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Abstract  

The essential class of Hox Transcription Factors (TFs) functions as key determinants in 

the specification of cell fates during development. They do so by triggering entire morphogenetic 

cascades through the activation of specific target genes. In contrast to their fundamental role in 

development, the molecular mechanisms employed by Hox TFs are still poorly understood.  

In recent years, a new picture has emerged regarding the function of Hox proteins in 

gene regulation. Initial studies have primarily focused in understanding how Hox TFs recognized 

and bind specific enhancers to activate defined Hox targets. However, genome-wide studies on 

the interactions and dynamics of Hox proteins have revealed a more elaborated function of the 

Hox factors. It is now known that Hox proteins are involved in several steps of gene expression 

with potential regulatory functions in the modification of the chromatin landscape and its 

accessibility, recognition and activation of specific CRMs, assembly and activation of promoter 

transcription complexes and mRNA processing. In the coming years, the characterization of the 

molecular activity of the Hox TFs in these mechanisms will greatly contribute to our general 

understanding of Hox activity.  

  

Introduction: From morphogenesis to molecular function 

The Hox transcription factors (TFs) are master regulators of animal body plan (Pearson 

et al., 2005, Hombria et al., 2016). At the cellular level, Hox TFs regulate several biological 

processes such as cell death, proliferation, differentiation, migration, size and shape (Domsch et 

al., 2015; Rezsohazy et al., 2015; Sánchez-Herrero, 2013). It is known that Hox TFs are able to 

regulate these processes through the activation of genetic networks via spatial and temporal 

activation of specific target genes. These include secondary TFs as well as genes that directly 

regulate cell behaviour required for tissue morphogenesis, the so-called realizator genes 

(Sánchez-Herrero, 2013). The function of Hox TFs in the control of gene networks has been 

extensively covered in previous publications (Hombría and Lovegrove, 2003; Sánchez-Herrero, 

2013, Hombria et al., 2016). In general terms, the deployment of these genetic networks is 

usually seen as the result of the recognition and binding of Hox TFs to cis-regulatory modules 

(CRMs) regulating Hox target gene expression. In other words, Hox TFs are placed on top of 

morphogenetic cascades, with Hox TFs regulating events by activating or repressing 

downstream targets. Thus, strong emphasis has been placed not only on the identification of 

Hox targets but also in understanding how Hox TFs perform such diverse and highly specific 

functions at the molecular level. Considerable effort has been and still is devoted to understand 

the molecular mechanism by which different Hox proteins recognize and bind specific 

enhancers, in particular in the context of cofactor interaction such as the well described TALE 

family of TFs (Mann et al., 2009; Merabet and Hudry, 2011; Merabet and Lohmann, 2015; 

Slattery, Riley, et al., 2011). However, recently, genome-wide DNA interactions studies revealed 

that Hox TFs prominently interact not only with enhancers but also with other chromatin regions, 

including promoters, intragenic and intergenic regions (Beh et al., 2016; Choo et al., 2011; 
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Shlyueva et al., 2016; Slattery et al., 2011; Sorge et al., 2012; Zouaz et al., 2017). These 

binding profiles suggest that Hox proteins act at different steps of gene expression in order to 

promote different functional outputs. In addition, protein interaction screens showed that Hox 

TFs interact with a variety of transcriptional regulators such as chromatin-, RNA Polymerase II- 

(Pol II) and mRNA- associated proteins (reviewed in Rezsohazy et al., 2015). This strongly 

suggests that, in contrast with the classical view that Hox TFs function primarily on enhancers, 

they regulate a broader range of transcriptional events as well as intervening at different levels 

of gene expression.    

 In this review we aim to present a general overview of the most recent data 

demonstrating the involvement of Hox TFs in key steps of transcriptional regulation. The picture 

that emerges from these data reveals intricate molecular mechanisms employed by the Hox 

proteins in the regulation of gene expression, allowing them to activate or repress target genes 

in a precise and highly specific spatial-temporal manner.  

 

A. Hox & Chromatin Landscape 

1. Hox & Histone Marks 

Transcription depends on chromatin accessibility thus, the first level of gene regulation 

is the modification of the chromatin landscape. Heterochromatin or condensed chromatin 

prevents gene expression by abolishing the recruitment of TFs to their corresponding CRMs as 

well as by interfering with chromatin loop dynamics thereby affecting CRM-promoter interactions 

(Huisinga et al., 2006). In contrast, euchromatic environments are not necessarily correlated 

with transcriptional activation (Huisinga et al., 2006). Active and repressive states of chromatin 

are regulated through changes in nucleosome dynamics, in which post-translational 

modifications (PTM) of histones, the core component of nucleosome, play a major role 

(Kouzarides, 2007). These modifications such as acetylation, methylation, ubiquitylation and 

phosphorylation occur mainly on the free and unstructured N-terminal tail of histones. The 

detailled characterization of these histone “marks” highlighted the existence of a “histone code” 

that orchestrates gene expression by promoting permissive or repressive chromatin states 

(Kouzarides, 2007). The histone PTMs are deposited or removed by modifiers and thus, the 

regulation of these enzymes has been the focus of many studies (Kouzarides, 2007). It has 

been shown that TFs are able to orchestrate the recruitment or the activity of these modifiers in 

order to promote their precise transcriptional program (Benveniste et al., 2014; Carnesecchi et 

al., 2017; Magnani et al., 2011).  

Because they initiate complete developmental programs, the Hox TFs have long been 

considered as potential regulators of histone modifier complexes, such as the Trithorax-group 

(TrxG) and Polycomb-group (PcG) proteins. These complexes promote permissive (via histone 

acetylation, H3K4 methylation, chromatin remodelling) as well as repressive (mainly via 

H3K27me3) chromatin environments, respectively. In spite of having opposing functions, TrxG 

Response Elements (TREs) and PcG Response Elements (PREs) are found frequently co-
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localised on the chromatin, which is suggestive of a dynamic transcriptional response. This is 

illustrated by the dual function of the TrxG TF GAGA (Trl/GAF) and the PcG factor Zeste, both 

promoting gene repression and activation (Kingston and Tamkun, 2014).  

PcG and TrxG have been primarily shown to regulate Hox expression during Drosophila 

embryogenesis (reviewed in Schuettengruber et al., 2017). However, a recent study has 

reported protein-protein interactions between Hox TFs and PcG proteins (Cao et al., 2014). 

Affinity purification of PcG proteins EED and Ring1B followed by mass spectrometry analysis 

has identified HOXB13 as a possible interactor of PcG. Although the functional significance of 

these interactions is unknown and further studies are required to support these findings. 

Nevertheless, despite the lack of evidence showing direct interaction between PcG and Hox 

TFs, it is clear that they can act in concert in order to engage downstream transcriptional 

programs. A recent example is the interplay between JNK, Polycomb (Pc), Abdominal-A (AbdA) 

and Abdominal-B (AbdB) in the remodelling of segment boundary during dorsal closure in 

Drosophila embryos (Roumengous et al., 2017). Additionally, Garaulet et al. provided evidences 

that the Hox TF Ultrabithorax (Ubx) repressed its own transcription in a PcG-dependent manner 

(Garaulet et al., 2008). Using different Ubx-GAL4 lines with or without PRE sites close to the 

Ubx regulatory region, they identified a permanent repression of endogenous Ubx transcription 

in the larval haltere disc when Ubx was expressed at high level.  

More recently, Shlyueva et al established a Ubx DNA-binding profile (ChIP-seq) in 

Drosophila embryos (Shlyueva et al., 2016) and compared it to the genomic interactions of two 

PcG proteins, Pc and Pleiohomeotic (Pho) (Kwong et al., 2008). They observed a co-

occurrence of Pc and Pho at Ubx sites. However, it remained unclear whether Ubx was required 

for Pc and/or Pho recruitment or if it regulated Pc methyltransferase activity. Importantly, due to 

the expression of Ubx and Pc/Pho in different cell types, it is impossible to discriminate between 

a mutually exclusive binding of PcG and Ubx and a co-occurrence of the proteins at the same 

genomic location when obtaining profiles from whole embryos. To circumvent this problem, 

Zouaz et al adopted a different strategy for deciphering a molecular network between Hox TFs 

and the PcG complex (Zouaz et al., 2017). Using S2 Drosophila cells, they transiently 

expressed AbdA and performed ChIP-seq analysis of AbdA, dRing, Enhancer of zeste E(z), Pc, 

three components of the PcG complex, as well of the active H3K4me3 and repressive 

H3K27me3 chromatin marks. Their analysis revealed that AbdA binding to proximal promoters 

(near the transcription start site or TSS) induced decrease of dRing binding on a defined set of 

genes (containing paused Pol II). However H3K27me3, the major mark set by PcG complex, 

was not detected on these genes. Thus, this study highlighted an important transcriptional 

interplay between Hox TFs and PcG, but left the question open of how Hox TFs influence 

H3K27me3 as well as other repressive histone marks.  

While there is some evidence that Hox TFs functionally interact with PcG proteins, little 

is known concerning the functional interplay between TrxG and Hox TFs. Similarly to PcG 

proteins, in vivo co-occurrence of TrxG and Hox TFs binding strongly suggests a molecular 
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interaction between them. For example, ChIP on ChIP experiments in the Drosophila haltere 

disc and ChIP-seq experiment in S2 Drosophila cells identified an enrichment of GAGA motif in 

the vicinity of Ubx (and AbdA) binding sites (Agrawal et al., 2011; Zouaz et al., 2017). However, 

so far, a direct interaction between Hox TFs and TrxG has not been shown. 

The possible interaction between Hox TFs and chromatin modifiers is not restricted to 

Drosophila, as similar observations have been described in vertebrates (Hassan et al., 2007). 

Hassan et al reported the binding and regulation of the osteoblast-differentiation master gene 

Runx2 by HoxA10 (AbdB vertebrate homolog). Knock-down of HoxA10 induced hypo-

acetylation of histone H4 and a decrease of H3K4me3 at the Runx2 promoter. This is in line 

with the observation reported by Zouaz et al, showing that AbdA binding on promoters 

correlated with H3K4me3 deposition. Although the methyltransferase activity has not been 

identified, Hassan et al (2007) identified the p300/CREB-binding protein (CBP) as the 

acetyltransferase acting at HoxA10 target genes. The histone (and non-histone) 

acetyltransferase CBP is a major transcriptional co-regulator, conserved in mammals 

(p300/CBP) and Drosophila (Nejire). Several genetic and physical interactions between CBP 

and Hox TFs have been described in Drosophila (Florence and McGinnis, 1998; Sorge et al., 

2012), as well as in mammal systems (Chariot et al., 1999; Shen et al., 2001). For example, Bei 

et al showed that CBP physically interacted with HoxA10, thereby promoting integrin beta 3 

expression via H2A acetylation (Bei et al., 2007). These data is line with the observations of 

Huang et al., 2012 where it was shown that binding of HoxA9 at enhancers correlates with a 

decrease in P300 and CBP and a decrease in H3 and H4 acetylation. Additionally, Hox TFs 

may also act as transcriptional repressors by regulating histone acetylation (Huang et al, 2012). 

Moreover, Gordon et al proposed a model where the TALE TF Pbx1 was ejected from 

osteoblast-proximal gene promoters allowing the recruitments of Runx2 and p300/CBP by 

HoxA10 upon induction of osteoblast differentiation (Gordon et al., 2010). HoxA10 was also 

shown to act as a transcriptional repressor via histone deacetylation by HDAC2 (Lu et al., 

2003). A similar interplay between Hox/TALE, p300/CBP and HDAC has also been described in 

other mammalian systems (Saleh et al., 2000) and in zebrafish (Choe et al., 2009). In sum, all 

these data strongly suggest the existence of an interplay between Hox factors, CBP and HDAC 

that regulates gene expression via the dynamic deposition or removal of histone acetylation.  

Strikingly, Petruk et al identified an interaction between TrxG and CBP in Drosophila 

(Petruk, 2001). Subsequent work by the laboratory of Peter Harte dissected the cross-talk 

between TrxG, PcG and CBP, which showed that CBP and the TrxG methyltransferase Trx 

mediated the deposition of H3K27ac marks and that CBP and Pc interacted in Drosophila 

embryos and mammalian system (Tie et al., 2009; Tie et al., 2014; Tie et al., 2016). In sum, 

evidences strongly suggest that the assembly of multi-protein complexes between Hox proteins 

and chromatin modifiers is one of the mechanisms employed by Hox TFs to regulate gene 

expression via the deposition of histone marks. They may induce a repressive environment via 
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histone de-acetylation and H3K27me3 by HDAC and PcG respectively, or a permissive state via 

H3K27ac and H3K4me3 deposition by CBP and TrxG interplay.  

 

2. Hox & Chromatin Conformation 

Activation of transcription requires CRMs to be accessible for TFs, which direct and 

coordinate transcriptional programs. Chromatin has to be decondensed and DNA made 

available for protein recognition and interaction. In this context, nucleosome positioning plays a 

key role in the regulation of gene expression (Workman, 2006). Nucleosomes are displaced by 

combinatorial activity of histone modifiers (acetylation), histone chaperones, histone variants 

(H2Av) and the ATP-dependent nucleosome remodelling machinery. The latter are divided in 

four families, SWI/SNF, INO80/SWR1, ISWI and CHD, which use ATP to promote nucleosome 

remodelling via an ATPase domain-containing helicase. The conserved SWI/SNF member, 

Brahma remodelling complex, belongs to the TrxG family. It is recruited by TFs thereby 

regulating precise programs such as muscle development, leg and wing morphogenesis in 

Drosophila by the assembly of ubiquitous and cell-type specific subunits (reviewed in Meier and 

Brehm, 2014). Study of TF-remodeller activity has been greatly improved by the development of 

next-generation sequencing detection of nucleosome occupancy such as FAIRE-seq and 

ATAC-seq. Subsequent comparison of nucleosome positioning and TF binding profiles led to a 

better understanding of the molecular function of TFs. For example, Beh et al performed a 

genome wide chromatin interaction study for the Hox TFs Ubx, AbdA and AbdB in Drosophila 

Kc67 cells (Beh et al., 2016). The binding profiles of these TFs were shown to be very similar. 

However, some discrepancies in their binding were observed. For example 25% of the AbdB 

binding regions did not overlap with DNase-print accessible regions. Thus the authors 

suggested that AbdB was able to interact with closed chromatin and to induce DNA accessibility 

through chromatin remodelling. Similarly, they showed that 17% of closed chromatin regions 

were bound by Ubx, however, only when it was co-expressed with its cofactor Homothorax 

(Hth), a TALE/Meis class TF. This suggested that Ubx might extend its repertoire of target 

genes via chromatin remodelling and cooperation with Exd (Extradenticle)/Hth. These results 

are supported by the identification of proteins associated with chromatin remodelling in several 

Hox-protein interaction screens (reviewed in Rezsohazy et al., 2015). Beh et al also proposed 

that differences of sequence and number of AbdB binding sites could affect nucleosome 

stability via the reduction of DNA-histone affinity. This assumption is strengthened by several 

observations. First, the core of Hox binding site is an “AT” rich sequence. Second, AT sites can 

destabilize histone-DNA affinity and have also been described as recognition regions for ATP-

dependent remodelling complexes (Lorch et al., 2014). Thus, it seems plausible that a 

synergistic effect between “passive mechanism” on DNA-histone affinity and “active 

mechanism” of recruitment of nucleosome remodellers by Hox TFs facilitates chromatin 

remodelling and subsequent gene expression. 
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It has been suggested that Hox TFs could affect chromatin conformation via deposition 

of histone variants (Agelopoulos et al., 2012). Agelopoulos et al established an elegant tool 

called cgChIP (gene-specific ChIP, lacI/lacO) to monitor chromatin loops on defined target 

genes in specific cell types. They showed that Ubx and AbdA repress Distal-less (Dll) 

transcription by impairing the enhancer-promoter communication. Based on these results, they 

proposed two different mechanisms by which Hox TFs might exert their repressive function. 

First, they could inhibit the recruitment of the TrxG member GAGA, a major facilitator of 

chromatin “loops” that allows the communication between enhancer and promoter thereby 

inhibiting transcriptional activation. Secondly, binding of Hox TFs to the Dll regulatory region 

was associated with an enrichment of the histone 2A variant (H2Av) that could impair 

chromatin-chromatin interaction.  

 The chromatin is not only regulated at the gene level but also at the level of higher-

order structures. From chromatin loop between enhancer and promoter to chromosome 

territories in the nucleus, TFs act on a variety of levels to orchestrate their highly precise yet 

diverse transcriptional outputs (de Graaf and van Steensel, 2013). In vertebrates, the interplay 

between the TF CTCF and HoxD9-13 underlined the role of Hox TFs in controlling chromatin 

structure (Jerković et al., 2017). The insulator CTCF has been described as a repressor of gene 

expression by blocking enhancer-promoter interactions (reviewed in Roy et al., 2018). It also 

regulates boundary regions between active and heterochromatin chromosomal domains. 

Binding profiles for 9 Hox TFs revealed two Hox subgroups, in which one group was enriched in 

CTCF-binding motif (and interact with CTCF) but poorly enriched in Hox motif, suggestive of an 

indirect recruitment of Hox proteins by CTCF. Thus, Hox TFs could regulate enhancer-promoter 

communication via CTCF binding and act on higher-order structure by the regulation of 

chromosomal interaction (see Beccari et al., 2016 for Hox and topologically associating domain 

in wrist development).  

In summary, there are strong evidences pointing to Hox TFs as regulators of the 

chromatin landscape. Through defined protein-interactions, they seem to affect the 

conformation and the state of the chromatin in order to promote their cell-type specific 

transcriptional outputs. 

 

3. Hox & Pioneer Function 

Pioneer TFs, which are thought to regulate the first step of transcriptional initiation, have 

been described as major regulators of developmental processes, stem cell differentiation and 

hormonal regulation and their molecular mode of action has been extensively studied both in 

vitro and in vivo (reviewed in Zaret and Carroll, 2011). Consistent with the idea of a TF involved 

in the initial steps of gene expression, a pioneer TF has to bind to nucleosomal DNA and 

provide access for secondary factors to orchestrate their transcriptional program. They do so by 

acting as platform for TFs, histone modifiers and/or chromatin remodellers. The most prominent 

example of a pioneer TF is FoxA1, which is able to specifically promote or repress transcription 
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but binds nucleosomal DNA in a non-specific manner (Sekiya et al., 2009; Sekiya and Zaret, 

2007; Zaret and Carroll, 2011). In contrast to FoxA1, the Drosophila pioneer TF Zelda (Zld), a 

key TF for gene expression during early embryogenesis, recognizes and binds to a specific 

DNA-recognition motif (Foo et al., 2014; Liang et al., 2008; Sun et al., 2015). Moreover, the well-

described Hox-cofactors (Pbx/Meis) of the TALE family are also able to prime chromatin for the 

recruitment and subsequent transcriptional activity of secondary TFs (Berkes et al., 2004 for 

mouse system, Maves et al., 2007; Choe et al., 2014 in zebrafish, Magnani et al., 2011 for 

human system).  

Hox TFs are candidates for pioneer function, as they are major regulators of 

development and potentially control DNA accessibility through chromatin regulation. Work by 

Beh et al (2016), described earlier, provides some of the evidences that support this 

assumption. It showed that AbdB interacted with closed chromatin in vivo on a specific set of 

target genes. Therefore, this data strongly suggests that AbdB may have pioneer functions and 

therefore, regulate chromatin accessibility. Similar genomic co-occurrence of closed chromatin 

regions and Hox binding events have been detected by comparing ChIP-seq experiments of 

Ubx and AbdA (in S2 Drosophila cells) to DNAse-seq data (Zouaz et al., 2017). However, this 

observation is in contrast with the data of Beh et al, which showed that Ubx was able to access 

closed chromatin only in the presence of Hth (Exd/Hth). Thus, the potential pioneer role of Hox 

TFs still remains unclear.  

In summary, although the function of Hox TFs as pioneer factors remains a matter of 

debate, it seems clear that Hox proteins play a role on the regulation of the chromatin 

environment, influencing histone mark deposition via recruitment of modifiers, nucleosome 

composition via the recruitment of histone variant, as well as on chromatin conformation such as 

nucleosome occupancy and chromatin looping between enhancers and promoters (figure 1).  

 

B. Hox, from Promoter to mRNA 

1. Hox & Polymerase Initiation Complex 

Since cis-regulatory regions are determinants of the spatial and temporal regulation of 

gene expression, much emphasis has been placed to the study of CRMs directly regulated by 

Hox TFs. However, genome-wide analysis of the distribution of Hox binding sites led to the 

observation that despite being bound to CRMs, a considerable amount of binding sites is 

located at the proximal promoters of target genes (Zouaz et al., 2017). Indeed, interactions 

between Hox TFs and components of the Polymerase Initiation Complex (PIC) have been 

known for some time (Johnson and Krasnow, 1990; Johnson and Krasnow, 1992.; Mortin et al., 

1992; Mortin and Lefevre, 1981). Johnson and Krasnow showed that in vitro, Ubx was able to 

activate transcription, most likely by stimulating the assembly of the PIC, either through the 

interaction with general transcription factors or with Pol II. This interaction with components of 

the PIC has also been reported for other Hox TFs. The Drosophila Hox proteins Antennapedia 

(Antp), Ubx and AbdB were shown to interact with the basal transcription factor TFIIEβ via their 
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DNA binding domain, the homeodomain, (for Antp and AbdB). This interaction, at least for 

AbdB, was required for transcriptional activity (Bondos et al., 2006; Zhu and Kuziora, 1996). 

More recently, Prince et al performed yeast two hybrid analysis and reported an interaction 

between Antp and Bric à brac interacting protein 2 (BIP2). BIP2 is a TATA-binding protein 

associated factor (dTAFII3/II155), member of the TBP-associated TFIID complex of the PIC. 

This interaction was validated both in vitro and in vivo and additional experiments showed that 

BIP2 is a cofactor of Antp in promoting an eye-wing transformation (Prince et al., 2008). 

Interestingly, this interaction depends on the well-conserved hexapeptide domain (HX, or 

YPWM) but is independent of the TALE TF Exd.  

A major component of the PIC is the Mediator complex, a highly flexible multi-subunit 

complex important for establishing enhancer-promoter communication during gene expression. 

Boube et al identified a synergistic interaction between Sex comb reduced (Scr) and the 

Drosophila homologs of mediator-subunits Pap/dTRAP240 and dTRAP80 (Boube et al, 2000). 

Subsequently, they showed that the Mediator subunit Med19 genetically interacted with Ubx, 

Deformed (Dfd), AbdB and Antp (Boube et al., 2014). Moreover, these interactions were shown 

to occur via the homeodomain. They observed that functional interaction between Ubx and 

Med19 is required for Ubx gene activation (but not repression) suggesting a target specific 

function of the Mediator-Hox complex.  

 

2. Hox & Poised Promoter 

Despite their association with several PIC components, the function of Hox TFs at the 

proximal promoters is still unclear. However, there is an increased number of studies linking 

Hox TFs with the release of Pol II from a poised/inactive to an active transcriptional state (Choe 

et al., 2014; Chopra et al., 2009; Zouaz et al., 2017). Initiation of transcription is not an efficient 

process, as Pol II initiates transcription with the synthesis of several small RNA transcripts (less 

than 10 nt). Pol II clears the promoter only after synthesizing longer transcripts and 

subsequently transcribes the gene body. However, for a defined subset of inactive genes, Pol II 

arrests shortly after clearing the promoter. It is thought that this arrest not only marks these 

genes for activation but also promotes a rapid and synchronous transcriptional response upon 

activation (Boettiger and Levine, 2009). The promoter clearance of Pol II and the transition to 

transcription elongation are largely controlled through the phosphorylation of the Carboxy-

Terminal domain (CTD) of its largest subunit. This domain contains tandem heptapeptide 

repeats (52 in mammals, 44 in Drosophila and 26 in yeast) with the consensus sequence 

YSPTSPS. The phosphorylation of serine residues 2 (Ser2) and 5 (Ser5) of these repeats by 

Cyclin dependent kinase 9 (Cdk9), a kinase subunit of P-TEFb, is a major determinant in 

promoter clearance and transition into elongation. Hence, Pol II is enriched in phosphorylation 

at Ser5 (Ser5P) when poised and Ser2 (Ser2P) during active transcriptional elongation. It has 

been shown that Cdk9 is necessary and sufficient to phosphorylate Ser2 and release Pol II from 

this paused, or so called poised state (reviewed in Price, 2008). Interestingly, the zebrafish 
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HoxB1b protein was shown to promote a phosphorylation switch of Pol II, from paused to the 

active elongating state by stimulating activity of P-TEFb (Choe et al., 2014).  

A recent study suggested that Hox TFs might have a role in the release of paused Pol II 

(Zouaz et al 2017). Using ChIP-seq experiment in S2 Drosophila cells, Zouaz et al identified an 

enrichment of AbdA in proximal promoters, in the vicinity of the transcriptional start site (TSS). 

These regions were enriched in binding of the GAGA/Trl/GAF TF (see previous paragraph) and 

the transcription factor M1BP motif (Motif 1 binding protein). ChIP experiments highlighted that 

expression and binding of AbdA at M1BP bound promoters induced a decrease of poised Pol II, 

and an increase in the elongating form Ser2P-Pol II. Moreover, a correlation between these 

events and the decrease in PcG binding was observed , as seen by the decrease of binding of 

dRing as well as a small increase in H3K4me3.  

A characteristic of poised genes is their bivalent state, identified by the presence of both 

active and repressive chromatin marks at promoters and/or enhancers (Gaertner et al., 2012; 

Koenecke et al., 2017). Thus, gene poising is an active process requiring both the regulation of 

Pol II and the chromatin landscape via histone marks and nucleosome remodelling (Boija et al., 

2017; Gaertner et al., 2012; Levine, 2011). As previously stated, Antp interacts with Bip2, a 

component of the PIC. The observation that the human homologue of Bip2 interacts with a 

histone acetyltransferase complex raises the possibility that Hox proteins play a role in the 

regulation of chromatin marks deposited at poised promoters, a scenario further reinforced by 

the known interaction of Hox TFs and Nejire, the Drosophila homologue of the acetyltransferase 

CBP complex (Florence and McGinnis, 1998; Sorge et al., 2012; Chariot et al., 1999; Shen et 

al., 2001). 

In sum, poised Pol II is a fundamental checkpoint of transcription, during development. 

Throughout Drosophila embryogenesis, Pol II is poised and deposited de novo for the 

promotion of highly precise temporal regulation of gene expression (Gaertner et al., 2012; 

Levine, 2011). In this context, Hox TFs appear as potential molecular regulators of poising via 

either regulation of the Pol II state or/and orchestrating the chromatin landscape (figure 1).  

 

3. Hox & RNA Processing 

mRNA processing occurs co-transcriptionally (Saldi et al., 2016). In particular, 

transcription is concurrent with 5’capping, splicing and 3’end formation in order to generate 

mature mRNAs (Proudfoot et al., 2002). Thus, along the gene body, elongation is not constant 

but subjected to variation of speed rates that favour exon skipping (positively or negatively) or 

alternative polyadenylation ( Saldi et al., 2016, Dujardin et al., 2014, Pinto et al., 2011). It has 

been shown that mRNA processing depends on the recruitment of specific RNA-regulatory 

proteins and on the regulation of the chromatin landscape (Brown et al., 2012). Indeed, exons 

and introns differ in nucleosome occupancy and in histone mark deposition (Saldi et al., 2016). 

In addition, ATP-dependent chromatin remodelling complexes have been shown to regulate 

splicing through interaction with RNA-binding protein factors or nucleosome remodellers 
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(Waldholm et al., 2011). ChIP-seq experiments performed on Hox TFs revealed that binding not 

only occurs on promoters and intergenic regions but also throughout the gene bodies (Beh et 

al., 2016; Shlyueva et al., 2016; Slattery et al., 2011; Zouaz et al., 2017). Thus, it is possible that 

Hox proteins affect mRNA processing, either via the regulation of the chromatin landscape or 

the recruitment of RNA-binding proteins. In fact, proteomic approaches have highlighted 

interactions between several RNA-binding proteins and Hox TFs, both in Drosophila and 

mammals (Bondos et al., 2006; Shestakova et al., 2017). For instance, it has been shown by 

yeast two-hybrid that Disconnected Interacting Protein 1 (DIP1) interacted with Ubx and that this 

interaction was dependent on the RNA-binding domain of DIP1 (Bondos et al., 2004). DIP1 is 

known to synergize the Ubx mutant phenotype in flies and to impair its transcriptional activity in 

vitro.  

Another example of the cross-talk between Hox and RNA processing is the RNA 

binding protein Split Ends (Spen). It modulates the function of the Hox TF Dfd (Gellon et al., 

1998) and cooperate with Antp  to repress head-like structures in the thorax (Wiellette et al., 

1999), however, without evidence of direct interaction. Spen regulates RNA processing both at 

the level of alternative splicing (in human, Hiriart et al., 2005) and polyadenylation as well as 

mRNA export (in plant, Hornyik et al., 2010). In addition, Spen has been shown to have a 

homeotic function in Drosophila. Interestingly, it cooperates with Hox factors but does not affect 

the expression of the Hox genes themselves, suggesting instead a role of the Hox-Spen 

complex in mRNA processing.  

 In sum, these data suggest that Hox function is not restricted to the control of 

transcriptional initiation but that they may act on subsequent steps of transcription such as 

mRNA processing and mRNA export thereby providing new level of gene regulation by Hox 

factors (figure 1). 

 

C. Hox & Enhancer Specificity 

The specificity of Hox proteins is an issue that has long been studied. How the different 

Hox TFs recognize specific CRMs and activate gene expression in a spatial and temporal 

manner is still a poorly understood question. Considerable efforts have been put on the 

identification of cofactors such as TALE TFs, and their contribution in the specific activation of 

Hox targets (Ladam and Sagerström, 2014; Mann et al., 2009; Merabet and Lohmann, 2015; 

Merabet and Mann, 2016). However, recent findings indicate that, in addition to Hox TFs and 

their cofactors, the nature of the Hox binding sites as well as the structure of the CRMs, play a 

major role in determining Hox specificity. In this section we will provide a general overview of 

some of the latest findings of enhancer regulation and its contribution to our understanding of 

the molecular mechanisms driving Hox specificity. 

 Initial work from Richard Mann’s laboratory has shown that the Drosophila TALE TFs 

Exd and Hth can form complexes with different Hox TFs (reviewed in Mann and Chan, 1996). 

More recently, they performed SELEX experiments, based on which they postulated binding 
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sites displaying variable affinities for different Hox/Exd/Hth complexes (Slattery, Riley, et al., 

2011). These differential affinities of Hox binding sites provide a simple explanation of how Hox 

targets are activated by specific Hox TFs along the anterior to posterior axis of the Drosophila 

embryo. These findings on binding site affinity by the Mann lab have been further supported by 

the work of Crocker et al (Crocker et al., 2015). Using two Ubx regulated shavenbaby 

enhancers, E3N and 7H, they showed that these regulatory modules are controlled by a cluster 

of low-affinity Ubx/Exd/Hth binding sites that deviate from consensus sequence identified in the 

previous SELEX experiments (Crocker et al., 2015). Optimizing the binding of Ubx/Exd/Hth by 

converting the sites into high-affinity sites led to a loss of specificity with ectopic activation of 

these enhancers by more anterior Hox TFs (Crocker et al., 2015). These studies showed that, in 

addition to trans-acting factors, the quality of the Hox binding sites is also a critical parameter in 

the specific activation of gene expression by Hox TFs. Moreover, it changes the initial view of 

the co-selective cooperative model that tried to address Hox specificity (reviewed in Biggin and 

Mcginnis, 1997). The identification of low-affinity binding sites shows that the Hox/Exd/Hth 

complexes seem to be able to recognize a higher diversity of binding sites and, consequently, a 

higher number than initially predicted. It may be that low-affinity binding sites are a 

consequence of enhancer evolution to accommodate equilibrium between robust activation of 

gene expression and cell-specificity. In this context, it seemed that a higher diversity of Hox 

binding sites, and the resulting sub-optimization with which Hox/Exd/Hth complexes bound to 

these sites, is required for cell-specific gene expression.  

 Supporting this view, recent data has shown that in addition to the nature of the Hox 

binding sites, the organization of these sites may play an important role in conferring specificity 

to Hox TFs (Farley et al., 2015; Farley et al., 2016). It is known for some time that the 

organization of TF binding sites is important for tissue specific expression (Swanson et al., 

2010). More recently, work from Mike Levine’s laboratory showed that, in addition to spacing 

and orientation of TFs binding sites, their affinity is important to achieve not only the appropriate 

levels of gene expression but also tissue specificity (Farley et al., 2015; Farley et al., 2016). 

Through the study of synthetic enhancers, the authors highlighted the existence of a trade-off 

between the presence of optimal TFs binding sites and optimal distances between the sites. In 

enhancers containing optimal binding sites and spacing, higher levels of gene expression were 

observed. However, in these conditions, tissue specific expression was lost. Subsequently, 

specificity was recovered whenever the affinity of the binding sites or their spacing was 

suboptimal. Finally, this study also showed that the orientation of binding sites had an important 

effect on gene expression (Farley et al., 2016). Taken together, these results suggest that the 

“sub-optimization” of the enhancer grammar can play an important role in Hox specificity.  

Several studies suggest that the sub-optimization of cis-regulatory elements could play 

an important role in how TFs are organized in the nucleus and how this organization may 

provide a framework to modulate and regulate gene expression (Hnisz et al., 2013; Izeddin et 

al., 2014; Liu et al., 2014). Work from Tsai et al revealed the existence of several nuclear 
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domains with high concentrations of Ubx proteins. These domains were shown to be 

transcriptionally active, as they co-localized with active Pol II and H3K4me3 chromatin marks 

and were excluded from repressive H3K27me3 marks (Tsai et al., 2017). Furthermore, a 

correlation between low/high affinity binding sites and these Ubx enriched domains was 

detected in the study of E3N and E7 Ubx-regulated shavenbaby enhancers (Crocker et al., 

2015). Increasing the affinity of the low affinity binding sites resulted in reduced Ubx binding. 

Although the function of these Ubx enriched domains is still unclear, the authors suggested that 

high local concentrations of TFs could serve to overcome the weak and unstable interactions 

between TFs and these low-affinity sites. By increasing TF concentrations, TFs-DNA 

interactions occur at higher frequency and thus favour the establishment of cooperative 

interactions, resulting in higher transcriptional activation. The mechanism by which TF enriched- 

and transcriptionally active- domains are assembled is not clear. However, the observation that 

low-affinity enhancers are found within the same Ubx enriched domains when located in 

different chromosomal positions strongly supports the hypothesis that low-affinity TF binding 

sites orchestrate the concentration and stabilization of DNA-TF interactions (Izeddin et al., 2014; 

Liu et al., 2014; Tsai et al., 2017). These observations are in line with the Phase-Separation 

Model proposed by Hnisz et al to explain some of the reported features of transcriptional 

control. According to this model, concentrating TFs into specific domains provides the condition 

for the establishment of cooperative interactions and the appropriate transcriptional complexes 

that promote gene transcription (Hnisz et al., 2017).   

In summary, the quality of the Hox binding sites has emerged in recent years as an 

important aspect of Hox specificity. In addition to the establishment of specific Hox protein 

complexes, the affinity of the Hox binding sites as well as how they are organized in the context 

of a CRM, seems to be crucial for Hox function and specificity.  

 

Conclusion & Outlook  

.  

A point that will certainly be the focus of research is the role of the Hox TFs as 

regulators of the chromatin landscape. Although several observations suggest that the Hox 

proteins act as regulators of the chromatin landscape, there is still no clear evidence that Hox 

proteins may modulate the deposition of chromatin marks and the opening/closing of chromatin. 

Another important aspect is the nature of the Hox binding sites and its influence on the Hox 

specificity. By binding with different affinities to diverse binding sites, Hox complexes can 

activate specific targets in a highly context-dependent manner. However, some points still 

remain unclear regarding Hox specificity. Despite the differences in affinities, there are different 

Hox/Exd/Hth complexes that seem to recognize the same binding sites with similar affinity. 

Additionally, there are CRMs containing different binding sites that are regulated by the same 

Hox TF. It is possible that the organization of binding sites (Hox and cofactors) may provide the 

additional layer of specificity in these cases. Indeed, sub-optimization of the Hox binding sites 
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might have evolved to favour activation by the Hox TFs while preventing competition with other 

TFs (Noyes et al., 2008). This might be especially true for the Homeodomain TFs family. This 

family comprises the second largest TFs family in Drosophila as well as in Humans (Tupler et 

al., 2001) and as expected, the members of this family were shown to recognize similar binding 

sites (Noyes et al., 2008). It will be interesting to determine whether the existence of low-affinity 

binding sites in addition to provide a way to achieve a trade-off between the required 

transcriptional levels, tissue and/or cell specificity, might also provide a mechanism to prevent 

transcriptional interference by co-expressed Homeodomain TFs. This is even more relevant 

when taking into account the differential expression levels of the several Homeodomain TFs.  

Hence, the link between the nature of the Hox binding sites, the syntax of the CRMs 

and the formation of different Hox complexes is crucial to understand the mode of action of Hox 

TFs. Likewise, the contribution of the CRMs to the nuclear organization of transcriptional 

complexes and how this impact on gene regulation are issues that need to be addressed in 

future studies. In this context, the effect of the Hox TFs on the PIC is still unclear. The observed 

interactions with basal transcription factors as well the stimulation of P-TEFb and subsequent 

activation of Pol II indicates a regulatory role of the Hox proteins in the activation of 

transcription. The presence of Hox TFs in paused/poised promoters further supports this idea. It 

will be interesting in future to determine if and how Hox proteins contribute to the release of 

paused Pol-II.  

In sum, the diverse regulatory function of Hox TFs described in this review raises 

interesting challenges. Coordination of gene expression is undoubtedly a premising one. How 

do Hox proteins coordinate the different steps of gene expression to regulate their target 

genes? Does the involvement of Hox TFs at the several layers of gene expression constitute a 

general mode of action by which Hox proteins regulate their target genes? Or do these events 

take place in a gene specific manner? In other words, does the regulation of individual genes 

through the use of different regulatory mechanisms constitute an important aspect in Hox 

regulation? Moreover, does this provide the framework by which Hox proteins are able to 

establish and coordinate genetic networks?  

Additionally, the well-known evolutionary conservation in term of protein domain and 

DNA-affinity of homeodomain containing TFs leads to several questions. For example, is the 

multi-step regulatory function of gene expression a general characteristic of homeodomain TFs? 

Is it evolutionary conserved in all bilaterian animals? It will be important to follow this line of 

research in depth to understand all the regulatory levels that allow Hox TF and other 

homeodomain-containing TFs to execute their diverse and highly context-dependent functions. 
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Figure Legends 

 

 

 
 

Figure 1: Hox TFs are multi-step players of gene expression. Representative picture of the 

potential multi-level regulatory function by Hox factors in the chromatin landscape (red), at 

enhanceosome (blue), enhancer-promoter communication (brown), polymerase initiation 

complex (grey) and mRNA processing levels (orange). Specifically, Hox TFs act: i), on the 

chromatin state by the regulation of histone acetylation (H3K27ac) and methylation (H3K4me3, 

H3K27me3) via interplay between TrxG, CBP, and PcG, HDAC ii), on nucleosome occupancy 

via SWI/SNF nucleosome remodelling complex, iii), on the chromatin conformation via the 

regulation of enhancer-promoter loop (CTCF, histone variant, Mediator complex), iv), on 

Polymerase Initiation Complex (PIC) and the switch from paused Ser5P-Pol II to active Ser2P-

Pol II, v), on mRNA processing and vi), at the enhanceosome level characterised by defined 

enhancer syntax. They do so by the establishment of multi-regulatory complexes that will 

orchestrate their function in vivo in order to deploy their specific and diverse morphogenesis 

functions. H3: histone 3, ac-K27: H3K27ac, K4-me3: H3K4me3, H2av: histone 2A variant, CRM: 

cis-regulatory module, SWI/SNF: SWItch/Sucrose Non-Fermentable, 5’cap: 5’ RNA-capping, pol 

II: RNA Polymerase II, Ser2P: serine 2 phosphorylated of Pol II, Ser5P: serine 5 phosphorylated 

of Pol II, +1: first nucleosome after the transcriptional start site (TSS). 

 


