± 0.477 3.076 ± 0.483 2.335 ± 0.202
PSNR 39.122 ± 0.995 40.625 ± 1.505 40.724 ± 1.689 39.900 ± 1.587 41.290 ± 0.729
SSIM 0.9148 ± 0.0114 0.9399 ± 0.0132 0.9364 ± 0.0160 0.9228 ± 0.0178 0.9430 ± 0.0045

ERGAS 32.76 ± 3.47 27.22 ± 2.47 23.73 ± 3.17 34.59 ± 2.86 32.56 ± 3.76

(e)

RMSE 2.960 ± 0.253 2.436 ± 0.352 2.790 ± 0.460 2.797 ± 0.436 1.995 ± 0.106
PSNR 39.127 ± 0.681 41.869 ± 1.380 41.025 ± 1.644 40.574 ± 0.534 42.207 ± 0.468
SSIM 0.9147 ± 0.0055 0.9558 ± 0.0090 0.9408 ± 0.0147 0.9338 ± 0.0149 0.9507 ± 0.0028

ERGAS 35.79 ± 4.15 25.42 ± 2.14 23.09 ± 2.90 33.56 ± 2.96 36.06 ± 4.93

(f)

RMSE 2.990 ± 0.327 2.688 ± 0.395 2.691 ± 0.441 2.913 ± 0.453 2.148 ± 0.186
PSNR 39.352 ± 0.902 41.174 ± 1.473 41.313 ± 1.659 40.334 ± 1.561 41.971 ± 0.694
SSIM 0.9188 ± 0.0093 0.9456 ± 0.0116 0.9438 ± 0.0140 0.9295 ± 0.0161 0.9506 ± 0.0038

ERGAS 32.68 ± 3.53 26.19 ± 2.29 22.46 ± 2.89 33.74 ± 2.82 30.62 ± 3.68

The best performance results are indicated by boldface numbers.

and Gaussian Mixture Model (GMM) [52], has been proved
theoretically. It is difficult if not impossible to prove the
convergence of our method as the B3DDN denoiser involves
amounts of non-linear operators. In practice, however, as
illustrated below, we observed that the proposed deconvolution
framework shows good convergence behaviour.

Figure 5 provides the mean RMSE curves of our algorithm
obtained for the CAVE dataset in the case of scenarios (a),
(b) and (c). It can be observed that the algorithm, even with
its nonlinear B3DDN denoiser, exhibits a stable and robust

convergence behaviour independently of the blurring kernel
and noise level. Moreover, a low mean RMSE value was
reached after few iterations, which indicates that early stopping
can be considered to limit computation time.

F. Behavior with respect to PnP internal parameter estimation

Deep priors that capture both the spatial context and spectral
correlations of the latent clean HSIs mainly contribute to the
effectiveness of our method. But the internal parameter setting
procedure and the stopping criterion also play a crucial role in
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Fig. 5. RMSE convergence mean curves (blue) of our method with the CAVE dataset and blurring scenarios (a), (b) and (c). Red lines represent the iteration
number given by the proposed stopping criterion.

Fig. 6. Estimated penalty parameters ρk as a function of iteration index k, for different images of the CAVE dataset and blurring scenarios (a), (b) and (c).
Lines with different colors refer to different test images.

achieving satisfactory performance by yielding a good balance
with the contribution of deep priors. In contrast, observe that
the automatic setting of the regularization parameters is not
implemented by the other competing methods during test.

Fig. 6 shows how the penalty parameter varies along with
the iterations, for different images of the CAVE dataset, and
for scenarios (a), (b), and (c). According to the PnP principle,
the estimated noise level σk is assumed to decrease along
with the iterations, as the reconstructed image converges to a
desired point. Therefore, the penalty parameter ρk = λ/σ2

k is
expected to increase [24]. As can be seen on Fig. 6, parameter
ρ changes coincide with this trend for almost all test images.
Fig. 5 shows the number of iterations K for scenarios (a),
(b) and (c). It can be observed that our stopping criterion
automatically interrupts the PnP algorithm when it has nearly
converged, which contributes to save computation time.

G. Performance evaluation on real-world data

To validate the effectiveness of our method in real-world
conditions, we collected six unfocused HSIs and the corre-
sponding focused images for different indoor and outdoor
scenes. Specifically, as illustrated in Fig. 8, the HSIs of
the indoor scenes were recorded under controlled illumina-
tions while the outdoor HSIs were captured under normal
daylight illumination. To fully capture the complex blurs
caused by the imaging system, our dataset was elaborated
to address hyperspectral deconvolution problem with respect

to defocus. In particular, blurred images were obtained by
making the camera out of focus while clear references were
also captured by focusing the camera. We captured these
images with the GaiaField systems (see details in [53]) of our
laboratory at Northwestern Polytechnical University. The Ga-
iaField (Jiangsu Dualix Spectral Image Technology Co. Ltd.,
GaiaField-V10) is a push-broom imaging spectrometer with an
HSIA-OL50 lens, covering the visible and NIR wavelengths
ranging from 373.70 to 1000.90 nm, with a spectral resolution
of 4.6 nm (129 channels in total). The spatial resolution of the
images is 780× 696 pixels.

For all acquired images, we conducted a pre-processing
procedure as described in [54]. First, we removed over-noisy
and over-exposed bands. We got 45 exploitable bands, which
were normalized such that the 0.999 intensity quantile corre-
sponded to the value 1. Then, all HSIs were denoised using the
approach described in [55] to enhance images. Blurred images
and their clear counterparts are illustrated in the first and
second columns of Fig. 7, respectively. Note that these image
pairs are not strictly aligned due to multiple factors affecting
the camera mounting. The clear images were used for visual
comparisons only. The blurring kernel in each channel was
estimated using the method described in [56]. For illustration
purpose, Fig. 9 shows the kernels in the 10th, 20th, 30th and
40th channels of the blurred images fruit and bicycle. For all
experiments, we added an i.i.d. Gaussian noise to the blurred
images, with a signal-to-noise ratio (SNR) set to 40 dB.
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Fig. 7. Blurred images, reference images and visual results for all methods on the real-world dataset. The false color images were generated for clear
visualization with the 38th, 24th and 10th channels used for red, green and blue, respectively.

Fig. 8. Indoor (left) and outdoor (right) experimental setups for collecting
real data.

In real-world HSI deconvolution scenarios, no ground truth
is available for training the B3DDN. Benefiting from the
flexibility of the B3DDN in denoising HSIs of various origins

with distinct numbers of spectral bands, in this experiment
we used the network parameters Θ learned with the CAVE
dataset (31 spectral bands). Fig. 7 shows the deblurred images
obtained with all the competing algorithms, from columns 3
to 7. It can be seen that our method still performed better,
or similarly, in recovering details compared to HLP, SSP,
WLRTR, and 3DFTV, though all competing methods only
achieved limited performance probably due to deviations in
estimating kernels. This demonstrates the applicability of our
method in real-world scenarios, as well as the necessity of
further investigating blind hyperspectral deconvolution algo-
rithms.

Finally, we conducted the experiment for evaluating the
running time using the blurred image fruit from our real-world
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Fig. 9. Estimated blurring kernels in the 10th, 20th, 30th and 40th channels
of the blurred images fruit (first row) and bicycle (second row) of the real-
world dataset.

TABLE IV
TIME CONSUMING OF THE COMPARED METHODS FOR THE BLURRED

IMAGE fruit OF THE REAL-WORLD DATASET.

HLP SSP WLRTR 3DFTV Ours

Time (sec) 9.7 622.5 10501.2 6044.4 4280.6

dataset. All the baselines were implemented using MATLAB
while our method was carried out using Python. We conducted
all the experiments on a server with Intel Xeon Gold 6152
CPU, 512-GB random access memory and NVIDIA Tesla P40
GPU. Time consuming of all the compared methods is shown
in Table IV. It can be observed that our method achieves
most competitive deconvolution results with relatively less
computation time.

V. CONCLUSION

In this paper we presented a tuning-free HSI deconvolu-
tion method based on the PnP framework. Instead of using
handcrafted priors, we designed a blind B3DDN denoiser
based on deep learning to learn the spectral-spatial information
of hyperspectral images from data and plugged it into an
ADMM optimizer. The internal parameters were automatically
estimated by a measure of 3D residual whiteness and learned
by the B3DDN during iterations. Experimental results demon-
strated that the proposed method can not only effectively
handle various simulated blurring settings but can also be
applied to real-world scenarios. In the future, we will address
blind HSI deconvolution and computational cost reduction to
further enhance the applicability of our method in real-world
scenarios.
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of hyper-spectral astronomical data,” Mon. Not. Roy. Astron. Soc., vol.
418, no. 1, pp. 258–270, 2011.

[5] P. Sarder and A. Nehorai, “Deconvolution methods for 3-d fluorescence
microscopy images,” IEEE Signal Process. Mag., vol. 23, no. 3, pp.
32–45, 2006.

[6] N. P. Galatsanos and R. T. Chin, “Digital restoration of multichannel
images,” IEEE Trans. Audio, Speech, Language Process., vol. 37, no. 3,
pp. 415–421, 1989.

[7] B. Hunt and O. Kubler, “Karhunen-loeve multispectral image restoration,
part i: Theory,” IEEE Trans. Audio, Speech, Language Process., vol. 32,
no. 3, pp. 592–600, 1984.
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