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ABSTRACT 1	
  
 2	
  
Bone loss is naturally occurring in ageing males and females and exacerbated in the latter 3	
  
after menopause, altogether leading to cumulative skeleton fragility and increased fracture 4	
  
risk. Two types of therapeutic strategies can be envisioned to counteract age- or 5	
  
menopause-associated bone loss, aiming at either reducing bone resorption exerted by 6	
  
osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize 7	
  
data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote 8	
  
bone formation and compensate for bone loss induced by ageing or estrogen-deficiency. 9	
  
 10	
  
MAIN TEXT 11	
  
The ERRs as constitutively acting nuclear receptors 12	
  
 13	
  

Nuclear receptors form a gene/protein family of 48 members in the human and have 14	
  
been defined as ligand-dependent transcription factors (Laudet and Gronemeyer, 2002; 15	
  
Perissi and Rosenfeld, 2005). With few exceptions, they share a common organization 16	
  
comprising two conserved, highly structured domains. A centrally located DNA-binding 17	
  
domain (DBD) encompassing two zinc finger modules mediates direct contact with DNA 18	
  
response elements located in the enhancer/promoter of their target genes. A C-terminal 19	
  
domain, containing up to 12 α-helices arranged in a globular structure, is responsible for 20	
  
ligand fixation (and is hence referred to as ligand-binding domain, LBD) as well as ligand-21	
  
dependent transcriptional activity. These two domains are linked together by a poorly 22	
  
conserved, so-called “hinge” domain. In addition, some nuclear receptors comprise an 23	
  
additional N-terminally located domain that can mediate ligand-independent transcriptional 24	
  
activation. Schematically, the activity of nuclear receptors such as the Estrogen- or Thyroid 25	
  
hormone Receptors (ERs and TRs, respectively) is regulated in vivo by the fixation of a 26	
  
hormone (17β-estradiol or tri-iodothyronine [T3], respectively) in a hydrophobic ligand-27	
  
binding pocket, located in the heart of the LBD. This induces a conformational change in the 28	
  
LBD that relocates its C-terminal-most helix, thereby forming a contact surface for the 29	
  
recruitment of transcriptional co-factors that will ultimately trigger the expression of 30	
  
downstream target genes. In addition the recruitment of some NRs (such as ERs, but not 31	
  
TRs) to DNA can be induced by ligand-binding.  32	
  

The existence and (at least part) of the physiological activities of hormones such as 33	
  
17β-estradiol or thyroid hormone had been explored for decades before the identification, in 34	
  
the mid 80s, of their corresponding receptors (Evans and Mangelsdorf, 2014; Gustafsson, 35	
  
2015). In contrast, other nuclear receptors have been later isolated (starting in the late 80s), 36	
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based on their sequence similarity to “classical” receptors. Since no hormone had been 37	
  
previously identified that promoted their activities, these newly isolated receptors were 38	
  
referred to as “orphan” (Giguère, 1999). Subsequent research efforts have allowed to “de-39	
  
orphanize” a number of these receptors, by identifying natural compounds that specifically 40	
  
bind to them and regulate their activities in vivo. However some orphan nuclear receptors are 41	
  
still reluctant to adoption. Strikingly this is the case of the first orphan nuclear receptors 42	
  
identified in 1988 (Giguère et al.), namely the Estrogen-Related Receptor α and β (ERRα 43	
  

and β), which, together with ERRγ (identified in 1999, Hong et al.), form a defined subfamily 44	
  
(Tremblay and Giguère, 2007). Interestingly these receptors display the above-mentioned 45	
  
domain organization, with a DBD that displays an elevated level of sequence identity to the 46	
  
one of the ERs, and a more moderately conserved LBD (Horard and Vanacker, 2003). As 47	
  
evidenced by structural analysis, the latter includes a putative ligand-binding pocket, which is 48	
  
much smaller than that of the ERs and is crossed by the side-chain of a phenylalanine 49	
  
residue (Chen et al., 2001; Greschik et al., 2002; Kallen et al., 2004). This is thought to 50	
  
confer a certain level of rigidity to the LBD and to lock the receptor in an active conformation 51	
  
where the helix 12 is constitutively positioned so as to contact co-activators, even in the 52	
  
absence of compound filling the ligand-binding pocket (Takacs et al., 2013). In other terms 53	
  
(and although structural data have so far only been obtained for ERRα and γ, not for β), it is 54	
  
likely that the ERRs regulate transcription in constitutive, ligand-independent manner, 55	
  
thereby betraying the current definition of nuclear receptors. However, one cannot exclude 56	
  
the existence of bona fide ligands that could over-promote or reduce the activities of these 57	
  
receptors in vivo, by inducing conformational changes. In this respect, synthetic ligands have 58	
  
been identified that modulate the activities of the ERRs. For instance 4-OH-tamoxifene (a 59	
  
selective estrogen receptor modulator [SERM] that is widely used in breast cancer therapy) 60	
  
decreases the activities of ERRγ (Coward et al., 2001; Tremblay et al., 2001) whereas 61	
  

DY131 increases the activities of both ERRβ and γ (Yu and Forman, 2005). A special 62	
  
mention should be made of Bisphenol A (BPA, an endocrine disruptor) that, on its own, 63	
  
appears innocuous toward ERRγ but prevents the inactivation of the receptor by compounds 64	
  
such as 4-OH-tamoxifene in cell culture based assays (Takayanagi et al., 2006; Matsushima 65	
  
et al., 2007). In contrast to ERRβ and γ, only deactivating compounds have been identified 66	
  

for ERRα to date (Yang and Chen, 1999; Willy et al., 2004; Chisamore et al., 2009a; 67	
  
Chisamore et al., 2009b; Duellman et al., 2010). This is for instance the case of XCT790 68	
  
which enters the ligand binding pocket, disrupt the organization of the LBD and prevents co-69	
  
activator recruitment, in addition to inducing proteasome-dependent degradation of the 70	
  
receptor (Willy et al., 2004; Kallen et al., 2007; Lanvin et al., 2007). Few of these compounds 71	
  
have been evaluated in vivo for a specific ERR-dependent effect, although recent data show 72	
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that BPA induces otolith aggregation in the zebrafish embryo in an ERRγ-dependent manner 73	
  
(Tohmé et al., 2014). In spite of the lack of clear in vivo data, the identification of 74	
  
(de)activating ligands for the ERRs suggests that they could be targeted through a 75	
  
pharmacological approach in order to modulate their activities. The identification of ERR-76	
  
ligands would open promising avenues for the treatment of given pathologies.  77	
  

In addition, diverse levels of possible regulation of ERRs’ activities have been 78	
  
suggested. For instance, ERK8 relocates ERRα in the cytoplasm, thereby inhibiting its DNA 79	
  

binding and transactivation capabilities (Rossi et al., 2011). Moreover, ERRα and γ are 80	
  
subjected to post translational modifications (sumoylation, phosphorylation, acetylation), 81	
  
some which having been shown to impact on the receptor activity (Barry and Giguère, 2005; 82	
  
Vu et al., 2007; Tremblay et al., 2008; Wilson et al., 2010; Kim et al., 2014). One of the key 83	
  
levels of regulations seems however to be represented by the capacity of contacting given 84	
  
co-activators, which can be expressed in a cell-type specific manner. For instance members 85	
  
of the PGC-1 family of transcriptional co-activators have been shown to be instrumental in 86	
  
promoting ERR-based response (at least ERRα and γ), in particular in metabolism-related 87	
  
processes (Villena and Kralli, 2008; Giguère, 2008).  88	
  
 89	
  
Functions of the ERRs 90	
  
 91	
  

A number of physiopathological functions have been ascribed to the ERR receptors. 92	
  
ERRβ is mainly expressed in the embryo and regulates placental formation, the maintenance 93	
  
of pluripotency of embryonic stem cells, and the specification of epithelial cells in the inner 94	
  
ear (Luo et al., 1997; Chen and Nathans, 2007; Chen et al., 2008). ERRα and γ are strongly 95	
  
expressed in tissues with a high energy demand (e.g. liver, heart, muscle and fat) where they 96	
  
govern energetic metabolism, regulating processes such as lipid uptake, fatty acid oxidation, 97	
  
neoglucogenesis, tricarboxylic acid cycle, oxidative phosphorylation, and mitochondrial 98	
  
biogenesis and activities (Villena and Kralli, 2008; Giguère, 2008; Deblois and Giguère, 99	
  
2011). These functions strongly depend on the PGC-1 co-activators and are also exerted 100	
  
during somatic reprograming to pluripotency (Kida et al., 2015) as well as in cancer cells 101	
  
(reviewed in Chang and McDonnell, 2012; Bianco et al., 2012; Deblois and Giguère, 2013; 102	
  
Deblois et al., 2013). For instance, ERRα induces, in advanced breast cancers and in a 103	
  

PGC-1β-dependent manner, a transcriptional cascade leading to the switch from oxidative to 104	
  
glycolytic metabolism referred to as the Warburg effect which is instrumental in cancer 105	
  
progression (Eichner et al., 2010; Chang et al., 2011; Cai et al., 2013). ERRγ apparently 106	
  
displays converse activities, promoting oxidative rather than glycolytic metabolism thus 107	
  
potentially reducing cancer aggressiveness (Eichner et al., 2010). The activities of the ERRs 108	
  



	
   	
   5	
  

in cancer cells however extend beyond the regulation of metabolism. Opposite activities of 109	
  
ERRα and γ have been documented in cancer-related processes such as cell proliferation 110	
  

and epithelial-to-mesenchymal transition (EMT), which are promoted by ERRα and reversed 111	
  

by ERRγ (Yu et al., 2007; Tiraby et al., 2011; Bianco et al. 2012; Lam et al., 2014). In 112	
  

addition ERRα promotes cell migration and invasion as well as the establishment of distant 113	
  
metastasis in a manner that apparently does not directly rely on energy metabolism (Dwyer 114	
  
et al., 2010, Fradet et al., 2011; Sailland et al., 2014). In line with these functions, high 115	
  
expression of ERRα is considered as a factor of poor prognosis in diverse cancers (including 116	
  

from the breast), whereas ERRγ constitutes a favorable biomarker (Ariazi et al., 2002; Suzuki 117	
  
et al., 2004; reviewed in Bianco et al., 2012).  118	
  
 119	
  
ERRs and mesenchymal cell fate 120	
  
 121	
  

Mesenchymal stem cells can differentiate into various lineages including myocytes, 122	
  
adipocytes, chondrocytes and osteoblasts. Strikingly an array of data indicates that ERRα 123	
  

and/or γ modulate the differentiation of all these lineages, suggesting that they may be key 124	
  

regulators of mesenchymal stem cell fate. ERRα expression increases during the transition 125	
  
from myoblasts to myotubes (Bonnelye et al., 1997) and stimulates the expression of 126	
  
Dusp1/MKP1, which in turn dephosphorylates ERK1/2 (Murray and Huss, 2011). In the 127	
  
absence of ERRα, ERK1/2 signaling is therefore aberrantly increased and results in 128	
  

sustained proliferation and delayed differentiation. Interestingly ERRγ expression is also 129	
  
strongly enhanced when myoblasts differentiate into myotubes (Murray and Huss, 2011). 130	
  
The receptor increases mitochondrial content and promotes oxidative programs in vivo, 131	
  
including in mouse model of muscular dystrophy suggesting that it may constitute a 132	
  
promising target against muscle wasting (Narkar et al., 2011; Murray et al., 2013; Matsakas 133	
  
et al., 2013). 134	
  

Human and mouse mesenchymal cells in which ERRα has been inactivated display 135	
  
reduced adipocytic differentiation capacities (Ijichi et al., 2007; Delhon et al., 2009; Rajalin et 136	
  
al., 2010; Carnesecchi and Vanacker, 2013). This is consistent with the reduced fat deposit 137	
  
and the decreased number and size of adipocytes as well as reduced marrow fat volumes 138	
  
that have been observed in ERRα-/- mice (Luo et al., 2003; Delhon et al., 2009). ERRα 139	
  
expression increases during human adipocyte differentiation supporting the hypothesis of a 140	
  
contribution of the receptor to this process (Delhon et al., 2009). Interestingly, it has recently 141	
  
been shown that miR125a directly targets ERRα to inhibit its expression in porcine 142	
  
preadipocytes (Ji et al., 2014). Furthermore, miR125a expression decreases during 143	
  
adipocytic differentiation, suggesting a possible mechanism for the regulation of ERRα 144	
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expression during this phenomenon. ERRγ expression also increases during preadipocyte 145	
  
differentiation in vitro and the receptor promotes the expression of markers of adipocytic 146	
  
differentiation as well as intracellular fat accumulation (Kubo et al., 2009). 147	
  

ERRα is expressed in rat cartilage in vivo and chondrogenic cell lines in vitro and has 148	
  
been suggested to positively modulate chondrocytic differentiation in vitro through a possible 149	
  
effect on the expression of Sox9 (the master gene for chondrocyte differentiation) (Bonnelye 150	
  
et al., 2007). A recent report addressed the in vivo effect of ERRγ, which was specifically 151	
  
overexpressed in the cartilage of transgenic mice (Cardelli et al., 2013). The resulting 152	
  
animals displayed a mild dwarfism attributed to a reduced thickness of the proliferative zone 153	
  
of long bones. This is likely due to a disequilibrium of the balance between proliferation and 154	
  
differentiation of the chondrocytes of the growth plate. Indeed, ERRγ overexpression was 155	
  
found to result in increased expression of the p27 cell cycle inhibitor thereby reducing 156	
  
chondrocyte proliferation. It is possible that this reduced proliferation is the primary event 157	
  
leading to increased differentiation, accompanied by enhanced expression of functional 158	
  
chondrocyte markers such as Pth1 receptor and Aggrecan. 159	
  
 160	
  
ERRs and bone cell fate 161	
  
 162	
  

ERRα is strongly expressed in the ossification zones during mouse embryonic 163	
  
development (Bonnelye et al., 1997). This observation is valid for the long bones as well as 164	
  
for the flat bones of the skull, suggesting that the receptor may contribute to both 165	
  
endochondral and intramembranous ossification. ERRα is also highly expressed in 166	
  
osteoblastic cell lines and normal human bones. The receptor has initially been thought to 167	
  
promote osteoblast differentiation when overexpressed in in vitro experiments (Bonnelye et 168	
  
al., 2001). However analysis of young (8 weeks old) ERRα-/- mice showed that these animals 169	
  
did not display an overt bone phenotype (Delhon et al., 2009; Teyssier et al., 2009; reviewed 170	
  
in Gallet and Vanacker, 2010). Nevertheless, no bone loss was observed in ERRα-/- mice 171	
  
upon ageing or when females were ovariectomized, in sharp contrast to wild type littermates. 172	
  
Consistently in vivo markers of osteoblastic activity as well as bone formation rate were 173	
  
found increased in ERRα-/- animals as compared to wild type counterparts. This altogether 174	
  
suggests that bone loss induced by ageing or estrogen-deficiency is compensated for by a 175	
  
maintained or increased osteoblast activity in ERRα-/- mice. Pre-osteoblasts from originating 176	
  
from these animals indeed displayed an enhanced differentiation capacity ex vivo, as 177	
  
evidenced by increased expression of Runx2 (the master gene for osteoblast differentiation) 178	
  
and downstream functional markers (e.g. alkaline phosphatase, collagen I and osteocalcin). 179	
  
Cotransfection studies have suggested a complex effect of ERRα on Runx2 promoter activity 180	
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(Kammerer et al., 2013). Indeed the receptor may act positively or negatively depending on 181	
  
the presence of PGC-1α or β as well as on the expression and activity of the Estrogen 182	
  

Receptor. A similar non-monotonous effect of ERRα has been proposed on Wnt signaling, 183	
  
which could be repressed or activated, depending on the expression of co-factors (e.g. PGC-184	
  
1 family members) (Auld et al., 2012). Although these results have not been verified in vivo, 185	
  
they together suggest a bimodal effect of the receptor which could fine-tune osteoblast 186	
  
differentiation (far from an all-or-nothing effect). This might depend on the specific expression 187	
  
and/or mode of co-factor recruitment that will drive the target-specific activity of ERRα. In 188	
  
addition, it is possible that the in vivo consequences of these subtle effects are to be 189	
  
observed only in the long term, consistent with the appearance of a bone phenotype in 190	
  
ageing, but not young, ERRα-/- mice.  191	
  

The above results were obtained using “complete” knock out models, i.e. where 192	
  
ERRα is inactivated in all cells including in mesenchymal stem cells and progenitors, 193	
  
suggesting an effect of the receptor during the early phases of osteoblast differentiation. The 194	
  
role of ERRα in late osteoblast differentiation has also been addressed using a conditional 195	
  
knock out (cKO) model in which the receptor is only inactivated after the onset of osteoblast 196	
  
maturation (Gallet et al., 2013). Ex vivo, Runx2 activity (but not expression) is enhanced in 197	
  
differentiating ERRαcKO pre-osteoblasts as compared to wild type, resulting in increased 198	
  

terminal differentiation, including in terms of mineralizing capacities. Interestingly ERRαcKO 199	
  
females resist to bone loss induces by estrogen-deficiency but not by ageing. The molecular 200	
  
mechanisms through which osteoblasts maturation is affected may also involve osteopontin 201	
  
(opn), a positive direct target of ERRα in various cell types, including osteoblasts (Vanacker 202	
  
et al., 1998, 1999; Delhon et al., 2009; Teyssier et al., 2009; Zirnbigl et al., 2008, 2013; 203	
  
Boudjadi et al., 2013). Indeed opn inhibits mineralization and its inactivation in vivo leads to 204	
  
resistance to the bone loss induced by estrogen deficiency (Yoshitake et al., 1999; Boskey et 205	
  
al., 2002). 206	
  

Together these data show that ERRα negatively impacts osteoblast differentiation at 207	
  
two different defined stages (onset and maturation), resulting in two distinct modes of 208	
  
resistance to bone loss (ageing and estrogen-deficiency). However, future studies are 209	
  
needed to precisely tackle the molecular mechanisms driving these time-specific activities in 210	
  
osteoblasts. 211	
  
 212	
  

Due to perinatal death ERRγ-/- mice cannot be studied for their post-embryonic bone 213	
  

phenotype (Alaynick et al., 2007). However a recent publication showed that ERRγ+/- 214	
  
displayed increased trabecular bone as compared to wild type animals (Cardelli and Aubin, 215	
  
2014). Strikingly this phenotype only affected males but not females. Intriguingly an opposite 216	
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gender-dependent effect has been observed in the case of ERRα-/- mice, where only 217	
  
females, but not males, are resistant to ageing (Teyssier et al., 2009). Although these 218	
  
phenotypic differences have not been confirmed by an independent study using a different 219	
  
ERRα-/- mouse strain (Delhon et al., 2009), these data altogether suggest intricate levels of 220	
  
interferences between ERRs and sex-hormone signaling. Increased trabecular bone in 221	
  
ERRγ+/- mice was readily observed in 8 week-old animals (in contrast to ERRα-/-) and 222	
  

aggravated with age (Cardelli and Aubin, 2014). Similar to ERRα-/- this phenotype is 223	
  
associated with increased osteoblast number and activity in vivo and enhanced 224	
  
differentiation capacities of ERRγ+/- ex vivo. Interestingly the negative effects of ERRγ on 225	
  

osteoblast differentiation appear to rely on inhibition of Runx2 signaling. Indeed ERRγ 226	
  
physically interacts with Runx2 and represses its transactivation capacities (Jeong et al., 227	
  
2009; Cardelli and Aubin, 2014). An alternative mechanism of action has also been 228	
  
suggested where ERRγ stimulates the expression of miR-433 (at least in in vitro cell 229	
  
cultures), which in turn, induces the degradation of Runx2 mRNA (Kim et al., 2013).  230	
  
 231	
  

In addition to osteoblasts as bone-forming cells, bone remodeling involves another 232	
  
major cellular component, the osteoclasts, which are bone-resorbing cells of hematopoietic 233	
  
origin. Data have been published concerning the functions of the ERRα on osteoclasts. In 234	
  

vitro ERRα does not appear to exert any effect on osteoclast differentiation but promotes 235	
  

spreading and migration of the cells (Bonnelye et al., 2010). However analysis of ERRα-/- 236	
  

mice provided contradictory results: deletion of ERRα in vivo may or may not reduce 237	
  
osteoclast differentiation and activity (Delhon et al., 2009; Teyssier et al., 2009; Wei et al., 238	
  
2010). The reason of these discrepancies is unknown. However ERRα may also exert 239	
  

indirect effects on osteoclasts. Indeed overexpression of ERRα in human breast cancer cells 240	
  
induces the expression of osteoprotegerin (an inhibitor of osteoclastogenesis). Xenografting 241	
  
these cells in immunodeficient mice results in decreased osteoclast differentiation (Fradet et 242	
  
al., 2011). No study has, to date, addressed the potential role of ERRγ on osteoclasts, but it 243	
  

should be mentioned that ERRγ+/- mice do not show any variation in osteoclast activity, as 244	
  
compared to wild type animals (Cardelli and Aubin, 2014).  245	
  
 246	
  
Conclusions and future prospects. 247	
  
 248	
  

In cancer cells ERRα and γ appear to act in an opposite manner, respectively 249	
  
promoting and repressing traits of cancer progression. In contrast, the above-mentioned 250	
  
results strongly suggest that ERRα and γ exert rather similar effects on cells from 251	
  
mesenchymal origin, which are summarized on Figure 1. Both receptors indeed promote 252	
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adipocyte differentiation and inhibit osteoblast differentiation. This suggests that they may act 253	
  
as switch factors in the choice of differentiation exerted by progenitor cells to engage into 254	
  
one or the other lineage. The inhibition of osteoblastic commitment appears to be exerted in 255	
  
a Runx2-dependent manner, impacting on the expression and/or the activity of this 256	
  
transcription factor. However, this view is challenged by data indicating a possible co-factor 257	
  
dependent effect and non-monotonous effect of ERRα on Runx2 and/or Wnt-targets 258	
  

expression. This last explanation possibly accounts for the delay with which ERRα 259	
  
inactivation in mice leads to an observable bone phenotype. Nevertheless, a general 260	
  
hypothesis that may be proposed from published data is that inactivating ERRα and/or ERRγ 261	
  
should increase bone mass in vivo and therefore protect from bone loss, whether originating 262	
  
from ageing or from estrogen-deficiency (i.e. after menopause in humans). However, it 263	
  
should be noted that the majority of these data (outside few studies using cultures of human 264	
  
cells) were obtained using rodent models. In the present state of the art it would be therefore 265	
  
hazardous to claim that deactivation of ERR receptors would be beneficial in human bones. 266	
  
Nonetheless it is worth noting that deactivating ERRα, in contrast to ERRγ, is unlikely to lead 267	
  
to adverse effects in cancers, given that receptor rather promotes cancer aggressiveness.  268	
  

Most studies on the functions of the ERRs on bone have, up to now, focused on the 269	
  
investigating of autonomous effects. The ERRs are however well known as instrumental 270	
  
regulators of energy metabolism. How the metabolic activities of the ERRs in “energetic 271	
  
tissues” impact on bone status and how potential metabolic activities of ERRs within bone 272	
  
cells influence bone physiology remain to be investigated although hypotheses have started 273	
  
to emerge (Bonnelye and Aubin, 2013). 274	
  
 The vast majority of the data describing the effects of the ERR receptors in bone have 275	
  
used a genetic approach to overexpress or inhibit the expression of the receptors and 276	
  
examine the consequences of such a modification. However, if ERR functions in bone 277	
  
formation are well described, how these effects are exerted needs to be understood, 278	
  
including in a temporal manner. Targeting the receptors using a pharmacological approach 279	
  
would however be more convenient. Such a strategy can be envisioned since small 280	
  
compounds have been identified that deactivate or overactivate the ERRs. The effects of 281	
  
such compounds in bone in vivo remain to be evaluated. 282	
  
 283	
  
  284	
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