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Spatial Deep Deconvolution U-Net for Traffic
Analyses with DAS

Siyuan Yuan, Martijn van den Ende, Jingxiao Liu, Hae Young Noh, Robert Clapp, Cédric Richard, Biondo Biondi

Abstract—Road-side Distributed Acoustic Sensing (DAS), be-
ing capable of capturing car-induced subsurface strain at high
spatial-temporal resolution, has shown potential to revolutionize
urban traffic monitoring by providing instantaneous updates on
traffic flow, and possibly traffic accidents to optimize traffic man-
agement. However, due to noise contamination and interference
among closely traveling cars, car detection and tracking accuracy
is limited. To address these challenges, we design and train a
self-supervised U-Net model that compresses car-induced DAS
signals into sharp pulses through a spatial deconvolution. The
localized and narrow outputs from our model lead to accurate
and highly resolved car position and speed tracking, which can
help identify driving behaviors and detect sudden stops due to
accidents. We evaluate the effectiveness and robustness of our
method through field recordings under different traffic conditions
and various driving speeds. Our results show that our method can
enhance the spatial-temporal resolution and better resolve closely
traveling cars, which is beneficial for detecting and tracking cars
under heavy traffic conditions and enables the characterization
of large-size vehicles such as retrieving the number of bus axles
and train bogies.

Index Terms—Traffic monitoring, intelligent transportation,
Distributed Acoustic Sensing, deconvolution, U-Net.

I. INTRODUCTION

TRaffic monitoring systems, which automatically and con-
tinuously detect, track, and characterize vehicles in mov-

ing traffic, provide valuable information for urban manage-
ment, maintenance, and planning. Conventional monitoring
systems include vision-based [1]–[3] and pavement sensing
technologies (e.g., inductive loops [4]–[6] and piezoelectric
sensors [4], [7], [8]). These approaches are well-developed
but have several drawbacks. For example, camera systems
bring individual-privacy concerns and are sensitive to weather
conditions; point pavement sensing systems provide spatially
sparse sampling and are challenging to maintain.
An emerging geophysical technology, Distributed Acoustic
Sensing (DAS), which turns (pre-existing) optical fibers into
dense seismic recording arrays, has the potential to revolution-
ize urban traffic monitoring by providing instantaneous up-
dates on traffic flow and accidents. A DAS experiment is per-
formed by connecting an optoelectronic DAS instrument called
interrogator to one end of a standard telecommunications-
grade optical fiber. The interrogator sends short laser pulses
into the optical fiber and measures the subtle phase shifts of
Rayleigh scattered light returning to the detector at a predicted
two-way travel time [9], [10]. In this way, the strain field
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induced by urban activities (e.g. moving vehicles, construction,
pumps) acting on the fiber coupled to the Earth can be sampled
at a meter-scale spatial resolution over tens of linear fiber
kilometers. Thanks to their broadband nature, DAS recordings
comprise rich traffic information, including high-frequency
(> 3 Hz) surface waves due to vehicle-road dynamic inter-
action and the low-frequency quasi-static deformation caused
by vehicle loading [11]–[13]. The surface-wave components
have been used to image the subsurface velocity structure
down to hundreds of meters beneath the road [11]. The quasi-
static components reflecting the vehicle trajectories are much
more compact and have a simpler waveform than the surface
waves. [12], [14], [15] demonstrate the feasibility of using
the quasi-static signals to estimate vehicle count and speeds,
and illustrate several advantages for a DAS traffic monitoring
system: first, a DAS signal is fully anonymous that cannot be
tied to any individual; second, DAS has been proven effective
even on pre-existing fiber infrastructure (“dark fiber”), which
is promising for cost-efficient city-scale traffic monitoring;
last, DAS has low day-to-day operation and maintenance
costs with only a single interrogator being deployed in a
secure and easily accessible location, as opposed to having
numerous individually powered instruments deployed across
a city (exposed to meteorological conditions and detrimental
interactions with humans, plants, and animals).
Despite the aforementioned advantages, analyzing data from a
DAS array located in an urban environment is challenging be-
cause it records a complex mixture of inherently unlabeled sig-
nals [16]. A robust and accurate car-signal detection algorithm
is essential to enable the real-world usage of a DAS-based traf-
fic monitoring system. To detect car-induced quasi-static sig-
nals, [12] applied a common seismological method, the short-
time-average through long-time-average trigger (STA/LTA). To
exploit the array geometry of DAS, beamforming algorithms
have been applied to detect cars and measure their speed [14],
[15]. These simple methods performed well on roads with
relatively light traffic and without complicated traffic patterns.
But they are likely to become inaccurate if many vehicles
transit simultaneously close to the same segment of the fiber
cable, as signals from different cars start overlapping leading
to complex patterns.
To reduce the interference among closely traveling cars, [17]
proposed a self-supervised deep deconvolution Auto-Encoder
(DAE) to deconvolve the cars’ impulse response from the
quasi-static recordings. Compared to a conventional channel-
wise deconvolution algorithm, the DAE model has the ben-
efits of incorporating the spatial-temporal characteristics of
car signals, leading to much sharper and localized outputs.
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Applying a beamforming algorithm to the localized outputs
rather than the original inputs shows significant improvements
in terms of the resolution in car-speed estimation, and the
detection accuracy. Furthermore, as shown in [17], the DAE
model, once trained, can deconvolve 24-hour recordings in less
than 30 seconds, achieving > 400 times speedup compared to
a conventional iterative approach, which makes the method
promising for real-time processing. However, the DAE model
assumes a stationary Ricker wavelet in the time domain as the
cars’ impulse response. As the following sections of the paper
will show, cars’ temporal wavelet vary with car speeds, which
makes the original DAE model not ideal for speed-varying
traffic. Additionally, the DAE model appears to be less effec-
tive for large-size and multi-axle vehicles, possibly because of
the wavelet mismatch between the assumed stationary time-
domain wavelet and the actual wavelets.
This paper characterizes car-induced quasi-static signals and
proposes a new deep deconvolution U-Net model assuming a
stationary car wavelet in space-domain. We show our model is
effective to compress signals of speed-varying cars into com-
pact pulses while suppressing background noises with multiple
real-data examples. Our model is also robust to map large-size
vehicle signals to compact pulses corresponding to their axles,
which is useful to vehicle type identification. In the following
sections, we first characterize cars’ impulse response using
synthetic simulation and observations from field experiments.
We then describe the method of our spatial DAE model in
details, and evaluate the performance of our space-domain
DAE benchmarked with the original time-domain DAE model
and a traditional iterative deconvolution approach. Specifically,
we test their performance for single-car tracking, followed by a
local slant stack algorithm to estimate car speed. Additionally,
we investigate their performance to monitor traffic patterns and
identify the axles of large-size and heavy vehicles. Finally,
we discuss that the spatial DAE model could be sub-optimal
where car impulse response varies spatially due to the near-
surface heterogeneity. To address the challenge, we estimate
the location-dependent car impulse responses by statistically
averaging and training separate DAE models for different parts
of the fiber.

II. VEHICLE-INDUCED DAS RESPONSE

Permanently deployed fibre-optic cables are often buried
(trenched) or placed within underground conduits. We assume
here that the DAS fiber is deployed alongside a road at
some depth below the surface. When a vehicle passes over
the virtual sensors of the roadside telecom fiber cable, the
interaction between the vehicle and the road structure induces
deformation of the telecom fiber cable. The signal pattern of
vehicle-induced telecom fiber deformation is a function of the
vehicle characteristics, fiber conduit properties, the ambient
conditions, etc. There are mainly two components of signals
produced by moving vehicles: quasi-static signals (< 1 Hz)
resulting from the ground deformation due to the vehicle’s
weight, and surface waves (3 to 20 Hz) caused by the dynamic
vehicle-road interaction resulting from the roughness of the
road (e.g., bumps). Previous studies [11], [12] have found that

the quasi-static component dominates the energy of vehicle-
induced telecom fiber vibration and is theoretically described
by the Flamant-Boussinesq approximation [18]. As a vehicle
approaches the virtual sensor, ground deformation above the
sensor increases, and the fiber coupled to the earth is stretched,
resulting in increased tension in the fiber. As the vehicle moves
away, ground deformation near the virtual sensor and the fiber
tension decreases. As a result, the vehicle motion creates a
bell-shaped response when it passes a virtual sensor. Due to the
relatively strong energy, simplicity and compactness compared
to the surface-wave component, quasi-static signals have been
used for car-tracking and detection tasks [17]. For the same
reason, our car tracking method is also based on the quasi-
static response. As the car impulse response serves as an input
to the DAE model, achieving a better understanding of the
quasi-static signals can guide the design of the DAE model.

We propose a new numerical simulation approach that
generalizes the homogeneous subsurface medium assumed in
the Flamant-Boussinesq approximation to a vertically hetero-
geneous medium. We adapt the modelling method from [19]
that study the response of heterogeneous (layered) medium to
wind pressure. We define the z axis such that the top of the
lowermost elastic half-space is at z = 0 and the surface of
the Earth is at z = H . Vertical displacement (uz), vertical
normal stress (�zz), horizontal displacement (ux), and shear
stress (�xz) are continuous throughout the medium and satisfy
an ODE equation [19]. We model a car as uniform forces,
P (x, t) applied at the surface under each wheel as shown in
Figure 1. Using �zz = �P (x, t) as a boundary condition, we
can solve the ODE equation through numerical integration and
obtain the strain projected on the fiber. Assuming gradually
increasing transverse and longitudinal wave speeds (VS and
VP , respectively) and density model from the free surface
down to z = 0, we simulate recordings of a two-axle car with a
wheelbase of 2.8 m traveling with speeds of 10, 20, 30, and 40
mph recorded by one channel in Figure 2 (a). We can see that
as the car speed increases, the wavelet becomes more compact
(bandwidth becomes broader). In Figure 2 (b), we plot signals
along the fiber at a constant time, we can see that waveforms
in the space-domain is invariant to the speed change. Instead,
the waveforms in the space domain depend on the vehicle size
and the number of axles. In Figure 2 (c), we simulate signals
for small cars with one and two axles (spaced by 2.8 m), and
a large-size vehicle with three axles with an axle spacing of
8 m. We see that due to the long wavelength of the quasi-
static signal, the one-axle car generates a similar waveform
as the two-axle car with a wheelbase of 2.8 m. Waveform
differences can be seen between the large-size vehicle (with
an 8 m axle spacing) and small cars, indicating the sensitivity
of DAS measurements for large-vehicle (e.g. bus or truck)
identification.

Our observation that the space-domain rather than the time-
domain signals is speed invariant is confirmed using field
experiments at Sand Hill road monitoring by the Stanford
DAS2 array [11] (See the fiber map in Figure 3). We drove a
test car along the Sand Hill road to understand the car impulse
responses for various driving speeds, including 10, 20, 30,
and 40 mph. Figure 4 shows the quasi-static signals of our
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Fig. 1. Vertically heterogeneous medium used for car impulse response
simulation (Figure adapted and revised from [19]. P (x, t) represents the
forces from the car applied to the ground surface under the wheels. Density,
VP and VS change with depth between z = 0 and the free surface). The
lowermost half-space is assumed to be homogeneous.

Fig. 2. Numerical simulation of quasi-static signals of two-axle car with
constant speeds of 10, 20, 30 and 40 mph. (a) Signal in the time domain; (b)
signal in the space domain for the four speeds. (c) Comparisons of signals
for vehicles with different axle numbers and lengths.

car indicated from DAS recordings using orange arrows. The
bottom panels show the corresponding F-K spectra. It can be
seen that the frequency components vary with speeds, i.e.,
a higher car speed leads to a broader bandwidth (narrower
temporal wavelet). We can also observe that the wavenumber
components remain relatively invariant to car speeds, implying
that the spatial wavelet for different speeds is stationary.

III. METHOD

A. Space-domain DAE model

The original DAE model performs deconvolution along the
time axis with a stationary wavelet in time. The model is
effective when car speed is approximately constant in time.
However, as was shown in the previous section, the car’s
time-domain impulse response changes with speed, indicating
the method could be suboptimal when the speed varies (e.g.
stopping or accelerating). In contrast, the impulse response
in the space domain is speed-invariant and can be tied to
wheelbase and axle numbers. Therefore, we introduce a space-

Fig. 3. Stanford DAS-2 experiment Array (Adopted from [12])

Fig. 4. (Top) DAS recordings of our car driving with constant speeds of 10,
20, 30 and 40 mph. (Bottom) The corresponding F-K spectra of the DAS
recordings above. We can see that the frequency range becomes broader with
increasing speed, whereas the wavenumber components are invariant to car
speeds.

domain DAE model to perform deconvolution along the spatial
axis with a space-domain wavelet.

1) Architecture: Our space-domain DAE model shown in
Figure 5 is a 2-D fully convolutional U-Net adpated from [17].
The input is a set of Nx = 256 (256 meters) consecutive
waveforms of Nt = 1024 time samples (20.48 s) in duration,
organised in an Nx⇥Nt matrix. The U-Net model comprises 3
convolutional layers, followed by 3 encoder blocks containing
a downsampling (max pooling) layer and 3 convolutional
layers. The kernel sizes for the convolution layers are 3 × 5.
The number of convolutional filters is initialized at 8 and get
doubled after each downsampling operation. The maxpooling
operation downsamples the data by a factor 2 along the
DAS sensor axis and by a factor 4 along the time axis (i.e,
the maxpooling kernel and strides are of size 2 × 4). The
decoder reverses the encoding operations with 3 blocks of
bilinear upsampling. The U-Net contains skip-connections,
which directly connect the output of one encoder block with
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the corresponding decoder block. Lastly, the output layer is
a single convolutional layer with 1 output channel and ReLU
activation, which enforces positivity in the model output.

Our model is a semi-supervised algorithm, in a sense that
no ground truth deconvolution is required as labels to train
the model. A weak supervision comes from the spatial car
impulse response kernel shown as the red bell-shaped curve
in Figure 5. The key difference between our DAE model and
the original time-domain DAE model is that we obtain the
reconstructed input by spatial convolution using the impulse
response and the network output. The loss function is defined
as a combination of the L-2 norm of the difference between
the reconstructed input and the original input, and the L-1
norm of the outputs:

L =
1

Nb

NbX

i=1

(||[k ⇤ xi]d � yi||22 + ⇢||xi||1), (1)

where xi and yi denote the i-th output and input of the U-
Net model, respectively. ⇢ is a weighting term that promotes
sparseness in the deconvolved results. d refers to convolution
along the sensor axis. As we will see in the following sections,
unlike conventional channel-independent linear filters, the 2-D
deconvolution operations incorporate spatial-temporal features
in the DAS recordings. The non-linear nature of the U-Net
introduces high frequencies that are not present in the inputs,
producing sharp and localized outputs.

2) Spatial kernel estimation: Our DAE model assumes the
spatial kernel of the car impulse response is stationary in
space. In practice, the spatial kernel can be estimated either
through numerical simulation described in the last section or
by performing statistical averaging of responses of multiple
passing cars assuming that the spatial impulse response is
constant in time at each fiber location. The statistical av-
eraging approach requires detecting several passing cars in
an interested subsection of the fiber. The detection can be
achieved through manual inspection. Herein, we apply a find
local maximum algorithm from the SciPy library [20] to the
recordings at quiet midnight to detect and average waveform
from isolated cars.

3) Training procedure: To show the effectiveness of our
approach, we trained two models, our proposed space-domain
DAE and the original time-domain DAE, using simulated
spatial and temporal wavelets respectively. The dataset we
used are 2-hours’ worth of traffic recordings of the Sand
Hill DAS fiber. We split the 2-hour recordings into a training
and evaluation set with a ratio of 80% to 20%. For fair
comparisons, we use the same U-Net architecture for the two
models.

B. FISTA deconvolution algorithm

We benchmark our spatial DAE model using a conventional
deconvolution algorithm with an objective function:

x̂q = argmin
x

q{
1

2
||[k ⇤ xq]d � yq||22 + ⇢||xq||1} (2)

Notations have same meaning as in equation (1). Note that
[k⇤x]d stands for convolution in space between a known spatial

impulse response kernel and the underlying impulse model, x.
One commonly used algorithm to solve this optimisation prob-
lem is the Iterative Shrinkage Thresholding Algorithm (ISTA;
[21], [22]). For this study, we adopt an accelerated version
of ISTA (Fast-ISTA or FISTA) due to [23], which exhibits
faster convergence guarantees. With FISTA performing spatial
deconvolution, each signals at each time index is processed
independently.

IV. RESULTS

A. Car tracking

To test the performance of the proposed spatial DAE model,
we conducted controlled driving experiments where we drove
a car equipped with a speed sensor and a GPS receiver along
a subsection of the Sand Hill road monitored by the Stanford
DAS-2 array. In Figure 6, we focus on a case where our car is
first speeding up and then slowing down. (a) shows the quasi-
static signal of our car. The car speed is inversely proportional
to the slope in the time-space coordinate. We can see in (a)
that when the car speed is low (< 10 s and > 30 s), the time-
domain wavelet is “stretched”. When the car speed is relatively
higher, the time-domain wavelet is “compressed”, agreeing
with our observation in Section II. (b), (c) and (d) show the
deconvolution results from the proposed space-domain DAE
model, the original time-domain DAE model and the space-
domain FISTA algorithm. We can see that the proposed space-
domain DAE model yields the sharpest and the most localized
results regardless car-speed variation. Meanwhile, we can see
that the background noise is suppressed by the DAE model.
In contrast, the time-domain DAE model yields results that
are dependent on the speed, e.g. the output is more compact
in space with a higher speed but becomes stretched out when
the speed is lower. The spatial deconvolution via the FISTA
algorithm yields results that are not as compact as the spatial-
DAE results, and signals < 5 seconds are oversuppressed by
the L1 norm term in the equation 2.

Car speed estimates can be obtained through a local slant
stack algorithm applied to either the quasi-static signals or the
deconvolution results (Figure 7). The spectrum is computed
by conducting a slant stack using a moving time window of
4 s with a stride of 0.5 s. In Fig. 7 a brighter color indicates
higher stack energy in each panel. The red curves represent
speed measurements from an onboard speed sensor. Our speed
estimates, indicated with the black curves, are obtained from
picking the maximum amplitude of the slant-stack spectrum at
each time step. We can see that our slant-stack estimates match
the red curve well in all four cases. Using the speed-sensor
measurement as the ground truth, the root-mean-squared errors
(RMSE) for the original recording, space-domain DAE, time-
domain DAE, and FISTA are 3.52, 3.54, 3.94, and 3.99 km/h,
respectively, indicating the effectiveness of using DAS and
slant-stack for car-speed monitoring. It is noteworthy that
the space-domain DAE slant stack spectrum in (b) shows an
evidently higher resolution around the sensor measurement,
which can be attributed to the sharp deconvolution results as
shown in Figure 6 (b).
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Fig. 5. Conceptual overview of the spatial DAE model. The input is the quasi-static response of DAS to cars, which can be viewed as a matrix, 256 channels
(256 meters) x 1024 time steps (20.48 seconds). The output is the deconvolution results. The loss is computed with the input and the reconstructed input
obtained through a spatial convolution of the output with a known car impulse response in the spatial domain.

Fig. 6. (a) DAS recording of the quasi-static signal of a controlled driving
experiment where we first speed up and then slow down; Deconvolution
results: (b) the proposed space-domain DAE model, (c) the time-domain DAE
model; (d) spatial deconvolution via the FISTA algorithm

B. Traffic pattern monitoring

This section investigates the performance of the space-
domain DAE model under dense traffic conditions. A chal-
lenging case would be a faster car passing a slower, causing
signal interference. Figure 8 (a) shows a 50-second quasi-

Fig. 7. Local slant stack spectra using the original and the deconvolved data
shown in Figure 6. The red curve in each panel shows the speed measurements
of an onboard speed sensor. The black curves indicate the speed estimates
picked from the amplitude of the spectra at each time step.

static recording of a subsection of the Sand Hill DAS array
(bandpass filtered between 0.1 - 1 Hz). Each car is represented
by a relatively simple and compact pattern similar to the one
shown in Figure 6. (b), (c), and (d) show the deconvolution
results of the space-domain DAE model, time-domain DAE
model and FISTA, respectively. We can see that the two DAE
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Fig. 8. (a) Car signals in a 50-second recording. Deconvolution results of
(b) space-domain DAE model, (c) time-domain DAE model, and (d) FISTA,
respectively. The red boxes indicate two-car passing. The blue boxes indicate
ocean-wave noises in the (a) and the corresponding residues in (b), (c) and
(d).

models yield much sharper results than FISTA by introducing
high frequencies that are not existing in the original recordings,
owing to the highly non-linear nature of the U-Net model. The
red boxes indicate a two-car passing scenario where quasi-
static signals of the two cars overlap. We can see that both
DAE models handle the crossing point well. By constrast, the
FISTA model oversuppresses parts of signals of the slower car,
which can be seen at the bottom right corner of the red box
in (d). Additionally, we observe that the space-domain DAE
model yields outputs containing the lowest level of background
noise energy. The blue boxes in (a) point out a common type of
non-car signal, which manifests itself as horizontal stripes. We
interpret these signals as ocean waves. The ocean wave signals
can have a similar time-domain wavelet as the car impulse
response, which could explain the artefacts in the time-domain
DAE results. We also observe residuals of ocean waves in the
FISTA results indicating the lack of robustness of FISTA to
noise.

Cars performing U-turns can also be captured in DAS
recordings, as indicated with the red box in Figure 9 (a). (b),
(c), and (d) show the deconvolution results, respectively. The
spatial-DAE model again yields the sharpest results with the
lowest energy level of ocean-wave imprints. The blue boxes
indicate a signal of an accelerating vehicle. When the car speed
is low, the wavelet in the time-domain is “stretched”, which
explains why the low-speed signal is less well resolved in
the time-domain DAE results than in the space-domain DAE
results.

Our space-domain DAE model is especially important in
cases where multiple cars trailing closely with their quasi-

Fig. 9. (a) Car signals containing a car performing U-turn indicated with a red
box. Deconvolution results of (b) space-domain DAE model, (c) time-domain
DAE model, and (d) FISTA, respectively. The blue boxes indicate a signal of
an accelerating vehicle.

Fig. 10. (a) Quasi-static recordings under a heavy traffic conditions where
signals of closely traveling cars start overlapping producing complicated
patterns; (b) Deconvolution results from the space-domain DAE model.

static signals overlapping on each other. As we can see in the
red box of Figure 10 (a), the overlaps produce complicated
patterns posing ambiguity for individual car identification. On
the other hand, we can see that results from the space-domain
DAE model in (b), cars are much better resolved, which is
critical to achieve a high-accuracy traffic counting.

C. Large-size vehicle monitoring

Heavier and longer vehicles, e.g. buses, trucks, and trains,
generate quasi-static signals with much larger amplitudes and
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Fig. 11. (a) Signals of an 18-meter bus and two regular sized cars.
Deconvolution results of (b) space-domain DAE model, (c) time-domain DAE
model, and (d) FISTA, respectively.

wider spatial wavelets than personal vehicles (see Figure 11
(a) for visual comparisons between car and bus signals). The
wider spatial wavelet can be viewed as the superposition of
quasi-static signals of wheels at axles that are farther apart.
Because of the wavelet difference, deconvolution of the data
generated by such large vehicles along the time dimension
with either the time-domain DAE model or FISTA yields
undesirable artifacts as shown in [17]. Herein, we show that
deconvolution along the spatial axis with the proposed space-
domain DAE model properly resolves the axles. Figure 11
shows the recordings and deconvolution of an 18-meter three-
axle bus. Performing spatial deconvolution with the proposed
DAE model is more robust to vehicle sizes and axle numbers
as we can see from (b). The bus can be recognized from the
spatial-domain DAE model as three strong-energy trajectories
corresponding to the three axles. The distance between the
two most substantial peaks is about 18 m agreeing with the
bus length, indicating the usage of our model for car axle
and length characterization. We can see from (c) and (d) that
the time-domain DAE model and the FISTA cannot resolve
individual axles.

DAE models trained using only a vehicular traffic dataset
could also be used to recover train axles at different bogies,
which can be potentially useful to studies (e.g. [24]) on
rail track health monitoring with the dynamic response of
the train. Figure 12 (a) shows DAS recordings of a passing
train recorded by a railroad side DAS array at somewhere
in England. The train data displays multiple main lobes
corresponding to train bogies because train axles at different
bogies are much farther apart than car or bus axles. But it’s
challenging to resolve the two axles from a same bogie, as

the length of a bogie is much shorter than the quasi-static
wavelength. From the quasi-static signals in (a), we can see
that the train first slowed down and then accelerated. The
spatial DAE model in (b) yields the results with the highest
resolution regardless of the train speed. In Figure 13, we
compare the performance of the three methods by overlaying
the untreated data and the three deconvolution results along
the spatial dimension at a constant time step. Identified train
axles at different bogies are numbered in the plot. We can
see more clearly that the pulse from the space-domain DAE
model is the most localized. Besides, we observe that the DAE
models are robust to low-amplitude peaks (e.g. indicated as
#10 in Fig. 13). Note the DAE models used here are trained
on traffic dataset with a car wavelet. The future work would be
to improve the results by training a train specific DAE model
with wavelets of train axles.

D. Spatial non-stationarity

Our spatial model assumes that the car impulse response
is stationary in space. However, the impulse response is a
function of the recording system and the near-surface condi-
tions surrounding the fiber optic cable. Thus, deconvolution of
a DAS array covering heterogeneous near-surface conditions
using a single stationary spatial impulse response could be
suboptimal. Figure 14 (a) shows DAS recordings of traffic
in downtown San Jose City (SJC). (b) shows deconvolution
results of the proposed space-domain DAE model with a
simulated car impulse response kernel. The deconvolution
results look encouraging for most of the fiber, which can be
contributed to the consistency of the assumed wavelet to the
real wavelet. However, we can see that the results in the red
box are relatively poorly resolved. The low resolution is more
noticeable from the zoomed-in view of data and deconvolution
results in the red box in Figure 15 (a) and (b). The under-
performance could be explained as the wavelet inconsistency
due to heterogeneity of the near-surface properties. Assuming
that the near-surface properties, and in turn the car response, at
each channel location is stationary in time. A possible solution
would be to estimate the spatial car response at different
parts of the fiber by averaging responses of multiple passing
cars around each location. To verify this, we employ a local
maximum finding algorithm as a simple car detector for the
quasi-static signals. We average the responses of six identified
cars passing the area in the red box of Figure 14 as the impulse
response input to the U-net model. We retrain the U-net using
this estimated kernel, which produces a sharper results in
Figure 15, indicating the effectiveness of our approach.

V. DISCUSSION AND CONCLUSIONS

This paper focuses on the application of traffic monitoring
with car-induced quasi-static signals recorded by an urban
DAS array. To denoise the data and to reduce the interference
among closely traveling cars, we propose a self-supervised
convolutional U-Net model (space-domain DAE model)
that can compress the bell-shaped quasi-static signals into
sharp pulses and remove the background noises. The goal
is achieved through spatial deconvolution with an assumed
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Fig. 12. (a) Signals of a passing train recorded by a DAS array along a railroad in England. Deconvolution results of (b) space-domain DAE model, (c)
time-domain DAE model, and (d) FISTA, respectively.

Fig. 13. Constant-time train deconvolution results and the corresponding input
taken from Figure 12. Numbers indicate the identified train axles at different
train bogies.

spatial wavelet of the quasi-static signals, which is a major
difference from the previously proposed time-domain DAE
model.

This paper shows that using the spatial instead of temporal
kernel is advantageous because it is invariant to car speed
variation. This leads to an improved precision robustness of
tracking cars with varying speed, which is essential for driving
behavior identification and accident detection. The benefits of
our DAE model are more obvious for heavy-traffic conditions
where car signals overlap. With our DAE model, compressing
signals of individual cars to sharp pulses, traffic patterns are
much better revealed. Besides, we show that our space-domain
DAE model is robust to deconvolve signals of large-size and
heavy vehicles. Being able to identify large vehicles can be
helpful to extract low-frequency surface waves to image the

Fig. 14. Deconvolution of traffic recording in downtown SJC via a space-
domain DAE model with a simulated impulse response stationary in space.
(a) Input data; (b) deconvolution results. The red box indicates results that is
poorly resolved due to the spatial heterogeneity of the car wavelets.

velocity structure down to hundreds of meters beneath the
fiber. Additionally, we demonstrate the application of the DAE
model to identify rail train axles, which can be useful to
rail track health monitoring using train’s dynamic response.
Lastly, we point out that a limitation of our spatial-domain
DAE model arises when car impulse responses at different
locations along the fiber vary due to the soil heterogeneity
and/or fiber properties. We address the issue by extracting
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Fig. 15. (a) and (b) are respectively zoomed-in view of the data and
deconvolution results in the red box shown in Figure 14. (c) shows the
deconvolution results with a statistical estimate of spatial wavelet at the
distance along the fiber of 340 m.

car wavelets using statistical averaging, and train separated
networks. Future work would be adapting the DAE model
to different parts of the fiber using location-dependent spatial
wavelets.
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4185, International Society for Optics and Photonics. SPIE, 2000, p.
41850E. [Online]. Available: https://doi.org/10.1117/12.2302157

[10] A. Masoudi and T. P. Newson, “Contributed review: Distributed
optical fibre dynamic strain sensing,” Review of Scientific Instruments,
vol. 87, no. 1, p. 011501, 2016. [Online]. Available: https:
//doi.org/10.1063/1.4939482

[11] S. Yuan, A. Lellouch, R. G. Clapp, and B. Biondi, “Near-surface
characterization using a roadside distributed acoustic sensing array,”
The Leading Edge, vol. 39, no. 9, pp. 646–653, 09 2020. [Online].
Available: https://doi.org/10.1190/tle39090646.1

[12] N. J. Lindsey, S. Yuan, A. Lellouch, L. Gualtieri, T. Lecocq, and
B. Biondi, “City-scale dark fiber das measurements of infrastructure use
during the covid-19 pandemic,” Geophysical Research Letters, vol. 47,
no. 16, p. e2020GL089931, 2020, e2020GL089931 2020GL089931.
[Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.
1029/2020GL089931

[13] S. Yuan, J. Liu, H. Young Noh, and B. Biondi, “Urban system monitoring
using combined vehicle onboard sensing and roadside distributed
acoustic sensing,” in SEG International Exposition and Annual Meeting,
vol. Day 1 Sun, September 26, 2021, 09 2021, d011S137R003. [Online].
Available: https://doi.org/10.1190/segam2021-3584136.1

[14] X. Wang, Z. Zhan, E. F. Williams, M. G. Herráez, H. F. Martins, and
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