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Abstract

The Classical Strength of Materials for beams is represented through the
first two terms of the asymptotic expansion of the solution of Navier’s equa-
tions. The method of asymptotic expansions with respect to the inverse of
the slenderness of the beam permits us to obtain an approximate solution of
Saint-Venant’s problem. For the elasticity of the second order, the displace-
ment field is obtained as the sum of a series, the general term of which at
the nth order is the solution of a differential recursive system. We presently
propose a general way of solving this kind of systems. The exact solution is
given explicitly in the case of a slender field (beam).

Keywords : asymptotic developments, differential recursive systems..

1 Introduction

Asymptotic expansion methods enables us to build the successive terms of a
formal power series expansion of the solution of a specific problem. While this
technique is commonly applied to linear problems within the context of classical
elasticity, it is also used to study nonlinear problems.
The asymptotic approach was first used by Hay [1], who determined the first terms
of St Venant’s problem, for a curvilinear body. Other kinds of problems, for straight
beams, have been studied by Muller [2]. Antman [3] made a complete study of
nonlinear curvilinear fields.
The asymptotic approach was then used by A. Rigolot [4] for second-order elasticity
to determine the equilibrium conditions of a straight beam submitted to a lateral
loading. He was the first to extend asymptotic methods to non-linear elasticity [5],
and obtained an expression of the asymptotic expansion of the displacement field of
a cylinder beam. He compared his results with the Nonlinear Strength of Materials
[8], and specified how far its assumptions were valid. Since then, there have indeed
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been numerous works using the asymptotic approach (see, among others, [9], [10],
[11], [12], [13], [14], [15], [16]) but the Rigolot results have neither been used nor
further developed. This lack of development is mainly due to the fact that A. Rigolot
used a direct formulation of partial differential equations, contrary to other works
which generally rely on variational formulations of the problems. A combination of
variational theory and asymptotic expansion methods as in [17] could have been a
powerful way to obtain all the terms of the asymptotic expansion.
The purpose of our work is to extend the Rigolot results, and determine explicitly
any term of the asymptotic expansion. This is done through a new and original
method used for the solving of recursive differential systems in nonlinear Mechanics:
we show how it is possible to obtain the exact and explicit expression of any terms
of the asymptotic expansion of the displacement field, and prove the asymptotic
convergence of the series. The proposed method is a very general one and is not
specific to our problem. Eventually, an application to plane bending of beams is
presented.

2 Position of the problem - Previous results

Let us consider an elastic, linear, and isotropic cylinder beam, denoted by Ξ,
of length l and cross-sections Σ0 and Σ1, submitted to an external force F0, of
modulus F0. Denoting by d a specific quantity of Σ0 (for example, its diameter), the
slenderness of the cylinder is defined by ε, where:

ε =
d

l
, ε << 1. (1)

The slenderness of the beam plays the role of a gauge for the asymptotic expan-
sion of the solution. The axes system OAi, (i = 1, 2, 3), is supposed principal, with
central inertia for Σ0. l is taken as unity of length and the study is based on the
cylinder ξ scaled from the cylinder Ξ through the following change of variables (see
Figure 1 ):

aα =
Aα

d
, (2)

a3 =
A3

l
. (3)

The Einsteinian summation convention applies to repeated indices, where Latin
indices range from 1 to 3 whereas Greek indices range from 1 to 2. In [4], [5], Rigolot
focused on the asymptotic approximation of the displacement field, modulo a given
field v, for which he obtained the following expansion:

u =
∞∑

n=0

εn u(n) (4)

The components u
(n)
i of the nth term of the above expansion are expressed in the

coordinate system (ai) related to the undeformed state of the beam. They are linked
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to the components of the field ũ(n), expressed in the coordinate system related to
the deformed state of the beam through:

u(n) = A ũ(n) (5)

A = [aij]1≤i≤3, 1≤j≤3 is the transformation matrix from the initial state to the de-
formed one, expressed by means of the Euler angles:

A =

2
666664

cos ϕ cos ψ − cos θ sin ϕ sin ψ − cos ψ sin ϕ− cos θ cos ϕ sin ψ sin θ sin ψ

cos θ cos ψ sin ϕ + cos ϕ sin ψ cos θ cos ϕ cos ψ − sin ϕ sin ψ − cos ψ sin θ

sin θ sin ϕ cos ϕ sin θ cos θ

3
777775

(6)

(a1, a2, a3) and (x1,x2,x3) being respectively the system coordinates of the initial
and deformed state. Three rotations relate those two states, the angles of which are:

i. ψ, the precession angle;

ii. θ, the nutation angle;

iii. φ, the proper rotative angle.

In [4], [5], Rigolot showed that, for nonlinear elasticity of the second order, the

ũ
(n)
i , n ≥ 0, are solutions of a differential recursive system of the form:





Lαβ ũ
(n+1)
β = Φ{u(1), ...,u(n)}

Bαβ ũ
(n+1)
β = Φ{u(1), ...,u(n)} (7)

(Φ being a generic notation denoting a function of {u(1), ...,u(n)}) and that ũ
(n+1)
3

satisfies the Neumann problem:





∆ ũ
(n+1)
3 = Φ{u(1), ...,u(n)}

dũ
(n+1)
3

dn
= Φ{u(1)...,u(n)}

(8)

where Lαβ, Bαβ, and
d

dn
are respectively the two dimensional elasticity operators,

and border operators, defined by:

Lαβ uβ =
2 ν

1− 2 ν

∂

∂aα

(
∂uγ

∂aγ

)
+

∂

∂aβ

(
∂uα

∂aβ

+
∂uβ

∂aα

)
. (9)

in ω, and:
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



Bαβ uβ =
2ν

1− 2ν

∂uγ

∂aγ

nα +

(
∂uα

∂aβ

+
∂uβ

∂uα

)
nβ

du

dn
=

∂u

∂aα

nα

(10)

on the lateral surface of ω.
∆ is the two-dimensional laplacian, defined as:

∆ =
∂2

∂aα ∂aα

(11)

In [6], it is shown that the Classical Strength of Materials for beams can be
represented through the first two terms ũ(0), ũ(1), and that (10) enables us to express
the components of ũ(n+1), n ≥ 0, as functions of the components of the ũ(n), n ≥ 0,
modulo an unknown constant displacement:

ũ
(n+1)
1 = −ν

(
ai3

∂2u
(n)
i

∂a3∂a1

a2
1 − a2

2

2
+ ai3

∂2 u
(n)
i

∂a3∂a2

a1 a2

)
(12)

ũ
(n+1)
2 = −ν

(
ai3

∂2 u
(1)
i

∂a3∂a2

a2
2 − a2

1

2
+ ai3

∂2 u
(n)
i

∂a3∂a1

a1 a2

)
(13)

ũ
(n+1)
3 = −1

2
φ(a1, a2)

T

[
a1i

∂2

∂a2∂a3

− ai2
∂2

∂a1∂a3

]
u

(n)
i (14)

φT denotes the torsional function.

2.1 Calculation of the field u(n)

We propose here, first, to use formal calculation to obtain the sequential terms of
the asymptotic expansion of the solution.

Let us introduce the differential operating matrix MD, defined by:

MD =
[
MD

ij

]
1≤i≤3, 1≤j≤3

(15)

where, for j = 1, 2, 3:

MD
1j = −ν aj3

(
a2

1 − a2
2

2

∂2

∂a1∂a3

+ a1 a2
∂2

∂a2∂a3

)
(16)

MD
2j = −ν aj3

(
a2

2 − a2
1

2

∂2

∂a2∂a3

+ a1 a2
∂2

∂a1∂a3

)
(17)

MD
3j = −1

2
φT (a1, a2)

(
aj1

∂2

∂a2∂a3

− aj2
∂2

∂a1∂a3

)
(18)
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Relations (12), (13), (14), for n ≥ 1, can then be written matricially as:

ũ(n+1) = MD u(n) (19)

where:

ũ(2) =




ũ
(2)
1

ũ
(2)
2

ũ
(2)
3


, u(1) =




u
(1)
1

u
(1)
2

u
(1)
3


 (20)

In the same way:

ũ(3) = MD u(2) (21)

= MD [
AMD]

u(1) (22)

Since, for any n: u(n) = A ũ(n), an immediate recurrence yields:

ũ(n) = MD u(n−1) (23)

In [6], it is shown that:

ũ(1) = MD u(0) (24)

Hence:

u(n+1) = [AMD]nu(1) (25)

which can be written as:

u(n+1) = Mnu(1) (26)

where:

M = AMD (27)

According to the recursive relation (26), the asymptotic expansion of the displace-
ment field u can be written under the following form:

u =
∞∑

n=0

εnMnu(0) (28)

The use of a symbolic formal tool (Mathematica [18]), enables us to calculate the
formal product of two differential operating matrices, and therefore to obtain the
nth power of the matrix M : calculating any of the u(n) is then possible.
In concrete terms, a finite truncation of the series (28) will serve the calculation of
an approximation of the displacement field, as presented in section 4.

3 Properties of the matrix M

In the following, we show that the space of the solutions is a Fréchet space.
For this purpose, properties of the space of differential operating matrices are first
studied. Second, we prove the asymptotic convergence of the series (28).
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3.1 The space of matrices of differential operators

Consider an open set ω of Rn, and ξ a compact set of ω. Denote by x = (x1, ..., xn)
the current point of Rn.
If α = (α1, ..., αn) ∈ Nn is a multi-subscript with integer components, we will call

length of α the integer |α| =
n∑

j=1

αj.

Derivation with respect to the variable xj , (1 ≤ j ≤ n), will be denoted by:

Dj =
∂

∂xj

.

If α ∈ Nn is a multi-index, we will note:

Dα = Dα1
1 · · ·Dαn

n =
∂α1

∂x1
α1
· · · ∂αn

∂xn
αn

=
∂|α|

∂xα1
1 · · · ∂xαn

n

Consider, in Rn, a square N × N linear differential operating matrix, whose
coefficients are C∞.
Denote this matrix M . Set:

M =

[
aij(x,D)

]

1≤i, j≤N

. (29)

The order of the operator aij(x, D) will be denoted by mij:

mij = order(aij(x, D)) (30)

If the operator is identically zero, its order will be −∞.
If mij is finite (< ∞), we have then:

aij(x,D) =
∑

|α|≤mij

aij, α(x) Dα (31)

where the functions aij, α : ω −→ R are C∞.

To the matrix M =

[
aij(x,D)

]

1≤i,j≤N

, we relate the square N × N matrix, whose

coefficients are in N ∪ {−∞}:
[
mij

]

1≤i, j≤N

(32)

which will be called matrix of the related orders of the matrix M , M =

[
aij(x, D)

]

1≤i,j≤N

.

To each operator aij(x,D), we relate a polynomial with n unknowns ψi, i = 1, ..., n
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in the following way: if mij = −∞, the polynomial aij(x, ψ) related to the operator
aij(x,D) is equal to zero, or else it is the polynomial of degree mij defined by:

aij(x, ψ) =
∑

|α|≤mij

aij,α(x)ψα (33)

where ψα = ψα1
1 ... ψαn

n .
We thus define a square N ×N polynomial matrix:

[
aij(x, ψ)

]

1≤i,j≤N

(34)

Denote by P the set of permutations of [1, N ]. For any permutation π ∈ P , we set:

m(π) =
N∑

i=1

mi,π(i)

The determinant of the matrix defined in (34) is a polynomial of degree less or equal
to:

mP = sup
π∈P

m(π) (35)

mP will be called total order of the system (29). mP can be equal to −∞, which is,
for instance, the case if there exists a line (or a column) of the matrix (29) identically
zero. We will always assume that mP is positive.
Let us denote by g(x, ψ) the homogeneous part of degree mP of the polynomial

det

[
aij(x, ψ)

]
; this polynomial is called the characteristic polynomial of (29). We

will take for granted that for any x in ω, g is not identically zero.
Denote by MN the space of square N × N linear differential operating matrices,
operating on the function space U of the C ∞ bounded functions on Ω (we recall, here,
that the displacement solution u is, by construction, C ∞, and therefore bounded
on Ω).
Let M be in MN , thus its components are of the form:

aij(x,D) =
∑

|α|≤mij

aij, α(x) Dα 1 ≤ i, j ≤ N

MN is a C-vectorial space of finite dimension:
if, for 1 ≤ i, j ≤ N , Eij is the matrix whose coefficients of which are the identically
zero operators, except the one of subscript (i, j), which is the identity operator,
denoted by 1.
The canonic basis of MN is given by:

{
∂α1

ij ...∂αn
ij

∂
α1

ij
x1 ...∂

αn
ij

xn

Eij

}
, 1 ≤ i, j ≤ N (36)

where, for any (i, j), the αk
ij are integers, corresponding to the differentiation order

with respect to the variable xk.
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Note: m0 = max
1≤i≤N, 1≤ j≤N

mij; we presently study the case where, for any (i, j), mij

is finite.
Let us review what a combination with repetitions is: E being a set of n elements, a
combination with repetition of p elements of E is any set of p elements {x1, · · · , xp}
not necessarily distinct. The number of combinations with repetitions of p elements
among n is Cp

n+p−1.
Thus, for any differentiation order p, the number of combinations of partial differ-
entiations with respect to the variables x1, · · · , xn, that is the number of combina-
tions with repetition of p elements taken in the set of n elements {x1, · · · , xn} is
Cp

n+p−1. Or, m0 being defined by: m0 = max
1≤i≤N, 1≤j≤N

mij, for any subscript (i, j),

1 ≤ i, j ≤ N , there are
∑m0

p=0 Cp
n+p−1 choices available. Eventually:

dim(MN) =
[ m0∑

p=0

Cp
N+p−1

]N2

(37)

It is important to note that the u(n) terms we presently work on are, by con-
struction, C ∞, with a compact support ξ: so are all their derivatives. Of course, the
(n + 1)th term is related to the nth one by means of a differential system. Since all
those terms are defined on a compact set, they are bounded. It is then interesting
to note that all the u(n) terms still belong to this peculiar space.
Therefore, any of the Mu(n) term is still in U , which means that applying a differen-
tial operating matrix ofMN on any of the u(n) terms results in obtaining a term in U .

We then define on MN an associative and distributive multiplication, denoted
by “.”, i.e. for M, N and P in MN :

M · (N · P ) = (M.N) · P, (38)

(M + N) · P = M ·N + N · P,

M · (N + P ) = M ·N + M · P

Multiplication by a scalar satisfies:

λ ( M N ) = M ( λN ) = ( λM ) N , λ ∈ C. (39)

We provide MN with the norm |||.|||, defined by:

for M ∈MN |||M ||| =
N∑

i,j=1

||aij(x,D)||A (40)

where ||.||A is an algebra norm on the algebra A of linear differential operators,
defined as follows:
let us recall, first, that an element a(x,D) of A can be written as:

a(x, D) =
∑

k∈I

ak,1(x)Dαk,1

...ak,pk
(x)Dαk,pk (41)
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where I is a finite set, αk,l ∈ Nn, ak,l, (k ∈ I, 1 ≤ l ≤ pk), C∞ functions.
For any (i, j), 1 ≤ i, j ≤ N , we have :

aij(x,D) :X −→ X
uj −→ aij(x,D) uj

(42)

where X is the function space to which belong the components uj, j ∈ [1, N ] of the
displacement field u .
A is then provided with the norm:

||aij(x,D)||A = sup
||uj ||X≤1

||aij(x,D)uj||X (43)

Moreover, if ||aij(x,D)||A < ∞ (i.e. the operator aij(x, D) is continuous) and X
is a Banach space, then A is a Banach algebra.
Norms being equivalent in the space MN , we can also take:

|||M ||| = sup
||u||X≤1

||Mu||X (44)

In both cases, |||.||| is an algebra norm, i.e.:

for M,N ∈MN : |||M.N ||| ≤ |||M |||.|||N |||
MN is then a normed algebra. Moreover, MN being a vector normed space of finite
dimension, MN is a Banach space.
Thus, MN is a non-commuting unitary (i.e. with an identity element) Banach al-
gebra.
The study of the norm of an element of MN depends on the components uj, 1 ≤
j ≤ N , of the field u.

For the space X , we will limit our study to the general case of a Sobolev space
Hm(ω), in so far as the Rigolot results [4], [5], ensure that the solution u belongs to
Hm(ω), and has a compact support ξ ⊂ ω.
Denote by Em(ω) the function space of the u ∈ C∞(ω) such that:

|Dαu| ∈ L2(ω), ∀ 0 ≤ |α| ≤ m ∈ N.

the Sobolev space Hm(ω) is the completion of Em(ω), with respect to the norm:

||u||Hm =
m∑

|α|=0

||Dαu||L2 (45)

where

||Dαu||L2 =

[∫

Ω

|Dαu|2
] 1

2

. (46)

Hence,
Hm(ω) = {u ∈ L2(Ω), Dαu ∈ L2(Ω), |α| ≤ m} (47)
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The components uj, 1 ≤ j ≤ N , of the displacement field u, belong to Hm(ω). Its
norm is given by:

||u||Hm =

[
N∑

j=1

||uj||2Hm

] 1
2

(48)

Let M ∈MN . Then:

M =

[
aij(x,D)

]

1≤i,j≤N

=

[ ∑

|α|≤mij

aij,α(x) Dα

]

1≤i,j≤N

(49)

The coefficients aij,α(x) are real and continuous.

M generates a linear operator in the vectorial function space L2(Ω) of the square
modulus integrable functions.
Each coefficient of the matrix is a linear differential operator, defined by:

∑

|α|≤mij

aij,α(x)Dα : Hm(Ω) −→ Hm(Ω) (50)

uj 7→
∑

|α|≤mij

aij,α(x)Dαuj

where m = max
i,j

mij.

The space MN is provided with the norm (40):

|||M ||| = sup
||u||Hm≤1

||M.u||Hm

= sup
||u||Hm≤1

[
N∑

i=1

||(M.u)i||2Hm

] 1
2 (51)

where (M.u)i is the ith component of the vector M.u and:

(M.u)i =
N∑

j=1

aij(x, D)uj

= vi

(52)

Hence:

|||M ||| = sup
||u||Hm≤1

[
N∑

i=1

||
3∑

j=1

aij(x, D)uj||2Hm

] 1
2

= sup
||u||Hm≤1

[
N∑

i=1

||vi||2Hm

] 1
2

= sup
||u||Hm≤1

[
N∑

i=1

( ∑

|β|≤m

||Dβvi||L2

)2
] 1

2

(53)
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For any i ∈ {1, ..., N}, vi belongs to Hm(Ω), and has a compact support ξ ⊂ ω;
thus Dβvi ∈ L2(Ω) for any integer β, with 0 ≤ |β| ≤ m; if Dβvi ∈ L2(Ω), and has a
compact support ξ ⊂ ω, then ||Dβvi||L2 < ∞.
Hence, there exists a constant C ≥ 0 such that:

|||M ||| = sup
||u||Hm≤1

||M.u||Hm

≤ C
(54)

3.2 Asymptotic convergence

The asymptotic expansion of the displacement field u can be written as:

u =
∞∑

n=0

εnMn u(0) (55)

The validity of the asymptotic expansion will be assessed through the asymptotic

convergence of the series
∞∑

n=0

εnMn.

Let us first demonstrate the following lemma:

Lemma 3.2.1 Consider a C∞ function f , with a closed and bounded support J .
Denote by x0 a point of J , and ε a strictly positive real number, very small compared
to 1.
Then: the series

(∑
εnf (n) (x0)

)
is asymptotically convergent.

Proof 3.2.1 Let x be a point of J , very close from x0.
We will take, in the following:

ε = η |x− x0| (56)

with η ¿ 1.
Let n be a strictly positive natural integer. The Taylor-Young formulae, at the first
order, applied to f (n−1) at the point x0, can be written as:

f (n−1) (x) = f (n−1) (x0) + (x− x0) f (n) (x0) + o (1) (57)

Therefore:

∣∣εnf (n) (x0)
∣∣ = εn−1η |x− x0|

∣∣f (n) (x0)
∣∣ = εn−1η

∣∣f (n−1) (x)− f (n−1) (x0) + o (1)
∣∣

(58)
f being C∞ on J , all the derivatives f (k) (k ≥ 1) are continuous at the point x0: for
any strictly positive integer n, there exists an interval ]x0 − δn, x0 + δn[ of center x0,
where: ∣∣f (n−1) (x)− f (n−1) (x0) + o (1)

∣∣ ≤ 1 (59)

We have then: ∣∣εnf (n) (x0)
∣∣ ≤ εn−1η (60)
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Let now α be a strictly positive real number, and N0 a strictly positive integer. Let
us introduce the sequence defined by:

SN0 =

N0∑
n=1

εnf (n) (x0) (61)

Using:

IN0 =
N0∩
n=1

]x0 − δn, x0 + δn[ (62)

we obtain: ∣∣∣∣∣
N0∑
n=1

εnf (n) (x0)

∣∣∣∣∣ ≤
N0∑
n=1

η εn−1 = η

{
1− εN0−1

1− ε

}
≤ η

1− ε
(63)

or:
|SN0| ≤

η

1− ε
(64)

This lemma can easily be generalized to the differential operating matrix M : we
use for this purpose its decomposition on the basis of MN . Each component of M
is a linear combination of differential operators, to which the lemma can be applied.
More specifically, results of subsection 3. 1. enable us to assert that, for the u with
a compact support ξ ⊂ ω of Hm(Ω), for N0 in N, there exists a strictly positive real
number ε which satisfies:

for 1 ≤ n ≤ N0 : ||εMn u(0)|| ≤ 1 (65)

Hence:

||
N0∑
n=1

εn Mn u(0)|| ≤
N0∑
n=1

εn−1 ||εMn u(0)|| ≤ 1

1− ε
(66)

The series
∞∑

n=0

εn Mn u(0) is then asymptotically convergent.

3.3 A property of the solution

In subsection 3.2, we have concentrated our study on differential operating ma-
trices spaces. This was the necessary step to a full understanding of the behavior of
the components u(n) of the asymptotic expansion of the solution.

Let us denote by U the space Vectorial {u(n), n ∈ N}.
We provide U with the semi-norm family:

||v|| = sup ||M.v||Hm, m∈N v ∈ U (67)

Any v in U has a compact support ξ. U ⊂ C∞
ξ is a subset of the Frechet space

C∞
ξ for the semi-norm family (67). This property is all the more useful as a Cauchy

sequence of this space will converge, and thus accounts for a finite truncation of the
field (28). This property is used in section 4., the difference between two successive
terms εn u(n) and εn+1 u(n+1) being small enough up from a specific rank n.

12



4 Numerical Application

The asymptotic solution field, in the case of plane bending, for a free-embedded
cantilever, subject to a constant moment of flexion, is presented in the following (see
Figure 2).
We will denote by ν Poisson’s ratio.

The rotation matrix A depends only on the angular parameter θ, which itself
solely depends on a3, the two remaining Euler angles being constant. A is here of
the following form:

A =




cos[m
I
(a3 − 1)] 0 sin[m

I
(a3 − 1)]

0 1 0

− sin[m
I
(a3 − 1)] 0 cos[m

I
(a3 − 1)]


 (68)

where m is the modulus of the moment of flexion.
Under those assumptions, the differential operating matrix, denoted by M , which
relates u(n+1) and u(n), satisfies:

M =

2
6664

−ν sin
�m (a3−1)

I

��
1
2

(a2
1−a2

2) ∂2

∂a1∂a3
+ a1 a2 ∂2

∂a2∂a3

�
0 −ν cos

�m (a3−1)
I

��
1
2

(a2
1−a2

2) ∂2

∂a1∂a3
+ a1 a2 ∂2

∂a2∂a3

�

ν sin
�m (a3−1)

I

��
1
2

(a2
1−a2

2) ∂2

∂a2∂a3
+ a1 a2 ∂2

∂a1∂a3

�
0 −ν cos

�m (a3−1)
I

��
1
2

(a2
1−a2

2) ∂2

∂a2∂a3
+ a1 a2 ∂2

∂a1∂a3

�

0 0 0

3
7775 (69)

Denote by I the inertia moment of the beam. The field u(0) is solution of the
differential system (see [6]):





∂2u2
(0)

∂a32 (0, 0, a3) = 0

∂
∂a3

h
cos
�m (a3−1)

I

� ∂ u1
(0)

∂a3
(0, 0, a3)− sin

�m (a3−1)
I

� ∂ u3
(0)

∂a3
(0, 0, a3)

i
(0, 0, a3) = C

sin
�m (a3−1)

I

� ∂u1
(0)

∂a3
(0, 0, a3) + cos

�m (a3−1)
I

� ∂u3
(0)

∂a3
(0, 0, a3) = 0

eui
(0)(0, 0, 1) = ∂uα

(0)

∂a3
(0, 0, 1) = 0

(70)

where:

C =
3

2 ε I
0.0199 {(1− ν)− 0.0005 ν} (71)

The resolution of (70) yields:

{
u

(0)
1 (0, 0, a3) = C I2

m2

{
cos

[m (a3−1)
I

]− 1
}

+ C I
m

(a3 − 1) sin
[m (a3−1)

I

]

u
(0)
3 (0, 0, a3) = −C I2

m2 sin
[m (a3−1)

I

]
+ C I

m
(a3 − 1) cos

[m (a3−1)
I

] (72)

The hypothesis of small deformations leads to:

u
(0)
i (a1, a2, a3) =

∂u
(0)
i

∂a1

(0, 0, a3) a1 +
∂u

(1)
i

∂a2

(0, 0, a3) a2 + u
(0)
i (0, 0, a3) (73)
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Due to (see [6]):

∂u
(0)
1

∂a1

(0, 0, a3) = a11 − 1 = cos
[m (a3 − 1)

I

]− 1 (74)

∂u
(0)
1

∂a2

(0, 0, a3) = a12 = 0 (75)

∂u
(0)
3

∂a1

(0, 0, a3) = a31 = − sin
[m (a3 − 1)

I

]
(76)

∂u
(0)
3

∂a2

(0, 0, a3) = a32 = 0 (77)

we then have:





u
(0)
1 (a1, a2, a3) =

(
C I2

m2 + a1

) {
cos

[
m (a3−1)

I

]− 1
}

+ C I
m

(a3 − 1) sin
[

m (a3−1)
I

]

u
(0)
2 (a1, a2, a3) = 0

u
(0)
3 (a1, a2, a3) = −(

C I2

m2 + a1

)
sin

[m (a3−1)
I

]
+ C I

m
(a3 − 1) cos

[m (a3−1)
I

]
(78)

Symbolic calculations yield:





u1
(1) =

0.5 m (a2
1−a2

2) ν cos
[

m (a3−1)
I

]
I

u2
(1) = m a1 a2 ν

I

u3
(1) = −0.5 m (a2

1−a2
2) ν sin

[
m (a3−1)

I

]
I

(79)





u1
(2) =

0.5 m2 a1(a2
1−3a2

2) ν2 cos
[

m (a3−1)
I

]
I2

u2
(2) =

0.5 m2 a2 (3 a2
1)−a2

2) ν2

I2

u3
(2) = −0.5 m2 a1 (a2

1−3 a2
2) ν2 sin

[
m (a3−1)

I

]
I2

(80)





u1
(3) =

0.75 m3 (a4
1−6 a2

1a2
1+a4

2) ν3 cos
[

m (a3−1)
I

]
I3

u2
(3) =

3 m3 a1 a2 (a2
1−a2

2) ν3

I3

u3
(3) = −0.75 m3 (a4

1−6 a2
1a2

1+a4
2) ν3 sin

[
m (a3−1)

I

]
I3

(81)

Higher order terms are calculated in the same way. Up from rank 3, the difference

sup
(a1,a2,a3)∈Ω

| εn+1 u(n+1)(a1, a2, a3)− εn u(n)(a1, a2, a3) | (82)

begins to become very small, which can account for the validity of a finite truncation
of the field

u =
∞∑

n=0

εnMn u(0) (83)
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Figure 3 displays the third component, calculated respectively at the second
and third order, of the field u, for given values of a1 and a2, as a function of the
normalized thickness variable a3, and the small parameter ε. The two plots coincide,
which accounts for the accuracy of the truncature at the second order.

5 Conclusion

The approximate displacement field, solution of Saint-Venant’s problem, for the
elasticity of the second order, is obtained as the sum of a series, which is geometric
as regards the inverse of the slenderness of the beam. This series is shown to be
asymptotically convergent. The terms of the series can be calculated recursively
using a symbolic calculus tool. The accuracy of the proposed method is shown in
the case of plane bending, for a free-embedded cantilever beam. For this specific
case, the influence of the components of the asymptotic expansion come clearly into
light: a truncation at the second order appears as sufficiently accurate.
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Mécanique appliquée, 1(2): 175–206, 1977.

[7] Rigolot, A., Approximation asymptotique des vibrations de flexion des poutres
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